首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A few years ago we reported that histidine (HC3) 146 beta plays a major role in the pH-dependent properties of the R-state of human hemoglobin, accounting for close to 50% of the R-state Bohr effect. We have extended these studies by examining the role of arginine 141 alpha, another group known to affect the overall Bohr effect. We have compared the pH dependencies of the rate constants for the dissociation and combination of the fourth carbon monoxide molecule, l4 and l'4, respectively, for native hemoglobin A (HbA) and a control reconstituted HbA, and des-(Arg 141 alpha) HbA, the hemoglobin molecule resulting from the enzymatic removal of the C-terminal arginine of the alpha-chain of human Hb. From these kinetic constants the pH dependence of L4, the affinity constant for the fourth carbon monoxide molecule, has been estimated. We find that the removal of arginine 141 alpha reduces the pH dependence of log L4 by about 80% between pH 6 and 8, where the alkaline Bohr effect normally occurs. The sum of the effects of the removal of His 146 beta and of Arg 141 alpha is greater than 100%. This suggests that at least one of these modifications alters the contributions of other residues of this Bohr effect.  相似文献   

2.
The kinetics of O2 and CO binding to R-state human hemoglobin A0 and human hemoglobin cross-linked between the alpha chains at Lys99 residues were examined using ligand displacement and partial photolysis techniques. Oxygen equilibrium curves were measured by Imai's continuous recording method (Imai, K. (1981) Methods Enzymol. 76, 438-449). The rate of the R to T transition was determined after full laser photolysis of the carbon monoxide derivative by measuring the resultant absorbance changes at an isosbestic point for ligand binding. Chemical cross-linking caused the R-state O2 affinity of alpha subunits to decrease 6-fold compared with unmodified hemoglobin. This inhibition of O2 binding was the result of both a decrease in the rate constant for ligand association and an increase in the rate constant for dissociation. The O2 affinity of R-state beta subunits was reduced 2-fold because of an increase in the O2 dissociation rate constant. These changes were attributed to proximal effects on the R-state hemes as the result of the covalent cross-link between alpha chain G helices. This proximal strain in cross-linked hemoglobin was also expressed as a 5-fold higher rate for the unliganded R to T allosteric transition. The fourth O2 equilibrium binding constant, K4, measured by kinetic techniques, could be used to analyze equilibrium curves for either native or cross-linked hemoglobin. The resultant fitted values of the Adair constants, a1, a2, and a3 were similar to those obtained when K4 was allowed to vary, and the fits were of equal quality. When K4 was fixed to the kinetically determined value, the remaining Adair constants, particularly a3, became better defined.  相似文献   

3.
M Wind  A Stern  S Simon  L Law 《Biochemistry》1976,15(23):5161-5167
The pH dependence of several functional properties of human fetal and adult hemoglobins have been studied to determine the relative stabilities of the high and low affinity (R and T) quaternary conformations of the two proteins under different conditions. Fetal aqumethemoglobin undergoes changes in sulfhydryl reactivity, absorption spectrum, and circular dichroism in the presence of insitol hexaphospahte which are consistent with a transition from the R to T quaternary state, but only at pH values below 6.8. In adult hemoglobin this transition can be induced pH values below 7.2. Even in the absence of phosphates, the ultraviolet (uv) circular dichroism spectrum of fetal aquomethemoglobin at low pH indicates the presence of some T conformation. The initial value for the second-order rate constant for combination of fetal deoxyhemoglobin with carbon monoxide is comparable to that for adult hemoglobin in the absence of organic phosphates and is not reduced by organic phosphates as much as that for the adult protein. The apparent first-order rate constant for dissociation of CO from fully liganded fetal hemoglobin, measured by replacement with NO, increases threefold in the absence of organic phosphates, and fourfold in the presence of organic phosphates, with decreasing pH; the midpoint of the pH dependent transition occurs around 6.8. A similar increase in the apparent first-order rate constant for O2 dissociation as measured by replacement with CO, can also be seen with decreasing pH. NO-hemoglobin F can be converted to the T state even when fully liganded simply by lowering the pH, as judged by uv circular dichroism, visible difference spectrum in the region of the alpha and beta bands, and a dramatic increase in the rate of NO dissociation, measured by replacement with CO in the presence of dithionite. These results are all consistent with a model for fetal hemoglobin in which the organic phosphate site may be functionally weakened by replacement of a residue involved in ionic interactions with the negatively charged phosphate groups, but in which the low affinity T conformation is intrinsically more stable than that of adllt hemoglobin. According to this model,the differences between fetal and adult hemoglobin can be accounted for primarily in terms of the relative stabilities of R and T conformations in each of the proteins with differences in the intrinsic properties of the individual conformations contributing effects of only secondary importance.  相似文献   

4.
To investigate the mode of interactions between heme metal, bound oxygen and the distal residue at the E7 site, we have measured accurate oxygen equilibrium curves, oxygen binding relaxations following temperature-jump, and electron paramagnetic resonance spectra of natural and cobalt-substituted opossum hemoglobin, which has glutamine and histidine at the E7 site of the α chain and the β chain, respectively, and compared them with those of natural and cobalt-substituted human hemoglobin, which has histidine at the E7 site of both the α and β chains.Natural opossum hemoglobin has a lower oxygen affinity, slightly smaller and pH-dependent co-operativity, a somewhat greater Bohr effect, and a smaller effect of organic phosphates such as 2,3-diphosphoglycerate and inositol hexaphosphate on oxygen affinity as compared to natural human hemoglobin. Upon substitution of cobalt for iron, these oxygenation characteristics of opossum hemoglobin relative to those of human hemoglobin were preserved well. The behavior of the intrinsic oxygen association constants pertaining to the four oxygenation steps (i.e. the Adair constants) upon addition of the organic phosphates or pH changes indicates that the allosteric equilibrium in opossum hemoglobin is biased towards the T state as compared with that in human hemoglobin, and that the oxygen affinity of the R structure is lower for opossum hemoglobin than for human hemoglobin. The temperature-jump kinetic data indicate that the lower oxygen affinity of opossum cobalt-hemoglobin in comparison with that of human cobalt-hemoglobin can be ascribed to a decreased oxygen association rate constant. The electron paramagnetic resonance experiments on oxy and deoxy opossum and human cobalt-hemoglobins in buffered H2O and 2H2O, including their photolysed products at a low temperature, provided the following information. The cobaltous ion of the α subunits of deoxy opossum cobalt-hemoglobin is in an environment that is similar to that for cobaltous ions of deoxy human cobalt-hemoglobin in the T state. The hydrogen bond between the bound oxygen and the residue at E7, which has been shown to exist in oxy human cobalt-hemoglobin and oxy sperm whale cobalt-myoglobin, is absent or, at least, significantly altered in the α subunits of oxy opossum cobalt-hemoglobin, probably resulting in a lower oxygen affinity. Interference by isoleucine at E11α with an oxygen molecule is suggested as an explanation for the lowered affinity of opossum iron-hemoglobin. However, no straightforward structural explanation is available for the lower oxygen affinity of the R structure and the allosteric equilibrium biased towards the T state in opossum iron-hemoglobin.  相似文献   

5.
The crystal structure of hemoglobin has been known for several decades, yet various features of the molecule remain unexplained or controversial. Several animal hemoglobins have properties that cannot be readily explained in terms of their amino acid sequence and known atomic models of hemoglobin. Among these, fish hemoglobins are well known for their widely varying interactions with heterotropic effector molecules and pH sensitivity. Some fish hemoglobins are almost completely insensitive to pH (within physiological limits), whereas others show extremely low oxygen affinity under acid conditions, a phenomenon called the Root effect. X-ray crystal structures of Root effect hemoglobins have not, to date, provided convincing explanations of this effect. Sequence alignments have signally failed to pinpoint the residues involved, and site-directed mutagenesis has not yielded a human hemoglobin variant with this property. We have solved the crystal structure of tuna hemoglobin in the deoxy form at low and moderate pH and in the presence of carbon monoxide at high pH. A comparison of these models shows clear evidence for novel mechanisms of pH-dependent control of ligand affinity.  相似文献   

6.
For many antibodies, each antigen-binding site binds to only one antigen molecule during the antibody's lifetime in plasma. To increase the number of cycles of antigen binding and lysosomal degradation, we engineered tocilizumab (Actemra), an antibody against the IL-6 receptor (IL-6R), to rapidly dissociate from IL-6R within the acidic environment of the endosome (pH 6.0) while maintaining its binding affinity to IL-6R in plasma (pH 7.4). Studies using normal mice and mice expressing human IL-6R suggested that this pH-dependent IL-6R dissociation within the acidic environment of the endosome resulted in lysosomal degradation of the previously bound IL-6R while releasing the free antibody back to the plasma to bind another IL-6R molecule. In cynomolgus monkeys, an antibody with pH-dependent antigen binding, but not an affinity-matured variant, significantly improved the pharmacokinetics and duration of C-reactive protein inhibition. Engineering pH dependency into the interactions of therapeutic antibodies with their targets may enable them to be delivered less frequently or at lower doses.  相似文献   

7.
We have determined the low temperature EPR spectra and room temperature ligand dissociation rate constants of human NO-hemoglobins F and A as a function of pH and inositol hexaphosphate levels in order to assess the contribution of a quaternary structural equilibrium in the two proteins to their spectral and functional properties. Our results are consistent with an increased stability of a ligated low affinity structure in the fetal protein; the functional properties of this structure appear to be essentially the same in the two hemoglobins, even though its stability relative to a high affinity conformation is different. The pH dependence of the NO dissociation constant in both adult and fetal hemoglobin can be assigned primarily to the pH-dependent equilibria of high and low affinity forms as monitored by EPR.  相似文献   

8.
The binding of carbon dioxide to human hemoglobin cross-linked between Lys alpha 99 residues with bis(3,5-di-bromosalicyl) fumarate was measured using manometric techniques. The binding of CO2 to unmodified hemoglobin can be described by two classes of sites with high and low affinities corresponding to the amino-terminal valines of the beta and alpha chains, respectively (Perrella, M., Kilmartin, J. V., Fogg, J., and Rossi-Bernardi, L. (1975b) Nature 256, 759-761. The cross-linked hemoglobin bound less CO2 than native hemoglobin at all CO2 concentrations in deoxygenated and liganded conformations, and the ligand-linked effect was reduced. Fitting the data to models of CO2 binding suggests that only half of the expected saturation with CO2 is possible. The remaining binding is described by a single affinity constant that for cross-linked deoxyhemoglobin is about two-thirds of the high affinity constant for deoxyhemoglobin A and that for cross-linked cyanomethemoglobin is equal to the high affinity constant for unmodified cyanomethemoglobin A or carbonmonoxyhemoglobin A. The low affinity binding constant for cross-linked hemoglobin in both the deoxygenated and liganded conformations is close to zero, which is significantly less than the affinity constants for either subunit binding site in unmodified hemoglobin. Comparing the low affinity sites in this modified hemoglobin to native hemoglobin suggests that cross-linking hemoglobin between Lys alpha 99 residues prevents CO2 binding at the alpha-subunit NH2 termini.  相似文献   

9.
The wide ligand affinity range previously observed for carp hemoglobin is bounded at both extremes by regions of constant affinity. Within these regions, pH, organic phosphates, and the extent of ligand binding have no effect on the measured affinity and the cooperativity of ligand binding is greatly reduced or absent. The rates of CO recombination to fully and partially unliganded carp hemoglobin, under various organic phosphate and pH conditions, are shown to reflect this behavior. Constant kinetic rates are seen to directly correspond to the regions of constant affinity. Therefore, these are taken to be single protein conformations, one of high and one of low ligand affinity. In the simplest view, these conformations represent the R and T states of a two-state model, and most of the properties of carp hemoglobin are explained quite well within this framework. Increases in either hydrogen or phosphate ion concentrations favor the stabilization of the low affinity structure of even fully liganded carp hemoglobin. We have studied the structural transition from high to low affinity by monitoring the absorption spectra of carp hemoglobins at constant pH as a function of organic phosphate concentration. We find that different spectra are induced in both carp methemoglobin and cyanomethemoglobin by inositol hexaphosphate addition. Furthermore, the dependence of the magnitude of the spectral changes on pH and organic phosphate concentration is the close agreement with that predicted from studies of the ligand binding properties of the molecule.  相似文献   

10.
The dissociation of nitric oxide from hemoglobin, from isolated subunits of hemoglobin, and from myoglobin has been studied using dithionite to remove free nitric oxide. The reduction of nitric oxide by dithionite has a rate of 1.4 X 10(3) M-1 S-1 at 20 degrees in 0.05 M phosphate, pH 7.0, which is small compared with the rate of recombination of hemoglobin with nitric oxide (25 X 10(6) M-1 S-1 (Cassoly, R., and Gibson, Q. H. (1975) J. Mol. Biol. 91, 301-313). The rate of NO combination with chains and myoglobin was found to be 24 X 10(6) M-1 S-1 and 17 X 10(6) M-1 S-1, respectively. Hence, the observed progress curve of the dissociation of nitric oxide is dependent upon the dithionite concentration and the total heme concentration. Addition of excess carbon monoxide to the dissociation mixture reduces the free heme yielding a single exponential process for chains and for myoglobin which is dithionite and heme concentration independent over a wide range of concentrations. The rates of dissociation of nitric oxide from alpha chains, from beta chains, and from myoglobin are 4.6 X 10(-5) S-1, 2.2 X 10(-5) S-1, and 1.2 X 10(4) S-1, respectively, both in the presence and in the absence of carbon monoxide at 20 degrees in 0.05 M phosphate, pH 7.0. Analogous heme and dithionite concentration dependence is found for the dissociation of nitric oxide from tetrameric hemoglobin. The reaction is cooperative, the intrinsic rate constants for the dissociation of the 1st and 4th molecules of NO differing about 100-fold. With hemoglobin, replacement of NO by CO at neutral pH is biphasic in phosphate buffers. The rate of the slow phase is 1 X 10(-5) S-1 and is independent of pH. The amplitude of the fast phase increases with lowering of pH. By analogy with the treatment of the HbCO + NO reaction given by Salhany et al. (Salhany, J.M., Ogawa, S., and Shulman, R.G. (1975) Biochemistry 14, 2180-2190), the fast phase is attributed to the dissociation of NO from T state molecules and the slow phase to dissociation from R state molecules. Analysis of the data gives a pH-independent value of 0.01 for the allosteric constant c (c = Kr/Kt where Kr and Kt are the dissociation constants for NO from the R and T states, respectively) and pH-dependent values of L (2.5 X 10(7) at pH 7 in 0.05 M phosphate buffer). The value of c is considerably greater than that for O2 and CO. Studies of the difference spectrum induced in the Soret region by inositol hexaphosphate are also reported. This spectrum does not arise directly from the change of conformation between R and T states. The results show that if the equilibrium binding curve for NO could be determined experimentally, it would show cooperativity with Hill's n at 50% saturation of about 1.6.  相似文献   

11.
Opossum hemoglobin assumes a T quaternary structure upon NO ligation in the absence of organic phophates at pH 6.7. In addition, stripped opossum hemoglobin exhibits a low oxygen affinity when compared to human hemoglobin and a pH-dependent heme-heme interaction with an n value of 2.14 at pH 7.0 and 2.46 at pH 7.35. These observations indicate that opossum hemoglobin may have a destabilized oxy structure when compared to hemoglobin A due to differences in primary structure. Thus, the strong trans ligand effect of nitric oxide is able to disrupt the proximal histidine-iron bond in the alpha-hemes triggering a conformational transition to the T state. Absence of a distal histidine in the alpha-subunits and, therefore an impaired donor acceptor interaction with the sixth ligand, could contribute to the lack of stability of the R quaternary structure in opossum nitrosylhemoglobin. The reduced oxygen affinity of opossum hemoglobin may be compensated for by other physiological factors such as a reduced phosphate effect.  相似文献   

12.
The physicochemical properties of giant hemoglobin (Hb) of the marine polychaete Perinereis aibuhitensis were extensively studied and the following results were obtained. (1) Light absorption spectra of the oxy, deoxy, CO, met, and cyanomet derivatives were similar to those for human Hb, except for a somewhat peculiar shape and pH-dependence of the met derivative, and high absorbance values around 277 nm for all these derivatives of Perinereis Hb. Abnormal pH dependence for the met derivative was confirmed by powder electron parmagnetic resonance (EPR) spectroscopy, which revealed that a water molecule does not coordinate to the heme iron as a sixth ligand. The high absorption around 277 nm is indicative of the existence of some non-heme polypeptide chains and/or a high content of aromatic residues in the molecule. (2) UV difference and derivative spectra revealed oxygenation-induced conformational changes in the protein moiety that are related to the degree of cooperativity. (3) The EPR spectrum for the nitrosyl derivative showed well-resolved triplet-triplet splittings due to 14N, indicating that the proximal residue is probably a histidine. (4) The oxygen affinity and cooperativity of this Hb were pH-dependent. Mg2+ markedly increased the oxygen affinity, the Bohr effect, and the cooperativity, which was maximal at physiological pH. CO2 and anions such as 2,3-diphosphoglycerate and inositol hexaphosphate had no effect on the oxygenation properties. Thus, different from vertebrate Hb, the oxygen-binding properties of this Hb are regulated by divalent cations which bind preferentially to the oxy form. The low temperature-dependence of oxygen affinity observed for this Hb is a sign of adaptation to the environment by this poikilothermic organism. (5) By using a graphic method, the minimal functional unit that preserves the full cooperativity (allosteric unit) was inferred to be the one containing 6 heme groups and its significance is discussed in connection with the structural hierarchy of the molecule.  相似文献   

13.
Using modulated excitation, we have measured the forward and reverse rates of the allosteric transition between relaxed (R) and tense (T) quaternary structures for triply ligated hemoglobin (Hb), cross-linked between the alpha chains at Lys 99. Oxygen, carbon monoxide, and water were used as ligands and were studied in phosphate and low Cl- bis-Tris buffers at neutral pH. Since the cross-link prohibits disproportionation, triply ligated aquomet Hb species with ferrous beta chains were specifically isolated by isoelectric focusing. Modulated excitation provides rate pairs and therefore gives equilibrium constants between quaternary structures. To coordinate with that information, oxygen binding curves of fully ferrous and tri-aquomet Hb were also measured. L3, the equilibrium constant between three liganded R and T structures, is determined by modulated excitation to be of order unity for O2 or CO (1.1 to 1.5 for 3O2 and 0.7 for 3CO bound), while with three aquomet subunits it is much greater (> or = 23). R-->T conversion rates are similar to those found for HbA, with weak sensitivity to changes in L3. The L3 values from HbXL O2 were used to obtain a unique allosteric decomposition of the ferrous O2 binding curve in terms of KT, KR, and L3. From these values and the O2 binding curve of tri-aquomet HbXL, L3 was calculated to be 2.7 for the tri-aquomet derivative. Consistency in L3 values between equilibrium and modulated excitation data for tri-aquomet-HbXL can be achieved if the equilibrium constant for O2 binding to the alpha chains is six times lower than that for binding to the beta chains in the R state, while the cooperative properties remain homogeneous. The results are in quantitative agreement with other studies, and suggest that the principal effect of the cross-link is to decrease the R state and T state affinity of the alpha subunits with almost no change in the affinity of the beta subunits, leaving the allosteric parameters L and c unchanged.  相似文献   

14.
L J Parkhurst  D J Goss 《Biochemistry》1984,23(10):2180-2186
Oxygen and CO ligand binding kinetics have been studied for the hybrid hemoglobin (Hb) alpha (human):beta (carp), hybrid II. Valency and half-saturated hybrids were used to aid in the assignment of the conformations of both chains. In hybrid II, an intermediate S state occurs, in which one chain has R- and the other T-state properties. In HbCO at pH 6 (plus 1 mM inositol hexaphosphate), the human alpha-chain is R state and the carp beta-chain is T state. We have no evidence at this pH that the carp beta-chain ever assumes the R conformation. At pH 6, the human alpha-chain shows human Hb R-state kinetics at low fractional photolysis and T-state rates for CO ligation by stopped flow. At pH 7, the human-chain R-state rate slows toward a carp hemoglobin rate. The carp beta-chains, on the other hand, react 50% more rapidly in the liganded conformation than in carp hemoglobin, and while the human alpha-chains are in the R state, the two beta-chains appear to function as a cooperative dimer. In this hemoglobin, the chains appear to be somewhat decoupled near pH 7, allowing a sequential conformational change from the R state in which the beta-chains first assume T-state properties, followed by the alpha-chains. The rate of the R-T conformational change for the carp beta-chains is at least 300 times greater than that for the human alpha-chains. At pH 9, the R----T conformational transition rate is at least 200 times slower than that for human hemoglobin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The intrinsic fluorescence of hemoglobins is known to respond to ligand-induced changes in the quaternary structure of the protein. Carp hemoglobin is an interesting model to study the quaternary transition since its R----T equilibrium is pH-dependent and at low pH, in the presence of organic phosphate, it remains in the T or 'deoxy' quaternary structure, even when saturated with ligand. In this study, using front-face fluorometry, we show that the intrinsic fluorescence intensity exhibited by carp carboxyhemoglobin increases as the pH is lowered below 6.5 in the presence of inositol hexaphosphate. At low pH, carp methemoglobin is less affected by the addition of inositol hexaphosphate than is the CO derivative, while little or no change is observed in the met-azide derivative. We conclude: (1) the exact nature of the R to T state transition induced by inositol hexaphosphate differs for carp carboxy-, met- and met-azide hemoglobin derivatives; (2) the chromophores responsible for the changes observed with absorption spectroscopy may not be the same as those chromophores responsible for the fluorescence differences; and (3) alpha 46-Trp is tentatively assigned as one source of fluorescence emission. Furthermore, fluorescence properties of carp hemoglobin are compared to those of human hemoglobin.  相似文献   

16.
The processes of reversible oxygen binding and nonreversible autoxidation of human hemoglobin were studied. The activation energy of the oxygen binding, as determined by the temperature dependence of the P50 parameter, was 26 +/- 4 kJ/mol, the activation energy of the autoxidation, as determined by the temperature dependence of the apparent rate constant of autoxidation, was 120 +/- 15 kJ/mol. Pyridoxal phosphate decreased the oxygen affinity of hemoglobin, slightly diminished the cooperativity of the oxygenation process and unaffected the activation energy of the oxygen binding. Pyridoxal phosphate slightly reduced the Bohr coefficient value from 0.70 to 0.65. Pyridoxal phosphate, but not pyridoxal, raised the apparent rate constant of autoxidation reaction. The rate of autoxidation significantly increased as the pH value of the medium decreased, reflecting, probably, protonation of the distal histidine of the hemoglobin. The activation energy of autoxidation was independent of pH. Aliphatic alcohols also increased the rate of the autoxidation process, probably, either by stabilization of the hemoglobin T-state, or by direct nucleophilic displacement of the oxygen molecule.  相似文献   

17.
The effects of the oxygenation-deoxygenation process on red blood cell (RBC) aggregation were examined in relation to morphological changes in RBCs and the contribution of CO(2). A low-shear rheoscope was used to measure the rate of rouleaux (one-dimensional aggregate) formation in diluted autologous plasma exposed to gas mixtures with different Po(2) and Pco(2). RBC indexes and RBC suspension pH were measured for the oxygenated or the deoxygenated condition, and the cell shape was observed with a scanning electron microscope. In the oxygenation-deoxygenation process, the rate of rouleaux formation increased with rising pH of the RBC suspension, which was lowered in the presence of CO(2). The rate increased with increasing mean corpuscular hemoglobin concentration (thus the cells shrank), which increased with rising pH and decreased in the presence of CO(2). With rising pH, cell diameter increased and cell thickness decreased (thus the cell flattened). In addition, slight echinocytosis was induced in the presence of CO(2), and the aggregation was reduced by the morphological change. In conclusion, RBC aggregation in the oxygenation-deoxygenation process is mainly influenced by the pH-dependent change in the surface area-to-volume ratio of the cells, and the aggregation is modified by CO(2)-induced acidification and the accompanying changes in mean corpuscular hemoglobin concentration and cell shape.  相似文献   

18.
We report the optical and resonance Raman spectral characterization of ferrous recombinant Chlamydomonas LI637 hemoglobin. We show that it is present in three pH-dependent equilibrium forms including a 4-coordinate species at acid pH, a 5-coordinate high spin species at neutral pH, and a 6-coordinate low spin species at alkaline pH. The proximal ligand to the heme is the imidazole group of a histidine. Kinetics of the reactions with ligands were determined by stopped-flow spectroscopy. At alkaline pH, combination with oxygen, nitric oxide, and carbon monoxide displays a kinetic behavior that is interpreted as being rate-limited by conversion of the 6-coordinate form to a reactive 5-coordinate form. At neutral pH, combination rates of the 5-coordinate form with oxygen and carbon monoxide were much faster (>10(7) microM-1 s-1). The dissociation rate constant measured for oxygen is among the slowest known, 0.014 s-1, and is independent of pH. Replacement of the tyrosine 63 (B10) by leucine or of the putative distal glutamine by glycine increases the dissociation rate constant 70- and 30-fold and increases the rate of autoxidation 20- and 90-fold, respectively. These results are consistent with at least two hydrogen bonds stabilizing the bound oxygen molecule, one from tyrosine B10 and the other from the distal glutamine. In addition, the high frequency (232 cm-1) of the iron-histidine bond suggests a structure that lacks any proximal strain thus contributing to high ligand affinity.  相似文献   

19.
Oxygen equilibrium curves of human hemoglobin Ao (HbAo) and human hemoglobin cross-linked between the alpha chains (alpha alpha Hb) by bis(3,5-dibromosalicyl) fumarate were measured as a function of pH and chloride or organic phosphate concentration. Compared to HbAo, the oxygen affinity of alpha alpha Hb was lower, cooperativity was maintained, although slightly reduced, and all heterotropic effects were diminished. The major effect of alpha alpha-cross-linking appears to be a reduction of the oxygen affinity of R-state hemoglobin under all conditions. However, while the oxygen affinity of T-state alpha alpha Hb was slightly reduced at physiologic chloride concentration and in the absence of organic phosphates, KT was the same for both hemoglobins in the presence of 2,3-diphosphoglycerate (or high salt) and higher for alpha alpha Hb in the presence of inositol hexaphosphate. The reduced O2 affinity arises from smaller binding constants for both T- and R-state alpha alpha Hb rather than through stabilization of the low affinity conformation. All four Adair constants could be determined for alpha alpha Hb under most conditions, but a3 could not be resolved for HbAo without constraining a4, suggesting that the cross-link stabilizes triply ligated intermediates of hemoglobin.  相似文献   

20.
The four components of hemoglobin from the rainbow trout (Salmo gairdneri) have been isolated. The oxygen affinities of the first two components eluted from the DEAE-cellulose column have much smaller pH dependencies than the last two components. These components have very low O2 affinities at low pH. The effect of pH on the equilibrium and kinetics of ligand binding to the third fraction, the pH-dependent component present in greatest amounts, has been studied. Measurements of ligand binding equilibria demonstrate the presence of both an alkaline and an acid Bohr effect. In the region of the alkaline Bohr effect the value of n in the Hill equation is a function of ligand affinity. For CO binding n decreases as the pH is decreased until at pH 6, the minimum ligand affinity is reached. At this pH there is also a complete loss of cooperative ligand binding. Decreasing the pH further results in an increase of ligand affinity, but this acid Bohr effect is not associated with a reappearance of cooperativity. This suggests that Fraction 3 of S. gairdneri is frozen in the low affinity, deoxygenated conformation at low pH and that the quaternary structure does not change even when fully liganded. However, the properties of the low affinity conformation of this hemoglobin are pH-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号