首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distribution, metabolism and function of dolichol and polyprenols   总被引:9,自引:0,他引:9  
Polyisoprenoid alcohols consisting of 9 or more isoprene units are present in all living cells. They can be fully unsaturated (polyprenols) or alpha-saturated (dolichol). Dolichol forms may have additional saturation at or near the omega-end. Some species contain ony dolichol or only polyprenols while others have nearly equal amounts of both types. Some polyisoprenoid alcohols consist entirely of trans isoprene units but most, including dolichol, contain both trans and cis units. Considerable advances in lipid methodology have occurred since the first review of polyisoprenoid alcohols by Hemming in 1974. For example, direct analysis of both dolichol and Dol-P by HPLC has replaced earlier methods which were often both insensitive and inaccurate. The availability of radiolabeled dolichol and polyprenols has facilitated studies concerning the metabolism and distribution of these compounds. Those studies suggest that only a small portion of the dolichol present in cells is likely to be involved in glycosylation. Polyisoprenoid alcohols are usually present at a family of homologues where each differs in size by one isoprene unit. Little or no size related specificity has been observed for any reaction involving dolichol or polyisoprenol intermediates. The overall length of polyisoprenoid alcohols may, however, affect the manner in which these compounds influence the physical and biochemical properties of membranes. Studies on the biosynthetic pathway leading from cis, trans Pol-PP by phosphatase action. The formation of the dolichol backbone from a polyprenol requires the action of an additional enzyme, an alpha-saturase. This enzyme does not always act at the level of a single common substrate, since Pol-PP, Pol-P, and polyprenol all appear to be utilized as substrates. The major product of the de novo pathway differs among different species. Dol-P would appear to be the most energy efficient end-product since it can participate directly in glycoprotein formation. Most often, however, Dol-P is not the major product of metabolic labeling experiments. In some cases, dolichol is formed so that rephosphorylation is required to provide Dol-P for participation in glycoprotein formation. The kinase responsible for this phosphorylation appears to bypass the considerable stores of dolichol present in tissues (i.e. sea urchin eggs) in favor of dolichol derived directly from de novo synthesis. Although HMGR is a major regulatory component of the pathway leading to polyisoprenoid alcohols and cholesterol, control is most often not co-ordinated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Previous in vivo studies using drugs that inhibit the N-glycosylation of proteins have demonstrated that newly synthesized N-linked glycoproteins are required for gastrulation in embryos of two species of sea urchins, Strongylocentrotus purpuratus and Arbacia punctulata. To understand the biochemical events regulating glycoprotein synthesis during gastrulation in S. purpuratus embryos, we examined the in vitro activities of enzymes catalyzing several of the early steps in N-linked glycoprotein synthesis. The activities of glycosyl transferases responsible for production of N,N-diacetylchitobiosylpyrophosphoryldolichol and glucosylphosphoryldolichol, two intermediates in the formation of oligosaccharylpyrophosphoryldolichol (the carbohydrate donor for N-glycosylation), were low but detectable in membranes from eggs. After fertilization these activities remained constant or increased slowly up to the blastula stage and thereafter increased rapidly at gastrulation. In agreement with these in vitro findings, in vivo labeling experiments revealed that the rate of incorporation of [3H]Man into oligosaccharylpyrophosphoryldolichol and into protein increased three- to fourfold prior to gastrulation and then slightly more at the prism stage. In contrast, in vitro activity of mannosylphosphoryldolichol synthase, another enzyme in the pathway of N-linked glycosylation, was maximal in membranes from egg and embryos in the early stages of development and declined prior to gastrulation. Furthermore, the level of this activity was at least 100-fold greater than that for enzymes involved in the formation of the chitobiosyl and glucosyl lipids. With the exception of mannosylphosphoryldolichol synthase activity, these data indicate that there is a general activation of the glycosylation apparatus before gastrulation in sea urchin embryos. Possible explanations for the decrease in mannosylphosphoryldolichol synthase activity are discussed.  相似文献   

3.
The major surface antigen of the bloodstream form of Trypanosoma brucei, the variant surface glycoprotein, is attached to the plasma membrane via a glycosylphosphatidylinositol anchor. The biosynthesis of the glycosylphosphatidylinositol anchor, as well as the assembly of the asparagine-linked oligosaccharide chains found on the variant surface glycoproteins, involves polyisoprenoid lipids that act as sugar carriers. Preliminary observations (Menon, A.K., Schwarz, R.T., Mayor, and Cross, G.A.M. (1990) J. Biol. Chem. 265, 9033-9042) suggested that the sugar carriers in T. brucei were short-chain polyisoprenoids containing substantially fewer isoprene residues than polyisoprenols in mammalian cells. In this paper we describe metabolic labeling experiments with [3H]mevalonate, as well as chromatographic and mass spectrometric analyses of products of the mevalonate pathway in T. brucei. We report that cells of the bloodstream form of T. brucei contain a limited spectrum of short chain dolichols and dolichol phosphates (11 and 12 isoprene residues). The total dolichol content was estimated to be 0.28 nmol/10(9) cells; the dolichyl phosphate content was 0.07 nmol/10(9) cells. The same spectrum of dolichol chain lengths was also found in a polar lipid that could be labeled with [3H]mevalonate, [3H]glucosamine, and [3H]mannose, and which was characterized as Man5GlcNAc2-PP-dolichol. The most abundant product of the mevalonate pathway identified in T. brucei was cholesterol (140 nmol/10(9) cells). Ubiquinone (0.09 nmol/10(9) cells) with a solanesol side chain was also identified.  相似文献   

4.
It is well established that mannosylphosphoryldolichol participates in the synthesis of N-linked glycoproteins by donating mannosyl residues to oligosaccharide-lipid intermediates. It has been suggested that mannosylphosphorylretinol also is involved in glycoprotein biosynthesis. We conclude that one synthase catalyzes the synthesis of both mannosylphosphoryldolichol and mannosylphosphorylretinol in rat liver tissue and Chinese hamster ovary cells, based on the following results. 1) The enzyme in rat liver microsomes that synthesizes mannosylphosphoryldolichol and mannosylphosphorylretinol is inactivated at the same rate at 55 degrees C. 2) In membranes of both rat liver and Chinese hamster ovary cells, exogenous dolichyl phosphate and retinyl phosphate compete with each other for mannosyl-lipid synthesis. However, in both systems adding exogenous retinyl phosphate has no effect on the synthesis of mannosylphosphoryldolichol from endogenous dolichyl phosphate in the membranes. 3) Membranes prepared from a mutant of Chinese hamster ovary cells which is devoid of mannosylphosphoryldolichol synthase lack the ability to synthesize mannosylphosphorylretinol.  相似文献   

5.
The effect of mevastatin and mevinolin on the fusion of L6 myoblasts was studied. Both compounds were potent inhibitors of myoblast fusion at concentrations as low as 0.25 M, but fusion was restored when the inhibitors were removed. Both compounds resulted in decreased binding of conA and WGA to cell surface oligosaccharides showing they were causing a reduction in N-linked cell surface glycoproteins. There was a reduction in creatine phosphokinase activities in the presence of both compounds showing that they were affecting biochemical differentiation. The presence of both compounds inhibited the incorporation of labeled mannose from GDP-mannose into lipid-sugar and N-linked glycoprotein, but the inhibition was reversed by addition of exogenous dolichol phosphate to the incorporation mixture. The main conclusion from these studies is that mevinolin and mevastatin are inhibiting myoblast fusion by affecting the synthesis of fusogenic cell surface N-linked glycoproteins probably by affecting the synthesis of dolichol phosphate containing oligosaccharides that are required as intermediates in N-linked glycoprotein biosynthesis.Abbreviations HMG-CoA 3-hydroxy-3-methylglutaryl coenzyme A - Dol dolichol - Dol-P dolichol phosphate - Man mannose - GlcNAc N-acetylglucosamine - Glc glucose - conA concanavalin A - WGA wheat germ agglutinin - CPK creatine phosphokinase  相似文献   

6.
The addition of oligosaccharide to asparagine residues of soluble and membrane-associated proteins in eukaryotic cells involves a polyisoprenoid lipid carrier, dolichol. In Chinese hamster ovary cells, the major isomer of this polyisoprenol has 19 isoprenyl units, the terminal one being saturated. Our laboratory has developed a procedure to analyze the levels and nature of the cell's dolichyl derivatives. Chinese hamster ovary cells contain predominately activated, anionic dolichol derivatives, such as oligosaccharyl pyrophosphoryldolichol, monoglycosylated phosphoryldolichols, and dolichyl phosphate. Our studies show that in growing cells there is continual synthesis of total dolichol. Also, preliminary data suggest there is no catabolism or secretion of this lipid. The level of dolichyl phosphate did not change significantly under a variety of conditions where the levels of enzyme activities utilizing dolichyl phosphate did change. These results suggested that these enzymes had access to the same pool of dolichyl phosphate and had similar Km values for this lipid.  相似文献   

7.
Previous results suggested that F2A8, a glycosylation mutant of Chinese hamster ovary cells, had a lower amount of dolichyl phosphate available for asparagine-linked glycosylation reactions relative to parental cells. The steady-state amounts and identities of polyisoprenoid lipids were determined by incubating F2A8, its parental cell line B4-2-1, and wild-type Chinese hamster ovary cells for 24 h with [2-3H]mevalonate. The neutral lipids, ubiquinone, cholesterol, and cholesteryl esters, which were the most highly labeled from [3H]mevalonate, were labeled equally in all three cell types. In wild-type and B4-2-1 cells, mevalonate incorporation into the anionic glycosylated and phosphorylated derivatives of dolichol was 10-fold higher than into the neutral free dolichol and dolichyl esters. In contrast, in F2A8 cells, label accumulated in neutral polyisoprenol lipids, so that the ratio of neutral to anionic lipids was 1:1 rather than 1:10. In wild-type and B4-2-1 cells, the polyisoprenoid found as free alcohol and in phosphorylated and glycosylated forms was shown by high pressure liquid chromatography using a silica column to be primarily dolichol, a polyisoprenol that has a saturated terminal isoprene unit. In contrast, in F2A8 cells the polyisoprenoid found primarily as the free alcohol and in phosphorylated and glycosylated forms appeared to be completely unsaturated polyprenol. The distribution of chain lengths of the labeled polyisoprenols of F2A8, B4-2-1, and wild-type cells was the same as determined by high pressure liquid chromatography using a reverse-phase column, with the predominant chain length being 19 isoprene units. These results combined with our previous studies on the phenotype of the F2A8 mutant indicate that the unsaturated polyprenyl phosphate derivatives do not function as well as dolichyl phosphate derivatives in cellular glycosylation reactions.  相似文献   

8.
Membrane preparations from chick peripheral nervous system (PNS) catalyzed the transfer of [3H]glucose from UDP-[3H]glucose into glucosylphosphoryl dolichol. The initial rate of glucosylphosphoryl dolichol formation in a non-myelin membrane fraction from actively myelinating chick PNS was 11 fold higher than that from adult. Exogenous dolichyl monophosphate stimulated glucosylphosphoryl dolichol synthesis in both fractions. The higher level of glucosylphosphoryl dolichol synthesis corresponded to the onset of myelination in chick PNS. Exogenous dolichyl monophosphate also stimulated the labeling of glucosylated oligosaccharide lipids and glycoproteins in the fraction. On SDS polyacrylamide gel electrophoresis, the relative mobility of the major and minor radioactive glycoprotein corresponded with that of the P0 and PASII glycoprotein in PNS myelin, respectively. The results suggest that myelin glycoproteins in PNS are glycosylated via lipid intermediates.  相似文献   

9.
D D Carson  J P Tang  G Hu 《Biochemistry》1987,26(6):1598-1606
The steroid hormone 17 beta-estradiol dramatically induces uterine N-linked glycoprotein assembly [Dutt, A., Tang, J.-P., Welply, J. K., & Carson, D. D. (1986) Endocrinology (Baltimore) 118, 661-673]. To determine the role that dolichyl phosphate availability plays in this induction, we studied the effects of estrogen priming on the content of dolichyl phosphate and the distribution of dolichyl phosphate among various glycolipids in uteri. Dolichol-linked saccharides were metabolically labeled to equilibrium with either [3H]glucosamine or [3H]mannose and extracted from primary explants of uterine tissue. The amount of dolichol-linked saccharide was calculated from the specific radioactivity determined for the corresponding sugar nucleotides extracted from the tissues. The major dolichol-linked saccharides identified were mannosylphosphoryldolichol (MPD), oligosaccharylpyrophosphoryldolichol (OSL), and N,N'-diacetylchitobiosylpyrophosphoryldolichol (CBL). Estrogen increased the levels of MPD and OSL 4-fold; however, CBL levels did not change. After 3 days of treatment, the levels of these glycolipids were very similar to those in uteri from pregnant mice. Remarkably, MPD constituted 90-95% of dolichol-linked saccharides detected under all conditions. The tissue contents of total dolichyl phosphate and alkali-labile dolichyl phosphate, presumably MPD, were estimated by liquid chromatography. The levels of alkali-labile dolichyl phosphate determined in this way were in good agreement with the values estimated for MPD by metabolic labeling; moreover, alkali-labile dolichyl phosphate constituted 50-98% of the total dolichyl phosphate pool. The variations in MPD content depended upon the steroid hormone influence, most notably that of estrogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The in vivo and in vitro synthesis and turnover of dolichol and dolichyl phosphate have been studied over the course of early development in sea urchin embryos. Synthesis of dolichol and dolichyl phosphate was studied in vivo and in vitro using [3H]acetate and [14C] isopentenylpyrophosphate, respectively, as precursors. Both the in vivo and in vitro results indicate that the principal labeled end product of de novo synthesis is the free alcohol, and that this alcohol is subsequently phosphorylated to produce dolichyl phosphate. The presence of 30 microM compactin inhibits the de novo synthesis of dolichol from [3H]acetate by greater than 90%, but has no effect on the incorporation of 32Pi into dolichyl phosphate for more than 6 h, thus suggesting that during this time interval the major source of dolichyl phosphate is preformed dolichol. The rate of turnover of the [3H]acetate-labeled polyisoprenoid backbone of dolichyl phosphate is very slow (t1/2 = 40-70 h). In contrast, the rate of loss of the [32P]phosphate headgroup is more rapid (t1/2 = 5.7-7.7 h) and increases over the course of development. Finally, dolichyl phosphate phosphatase activity has been measured in vitro. The activity of this enzyme, which can be distinguished from phosphatidic acid phosphatase, was found to increase as a function of development, in qualitative agreement with the increased turnover of 32P from dolichyl phosphate observed in vivo. These results suggest that the phosphate moiety of dolichyl phosphate is in a dynamic state, and that dolichol kinase and dolichyl phosphate phosphatase play key roles in regulating the cellular level of dolichyl phosphate.  相似文献   

11.
The assembly of the core oligosaccharide region of asparagine-linked glycoproteins proceeds by means of the dolichol pathway. The first step of this pathway, the reaction of dolichol phosphate with UDP-GlcNAc to form N-acetylglucosaminylpyrophosphoryldolichol (GlcNAc-P-P-dolichol), is under investigation as a possible site of metabolic regulation. This report describes feedback inhibition of this reaction by the second intermediate of the pathway, N-acetylglucosaminyl-N-acetylglucosaminylpyrophosphoryldolichol (GlcNAc-GlcNAc-P-P-dolichol), and product inhibition by GlcNAc-P-P-dolichol itself. These influences were revealed when the reactions were carried out in the presence of showdomycin, a nucleoside antibiotic, present at concentrations that block the de novo formation of GlcNAc-GlcNAc-P-P-dolichol but not that of GlcNAc-P-P-dolichol. The apparent K(i) values for GlcNAc-P-P-dolichol and GlcNAc-GlcNAc-P-P-dolichol under basal conditions were 4.4 and 2.8 microM, respectively. Inhibition was also observed under conditions where mannosyl-P-dolichol (Man-P-dol) stimulated the biosynthesis of GlcNAc-P-P-dolichol; the apparent K(i) values for GlcNAc-P-P-dolichol and GlcNAc-GlcNAc-P-P-dolichol were 2.2 and 11 microM, respectively. Kinetic analysis of the types of inhibition indicated competitive inhibition by GlcNAc-P-P-dolichol toward the substrate UDP-GlcNAc and non-competitive inhibition toward dolichol phosphate. Inhibition by GlcNAc-GlcNAc-P-P-dolichol was uncompetitive toward UDP-GlcNAc and competitive toward dolichol phosphate. A model is presented for the kinetic mechanism of the synthesis of GlcNAc-P-P-dolichol. GlcNAc-P-P-dolichol also exerts a stimulatory effect on the biosynthesis of Man-P-dol, i.e. a reciprocal relationship to that previously observed between these two intermediates of the dolichol pathway. This network of inhibitory and stimulatory influences may be aspects of metabolic control of the pathway and thus of glycoprotein biosynthesis in general.  相似文献   

12.
In this report we present an initial determination of the biochemical defect present in a Chinese hamster ovary cell line selected for resistance to concanavalin A. Membranes of this mutant, B211, incorporated at least 10-fold less mannose from GDP-[14C]mannose into oligosaccharide-lipid than membranes of the wild type. In the presence of dolichol phosphate, membranes of the mutant and wild type exhibited similar rates of synthesis of number of early intermediates, namely, mannosylphosphoryldolichol, N-acetylglucosaminyl- and N,N'-diacetylchitobiosylpyrophosphoryldolichol, glucosylphosphoryldolichol, and mannosyloligosaccharide-lipid. The membranes of B211 did not incorporate glucose from UDP-[3H]glucose into oligosaccharide-lipid or protein. Comparison by gel filtration chromatography of oligosaccharides derived from the oligosaccharide-lipids of B211 and wild type cells labeled with [2-3H]mannose revealed that B211 cells incorporated little if any label into an oligosaccharide corresponding to the most excluded oligosaccharide labeled by wild type cells. This concanavalin A-resistant cell line appears to lack the ability to glucosylate oligosaccharide-lipid.  相似文献   

13.
Primary astroglial cultures were used to compare the relationships to cell cycling of dolichol-linked glycoprotein synthesis, and of availability of mevalonate, the precursor of dolichol and other isoprenoid lipids. With shift-up to 10% serum (time 0) after 48 h of serum depletion, the proportion of cells in S phase (bromodeoxyuridine immunofluorescence) remained under 15% for 12 h, then increased by 20 h to 72 +/- 10%; DNA synthetic rates (thymidine incorporation) increased 5-fold. S phase transition was prevented by addition at 10-12 h of tunicamycin, an inhibitor of transfer of saccharide moieties to dolichol. Mevinolin, an inhibitor of mevalonate biosynthesis, also blocked cycle progression when added at this time. However, mevinolin markedly inhibited the isoprenoid pathway, as reflected by over 90% reduction of sterol synthesis, without inhibiting net glycoprotein synthesis. Removal of mevinolin after a 24 h exposure delayed S phase until 48 h, following recovery of sterol synthesis, even though kinetics of glycoprotein synthesis were unaffected. Tunicamycin removal after 24 h spared sterol synthesis, but caused delay of S phase until 72 h, following recovery of glycoprotein synthesis. In mevinolin-treated cultures, S phase transition was restored by 1 h of exposure to mevalonate at 10 h, although cycling was thereby rendered sensitive to inhibition by cycloheximide and by tunicamycin. Cell cycle progression following hydroxyurea exposure and release was unaffected by mevinolin, tunicamycin, or cycloheximide. Thus, in these developing astroglia, mevalonate and its isoprenoid derivatives have at least two cell cycle-specific roles: dolichol-linked glycoprotein synthesis is required at or before the G1/S transition, while a distinct mevalonate requirement is apparent also in late G1.  相似文献   

14.
The embryonic development of skeletal muscle proceeds by the adherence and fusion of myoblast cells to form multinucleated myotubes. In the present study, enzymes in the dolichol pathway for asparagine-linked glycoprotein synthesis and oligosaccharide chain composition were characterized in myoblasts and myotubes derived from the C2 (mouse) muscle cell line. The N-acetylglucosaminyltransferase responsible for chain initiation and the mannosyl- and glucosyltransferases for Dol-P-Man and Dol-P-Glc synthesis were characterized with respect to substrate, cation, and detergent dependence. Time course studies in the absence and presence of exogenous Dol-P revealed that myoblasts had a two- to threefold higher capacity than myotubes for Dol-sugar synthesis. Pulse-chase experiments following the elongation of the Dol-oligosaccharide by intact cells showed myoblasts to label oligosaccharide intermediates approximately fourfold greater than myotubes; myotubes, however, were more efficient than myoblasts for converting the intermediates to the glucosylated Dol-tetradecasaccharide. Oligosaccharide chains isolated from sarcolemma glycopeptides were analyzed by Con A, WGA, and QAE chromatography. There were no differences between myoblast and myotube oligosaccharides with respect to the proportion of tri-tetraantennary complex, biantennary complex, and high mannose chains. Hybrid chains were not detected. The major high mannose chain contained nine mannose residues. Sialyltransferase activity was identical. The results suggest that higher levels of Dol-P and protein acceptor contribute to the greater degree of protein glycosylation in myoblast vs myotube muscle cells.  相似文献   

15.
We examined changes in the levels of the dolichol forms in Chinese hamster ovary cells containing alterations in the levels of activity of two enzymes in the oligosaccharyl-P-P-dolichol biosynthetic pathway, namely UDP-GlcNAc:dolichyl phosphate:GlcNAc-phosphotransferase (GlcNAc-1-phosphotransferase) and mannosylphosphoryldolichol (Man-P-Dol) synthase. Under normal conditions in wild type cells, Glc3Man9GlcNAc2-pyrophosphoryldolichol was the most abundant form. Of the other anionic forms of dolichols, dolichyl phosphate, Man-P-Dol, glucosylphosphoryldolichol, and Man5GlcNAc2-pyrophosphoryl dolichol were approximately equally abundant. When 3E11 cells (a tunicamycin-resistant Chinese hamster ovary line containing 15 times more GlcNAc-1-phosphotransferase activity than wild type), B4-2-1 cells (a mutant lacking Man-P-Dol synthase activity), and wild type cells incubated with or without tunicamycin were utilized, significant changes in the levels of most of the anionic dolichol derivatives, with the exception of dolichyl phosphate, were found. Since changes in dolichyl phosphate levels were not detected under a variety of conditions where the levels of enzyme activity utilizing this substrate were varied, all three enzymes appear to have access to the same pool of dolichyl phosphate, and further, to have similar Km values for dolichyl phosphate.  相似文献   

16.
Plant isoprenoids are derived from two biosynthetic pathways, the cytoplasmic mevalonate (MVA) and the plastidial methylerythritol phosphate (MEP) pathway. In this study their respective contributions toward formation of dolichols in Coluria geoides hairy root culture were estimated using in vivo labeling with (13)C-labeled glucose as a general precursor. NMR and mass spectrometry showed that both the MVA and MEP pathways were the sources of isopentenyl diphosphate incorporated into polyisoprenoid chains. The involvement of the MEP pathway was found to be substantial at the initiation stage of dolichol chain synthesis, but it was virtually nil at the terminal steps; statistically, 6-8 isoprene units within the dolichol molecule (i.e. 40-50% of the total) were derived from the MEP pathway. These results were further verified by incorporation of [5-(2)H]mevalonate or [5,5-(2)H(2)]deoxyxylulose into dolichols as well as by the observed decreased accumulation of dolichols upon treatment with mevinolin or fosmidomycin, selective inhibitors of either pathway. The presented data indicate that the synthesis of dolichols in C. geoides roots involves a continuous exchange of intermediates between the MVA and MEP pathways. According to our model, oligoprenyl diphosphate chains of a length not exceeding 13 isoprene units are synthesized in plastids from isopentenyl diphosphate derived from both the MEP and MVA pathways, and then are completed in the cytoplasm with several units derived solely from the MVA pathway. This study also illustrates an innovative application of mass spectrometry for qualitative and quantitative evaluation of the contribution of individual metabolic pathways to the biosynthesis of natural products.  相似文献   

17.
A correlation between increased beta-1,6 branching of N-linked carbohydrates and the ability of a cell to metastasize or to form a tumor has been observed in several experimental models. Lec9 Chinese hamster ovary (CHO) mutants exhibit a drastic reduction in tumorigenicity in nude mice, and this phenotype directly correlates with their ability to attach an increased proportion of beta-1,6-branched carbohydrates to the G glycoprotein of vesicular stomatitis virus (J. Ripka, S. Shin, and P. Stanley, Mol. Cell. Biol. 6:1268-1275, 1986). In this paper we provide evidence that cellular carbohydrates from Lec9 cells also contain an increased proportion of beta-1,6-branched carbohydrates, although they do not possess significantly increased activity of the beta-1,6 branching enzyme (GlcNAc-transferase V). Biosynthetic labeling experiments show that a substantial degree of underglycosylation occurs in Lec9 cells and that this affects several classes of glycoproteins. Lec9 cells synthesize ca. 40-fold less Glc3Man9GlcNAc2-P-P-lipid and ca. 2-fold less Man5GlcNAc2-P-P-lipid than parental cells do. In addition, Lec9 cells possess ca. fivefold less protein-bound oligosaccharide intermediates, and one major species is resistant to release by endo-beta-N-acetylglucosaminidase H (endo H). Membranes of Lec9 cells exhibit normal mannosylphosphoryldolichol synthase, glucosylphosphoryldolichol synthase, and N-acetylglucosaminylphosphate transferase activities in the presence of exogenous dolichyl phosphate. However, in the absence of exogenous dolichyl phosphate, mannosylphosphoryldolichol synthase and glucosylphosphoryldolichol synthase activities are reduced in membranes of Lec9 cells, indicating that membranes of Lec9 cells are deficient in lipid phosphate. This was confirmed by analysis of lipids labeled by [3H]mevalonate, which showed that Lec9 cells have less lipid phosphate than parental CHO cells. Mechanisms by which a defect in the synthesis of dolichol-oligosaccharides might alter the degree of beta-1,6 branching in N-linked carbohydrates are discussed.  相似文献   

18.
Endogenous dolichol was shown to function as a natural acceptor of mannose residues by using regenerating rat liver containing [(3)H]dolichol. When subcellular fractions from this liver were incubated with GDP-[(14)C]mannose a double-labelled lipid, which represented 30% of the total [(14)C]mannolipid, could be isolated. This lipid was shown to be identical with the dolichol phosphate mannose formed from exogenous dolichol phosphate, by chromatography, stability to alkali and by chemical cleavage to mannose and dolichol derivatives. It was formed by the rough endoplasmic reticulum and mitochondria. If it is concerned in glycoprotein synthesis this would suggest that it functions in the formation of both secreted and mitochondrial glycoproteins. When both the dolichol and retinol of rat tissue were radioactive they made similar contributions to the synthesis of the lipid by liver microsomal fractions and intestinal epithelial cells.  相似文献   

19.
Dolichol, a homologous series of alpha-saturated polyisoprenoid alcohols containing 14-24 isoprene units, was first isolated and characterized about 30 years ago. The phosphorylated form, dolichyl phosphate, is required for the biosynthesis of biologically important N-linked glycoproteins. Dolichol itself is synthesized by a common isoprenoid pathway from acetate and synthesis can be inhibited by some of the factors that inhibit cholesterol biosynthesis. It is metabolized very slowly and accumulates in tissues during aging and in certain lipid storage diseases. Dolichyl phosphate and cholesterol also accumulate in tissues during aging, but to a lesser extent than dolichol. Although dolichol and cholesterol have important metabolic functions, their accumulation in tissues can have deleterious effects.  相似文献   

20.
A review is presented of research carried out in this laboratory on two aspects of the dolichol pathway that may have regulatory influences on these events. (i) The validity of the phenomenon of the activation of the biosynthesis of GlcNAc-P-P-dolichol and (GlcNAc)2-P-P-dolichol by dolichol-P-mannose is supported by experiments carried out on the Thy-1-negative mouse lymphoma cell. While this cell cannot synthesize the activating compound, this capacity was retained and revealed upon the addition of exogenous dolichol-P-mannose. (ii) The topographical orientation of the GlcNAc-transferases that catalyze the biosynthesis of GlcNAc-P-P-dolichol and (GlcNAc)2-P-P-dolichol was investigated in microsomes from the liver of the embryonic chick using dolichol phosphate liposomes as an exogenous substrate. The formation of GlcNAc-P-P-dolichol and (GlcNAc)2-P-P-dolichol was inhibited by trypsinization under conditions where the native orientation of the microsome was maintained, as indicated by the latency of mannose-6-phosphatase. Both GlcNAc-lipids were detected on free liposomes after incubation with intact microsomes, and in the same proportions as found on the microsome. From these and other studies, evidence was obtained indicating the cytoplasmic orientation of the GlcNAc-transferases that catalyze the synthesis of the first two intermediates of the dolichol pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号