首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The molecular basis for the inviability of dam-3 recA200(Ts) and dam-3 recB270(Ts) cells was studied. The dam-3 recA200(Ts) cells were inviable in yeast extract-nutrient broth or in minimal medium at 42 degrees C. Although the dam-3 recB270(Ts) cells were inviable in yeast extract-nutrient broth at 42 degrees C, they were viable at 42 degrees C in minimal medium, in which the high salt content suppresses the mutant phenotype caused by the recB270(Ts) mutation at 42 degrees C. Under the growth conditions rendering dam rec cells inviable, the cells accumulated double-strand breaks in their DNA. Introduction of a mutL or mutS mutation restored the viability of dam-3 recB270(Ts) cells grown in yeast extract-nutrient broth at 42 degrees C and eliminated the formation of DNA double-strand breaks in these cells. We conclude that the inability to repair DNA double-strand breaks produced by the mismatch repair process accounts for the inviability of the dam recA and dam recB cells.  相似文献   

2.
A mutant of Escherichia coli with a thermosensitive defect, possibly in the outer membrane (omsA mutant), was isolated from E. coli K-12 by mutagenization and selection for thermosensitivity and beta-lactam supersensitivity of growth. The mutant also showed very high sensitivity to other antibiotics, such as macarbomycin, midecamycin, rifampin, and bacitracin. The mutation was recessive to the wild type and was mapped at about 4 min on the E. coli chromosome between fhuA and metD. The mutation caused rapid release into the medium of periplasmic enzymes such as RTEM penicillinase but practically no cytoplasmic enzyme when cells grown at 30 degrees C were transferred to 37 or 42 degrees C. Electron microscopic observations showed many large double-layered vesicles attached to the surface of cells incubated at 42 degrees C. We conclude that the mutant had a mutation that caused a temperature-dependent defect in the outer membrane structure or its assembly (named an oms mutation). The omsA mutant may be useful for production of periplasmic proteins, which it releases into the culture medium on shift up of temperature.  相似文献   

3.
Pls1 tetraspanins were shown for some pathogenic fungi to be essential for appressorium-mediated penetration into their host plants. We show here that Podospora anserina, a saprobic fungus lacking appressorium, contains PaPls1, a gene orthologous to known PLS1 genes. Inactivation of PaPls1 demonstrates that this gene is specifically required for the germination of ascospores in P. anserina. These ascospores are heavily melanized cells that germinate under inducing conditions through a specific pore. On the contrary, MgPLS1, which fully complements a ΔPaPls1 ascospore germination defect, has no role in the germination of Magnaporthe grisea nonmelanized ascospores but is required for the formation of the penetration peg at the pore of its melanized appressorium. P. anserina mutants with mutation of PaNox2, which encodes the NADPH oxidase of the NOX2 family, display the same ascospore-specific germination defect as the ΔPaPls1 mutant. Both mutant phenotypes are suppressed by the inhibition of melanin biosynthesis, suggesting that they are involved in the same cellular process required for the germination of P. anserina melanized ascospores. The analysis of the distribution of PLS1 and NOX2 genes in fungal genomes shows that they are either both present or both absent. These results indicate that the germination of P. anserina ascospores and the formation of the M. grisea appressorium penetration peg use the same molecular machinery that includes Pls1 and Nox2. This machinery is specifically required for the emergence of polarized hyphae from reinforced structures such as appressoria and ascospores. Its recurrent recruitment during fungal evolution may account for some of the morphogenetic convergence observed in fungi.  相似文献   

4.
A simple method for the isolation of single ascospores of the fission yeast Schizosaccharomyces pombe was examined. Single spores in the 7-day-old sporulating culture of a homothallic strain were separated from remaining vegetative cells by isopycnic centrifugation in the linear gradient from 10 to 60% of Urografin solution at 700 X g for 20 min. Protein content of isolated spores was very low as compared with that of vegetative cells. The isolated spores germinated through the following steps when cultured in a liquid medium at 25--35 degrees C; loss of refractility (darkening) under a phase-contrast microscope, spherical growth (swelling), emergence of germ tubes, elongation of germ tubes, cell plate formation, and cell separation. The absorbance at 650 nm of the spore suspension initially decreased, accompanied by darkening of spores, and then increased with spherical growth. The germination rate of isolated spores reached almost 100%.  相似文献   

5.
Escherichia coli mutants were isolated that supported the growth of a lambda Ots and, in at least one case, a lambda Bts phage at the normally nonpermissive temperature of 39 degrees C. In one such strain, Ots and Bts suppression ability appeared to be a function of the guaB gene. Ots suppression by the mutant guaB strain was prevented if high levels of guanine or xanthine were present in the medium. No other base had any effect on Ots suppression in this strain. Other strains carrying spontaneous mutations resulting in guanine or xanthine auxotrophy (guaA or guaB lesions, respectively) all allowed lambda Ots replication at 39 degrees C; Ots suppression in these strains was also abolished by addition of guanine to the medium. Thus, reduced intracellular guanine levels resulting from guaA or guaB mutations appeared to suppress the inability of lambda Ots and, at least in some cases, Bts bacteriophage to form plaques at 39 degrees C. In burst size experiments, a guaB mutant produced a larger phage yield per infected cell of both lambda Ots and lambda O+ phage at 39 degrees C than did a similar guaB+ strain. It appeared that a lower-than-normal level of guanine (or a guanine derivative) in these cells may permit unusually efficient lambda replication. The fact that O+ and lambda Ots bursts in the guaB mutant were reduced significantly by addition of exogenous guanine to the medium is consistent with this suggestion. Another strain that suppresses the Ots allele has no known auxotrophic requirements, and suppression in this strain was unaffected by addition of guanine to the medium; however, addition of cytidine to the medium specifically eliminated Ots suppression in this strain. The mutation responsible for allowing Ots replication in this strain is unknown.  相似文献   

6.
A composite cross was made between 12 strains of the fungus Ascobolus immersus, six with wild-type red ascospores (w1+) and six with white ascospore mutation w1-78. A high postmeiotic segregation (PMS) frequency line was set up from colonies from ascospores from dehisced octads showing PMS, 5+ : 3w and 3+ : 5w. A low PMS line was started from ascospores from 4+ : 4w or 6+ : 2w octads, and a 'no selection' line was set up from ascospores from random octads. Colonies were crossed to tester strains to determine PMS frequencies and the selected lines were continued from ascospores of crosses of the red ascospore strain with the most extreme (e.g. high for the high line) PMS frequency with the white-ascospore strain of most extreme PMS frequency and of opposite mating type. Significant responses to selection were obtained for increased (+100%) and decreased (-58%) PMS, giving a 4.8-times difference in generation 4, with little change in the frequencies of conversion classes showing meiotic segregation (6+ : 2w and 2+ : 6w). The continuous, symmetrical, roughly normal distributions for PMS frequencies obtained when generation 5 strains were crossed to unselected tester strains are those expected if PMS frequencies are controlled by a number of polygenes, not major genes. Crosses of selected fifth-generation red-ascospore strains with extreme PMS values to base-substitution mutant w1-78, to frame-shift mutant w1-3C1 and to white-ascospore mutants w-BHj and w-9 at two loci unlinked to w1 showed that the effects of selection were not allele specific, locus specific or mutation-type specific.  相似文献   

7.
The content of lysophosphatidylethanolamine (LPE) in Y. pseudotuberculosis cells was found to increase during their growth at 8 degrees C under stationary conditions (without stirring the medium) and at 37 degrees C when the medium contained glucose. The maximum level of LPE (up to 45% of the total phospholipids) was observed in cells grown at 8 degrees C under stationary conditions. Such cells showed an enhanced growth rate, a reduced yield of biomass, an altered cell morphology, and an increased cell area. The cells contained unsaturated fatty acids, phosphatidylethanolamine (PE), and total phospholipids in small amounts, whereas neutral lipids and diphosphatidylglycerol were abundant. In addition, the cells contained an amount of methylated PE and phospholipids of unknown structure. Irrespective of whether the temperature for growth was low or high, the LPE-rich cells showed a high value (32-36 degrees C) of the maximum temperature of thermal transition of lipids (Tmax). This finding is indicative of a densification of the membrane lipid matrix of the LPE-rich cells. The suggestion is made that LPE is accumulated in glucose-fermenting bacterial cells in response to stress caused by oxygen deficiency and low pH values of the growth medium. The possible relationship between LPE accumulation and the virulence of Y. pseudotuberculosis cells grown at low temperatures is discussed.  相似文献   

8.
It has been shown that recessive suppressor mutations in the yeast Saccharomyces cerevisiae may cause sensitivity towards low temperatures (very slow growth or lack of growth at 10 degrees C). One of the sup 1 low temperature sensitive (Lts-) mutants, 26-125A-P-2156, was studied in detail. After a prolonged period of incubation (70 h) under restrictive conditions the protein synthesis apparatus in the mutant cells was irreversibly damaged. In addition, Lts- cells incubated under restrictive conditions synthesize unequal amounts of ribosomal subunits, the level of 60 S subunit being reduced. It has been suggested that the recessive suppression is mediated by a mutation in the gene coding for 60 S subunit component, probably a ribosomal protein. The mutation leads simultaneously to a defect in the assembly of 60 S subunit and to low-temperature sensitive growth of the mutant.  相似文献   

9.
Some mesophilic yeasts and a thermotolerant strain of Saccharomyces cerevisiae were found to grow at 40 degrees C in complex media containing 1% yeast extract when an inoculum of 10(6) or more cells.mL-1 was used. Yeast extract (6%) permitted Saccharomyces cerevisiae to grow at 40 degrees C even with a smaller inoculum size (10(5) cells.mL-1). The fraction of respiratory-deficient (petite) mutants in 40 degrees C grown culture was less than 10% except for the thermotolerant strain, which showed greatly increased levels depending on culture conditions. Seven of eight yeast strains exhibited extremely reduced cytochrome oxidase activity when grown at 40 degrees C irrespective of the frequency of the petite mutation. In contrast, the accumulation of ethanol in the medium and the ethanol-producing activity of the cells were not affected by growth at 40 degrees C.  相似文献   

10.
The phenomenon of suppression of dnaZ mutation has been revealed in the course of F' factor integration into the chromosome of the mutant strain. We have shown that under non-permissive conditions (t = 43 degrees C), chromosome replication in dnaZts strains proceeds under control of the factor F' replicon stably integrated into the chromosome. Possible mechanism of suppression effect, based on the formation of a bireplicon replication system, is discussed.  相似文献   

11.
12.
Long-term batch cultures of Escherichia coli grown in nutrient-rich medium accumulate mutations that provide a growth advantage in the stationary phase (GASP). We have examined the survivors of prolonged stationary phase to identify loci involved in conferring a growth advantage and show that a mutation in the hns gene causing reduced activity of the global regulator H-NS confers a GASP phenotype under specific conditions. The hns-66 allele bears a point mutation within the termination codon of the H-NS open reading frame, resulting in a longer protein that is partially functional. Although isolated from a long-term stationary-phase culture of the parent carrying the rpoS819 allele that results in reduced RpoS activity, the hns-66 survivor showed a growth disadvantage in the early stationary phase (24 to 48 h) when competed against the parent. The hns-66 mutant is also unstable and reverts at a high frequency in the early stationary phase by accumulating second-site suppressor mutations within the ssrA gene involved in targeting aberrant proteins for proteolysis. The mutant was more stable and showed a moderate growth advantage in combination with the rpoS819 allele when competed against a 21-day-old parent. These studies show that H-NS is a target for mutations conferring fitness gain that depends on the genetic background as well as on the stage of the stationary phase.  相似文献   

13.
Temperature sensitivity of DNA polymerization and growth of a dnaX(Ts) mutant is suppressible at 39 to 40 degrees C by mutations in the initiator gene, dnaA. These suppressor mutations concomitantly cause initiation inhibition at 20 degrees C and have been designated Cs,Sx to indicate both phenotypic characteristics of cold-sensitive initiation and suppression of dnaX(Ts). One dnaA(Cs,Sx) mutant, A213D, has reduced affinity for ATP, and two mutants, R432L and T435K, have eliminated detectable DnaA box binding in vitro. Two models have explained dnaA(Cs,Sx) suppression of dnaX, which codes for both the tau and gamma subunits of DNA polymerase III. The initiation deficiency model assumes that reducing initiation efficiency allows survival of the dnaX(Ts) mutant at the somewhat intermediate temperature of 39 to 40 degrees C by reducing chromosome content per cell, thus allowing partially active DNA polymerase III to complete replication of enough chromosomes for the organism to survive. The stabilization model is based on the idea that DnaA interacts, directly or indirectly, with polymerization factors during replication. We present five lines of evidence consistent with the initiation deficiency model. First, a dnaA(Cs,Sx) mutation reduced initiation frequency and chromosome content (measured by flow cytometry) and origin/terminus ratios (measured by real-time PCR) in both wild-type and dnaX(Ts) strains growing at 39 and 34 degrees C. These effects were shown to result specifically from the Cs,Sx mutations, because the dnaX(Ts) mutant is not defective in initiation. Second, reduction of the number of origins and chromosome content per cell was common to all three known suppressor mutations. Third, growing the dnaA(Cs,Sx) dnaX(Ts) strain on glycerol-containing medium reduced its chromosome content to one per cell and eliminated suppression at 39 degrees C, as would be expected if the combination of poor carbon source, the Cs,Sx mutation, the Ts mutation, and the 39 degrees C incubation reduced replication to the point that growth (and, therefore, suppression) was not possible. However, suppression was possible on glycerol medium at 38 degrees C. Fourth, the dnaX(Ts) mutation can be suppressed also by introduction of oriC mutations, which reduced initiation efficiency and chromosome number per cell, and the degree of suppression was proportional to the level of initiation defect. Fifth, introducing a dnaA(Cos) allele, which causes overinitiation, into the dnaX(Ts) mutant exacerbated its temperature sensitivity.  相似文献   

14.
The dnaH mutant strain HF4704S, isolated by Sakai et al. (1974), was examined for its effect on phiX174 deoxyribonucleic acid (DNA) synthesis. It was found to carry two mutations affecting DNA synthesis. One mutation had no affect on phiX174 DNA synthesis, but did affect the ability of the mutant cells to form colonies on agar medium at 41 degrees C, and caused host DNA synthesis to cease after 1 h at 41 degrees C. The mutant marker cotransduced with ilvD at a frequency of about 9%. It seems likely that this mutation is in the dnaA gene. The second mutation affected the ability of the mutant cells to form colonies on agar medium supplemented with only 2 mug of thymine per ml, and affected both host and phiX174 DNA synthesis in medium supplemented with only 2 mug of thymine per ml. Both effects could be overcone by adding excess exogenous thymine. We were not able to unambiguously determine the map position of this mutant locus. Our data show that the DNA synthesis phenotype of the mutant strain HE4704S is governed by both these mutations, neither of which directly affects the replication of phiX174 DNA.  相似文献   

15.
The Fts proteins play an important role in the control of cell division in Escherichia coli. These proteins, which possibly form a functional complex, are encoded by genes that form an operon. In this study, we examined the properties of the temperature-sensitive mutation ftsZ84 harbored by low- or high-copy-number plasmids. Cells of strain AB1157, which had the ftsZ84 mutation, did not form colonies on salt-free L agar at 30 degrees C. When a low-copy-number plasmid containing the ftsZ84 mutation was present in these mutant cells, colony formation was restored on this medium at 30 degrees C, suggesting that FtsZ84 is probably less active than the wild-type protein and is therefore limiting in its capacity to trigger cell divisions. On the other hand, when the ftsZ84 mutation was harbored by the high-copy-number plasmid pBR325, colony formation was prevented on salt-free L agar plates whether the recipients were ftsZ84 mutant or parental cells, suggesting that, at high levels, FtsZ84 acts as a division inhibitor. The fact that colony formation was also prevented at 42 degrees C indicates that the FtsZ84 protein is not inactivated at the nonpermissive temperature. The possibility that FtsZ84 is a more efficient division inhibitor than the wild-type FtsZ is discussed. Evidence is also presented showing that a gene adjacent to mutT codes for a product that, under certain conditions, suppresses the ftsZ84 mutation.  相似文献   

16.
Temperature-sensitive mutants were derived from Saccharomyces cerevisiae Y5alpha by ethyl methane sulfonate mutagenesis, in a search for mutants that would produce methionine-rich protein at the nonpermissive temperature. A total of 132 mutant strains were selected which showed adequate growth on minimal medium at 25 degrees C but little or no growth on the same medium supplemented with a high concentration (2 mg/ml) of l-methionine at 37 degrees C. Several of these mutants were found to increase the proportion of methionine in their protein to much higher levels than that of the wild-type parent after a temperature shift from 25 to 37 degrees C. Two strains, 476 and 438, which were temperature sensitive only in the presence of methionine, produced cellular protein with methionine contents as high as 3.6 and 4.3%, respectively, when incubated in the presence of methionine. The former strain contained 2.5% methionine even when incubated at 37 degrees C in the absence of methionine. Wild strain Y5alpha, on the other hand, had 1.75% methionine under all conditions tested. Most temperature-sensitive mutants isolated had the same methionine content as the wild strain. It is concluded that the proportion of a specific amino acid, such as methionine, in S. cerevisiae protein can be altered by culturing certain temperature-sensitive mutants at an elevated temperature.  相似文献   

17.
18.
Asynchronous populations of the budding yeast Saccharomyces cerevisiae strain AG1-7 were examined by freeze-fracture electron microscopy for ultrastructural changes occurring in response to changes in the environment, specifically the following: temperature (23 or 37 degrees C); cell density (exponential, early stationary, and stationary phases); various periods of nitrogen starvation at low cell density, and return of nitrogen-starved cells to nitrogen-replete medium. This information has been gathered in preparation for ultrastructural examination of comparable responses of temperature-sensitive cell-cycle mutants. The plasma membrane was found to be particularly responsive to changes in environment. A high proportion (75%) of cells in exponential phase populations at 37 degrees C displayed paracrystalline arrays of plasma membrane particles, whereas this proportion was much lower (20%) at 23 degrees C in the same medium; plasma membrane grooves were longer at 37 than at 23 degrees C. In budded cells, the mother cell displayed paracrystalline arrays more frequently than the bud. Entry of cells into stationary phase, either through permitting population growth or by limiting nitrogen supply, resulted in increases in numbers of paracrystalline arrays and grooves. Groove depth also increased. The paracrystalline-array and groove-density responses were independent, both during entry into stationary phase and during the subsequent lag phase. Unusual groove forms appeared during stationary phase in high cell density populations, but not in low cell density nitrogen-starved populations. "Aggregate" and "geometric" tonoplast forms, previously described in strain A364A when grown under some of the conditions used here, were not found in AG1-7 under any of the conditions used here. It was demonstrated that particle-free patches can arise rapidly on the tonoplast of AG1-7 in response to temperature change from 37 to 23 degrees C. During stationary phase, spherosomes (lipid droplets) increased in size, particularly in response to nitrogen depletion. After 72 h of nitrogen starvation, about 10% of cell volume consisted of spherosomes. Changes in vacuolar content and mitochondrial form were also noted during entry into stationary phase.  相似文献   

19.
In a selection procedure designed to enrich for temperature-sensitive mutant cells blocked in mitosis a CHO-cell mutant was isolated which has a defect in cytokinesis as the basis of its temperature-sensitive phenotype. Cultures of the mutant had an abnormally high percentage (ie. 34%) of polyploid cells at the permissive temperature of 34 degress C and showed further increased frequencies of polyploidy as well as many multinucleated cells at 38.5 degrees 39.5 degrees. When the mutant cells were synchronized in metaphase by Colcemid arrest and then placed into fresh medium at nonpermissive temperature, they did not divide although the completion of mitosis appeared cytologically normal. Ultrastructural examination by electron microscopy of such synchronized cells at telophase revealed no specific defects in cellular components other than failure of development of a normal midbody. The sensitivity of the mutant to cytochalasin B and to Colcemid was the same as for wild-type cells. This mutation behaved as recessive in tetraploid cell hybrids constructed by fusing the mutant with a CHO strain which was wild-type with respect to temperature sensitivty.  相似文献   

20.
Temperature-sensitive sporulation mutants of Bacillus cereus were screened for intracellular protease activity that was more heat labile than that of the parental strain. One mutant grew as well as the wild type at 30 and 37 degrees C but sporulated poorly at 37 degrees C in an enriched or minimal medium. These spores germinated very slowly in response to alanine plus adenosine or calcium dipicolinate. During germination, spores produced by the mutant rapidly became heat sensitive, but released dipicolonic acid and mucopeptide fragments more slowly than the wild type and decreased only partially in density while remaining phase white (semirefractile). In freeze-etch electron micrographs, the mature spores were deficient in the outer cross-patched coat layer. During germination, the spore coat changes associated with wild-type germination occurred very slowly in this mutant. Although the original mutant was also a pyrimidine auxotroph, reversion to prototrophy did not alter any of the phenotypic properties discussed. Selection of revertants that germinated rapidly or sporulated well at 37 degrees C, however, resulted in restoratin of all wild-type properties (exclusive of the pyrimidine requirement) including heat-stable protease activity. The reversion frequency was consistent with an initial point mutation, indicating that a protease alteration resulted in production of spores defective in a very early stage of germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号