首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
3.
4.
In modern-day life, infertility is one of the major issues that can affect an individual, both physically and psychologically. Several anatomical, physiological, and genetic factors might contribute to the infertility of an individual. Intercellular communication between trophectoderm and endometrial epithelium triggers successful embryo implantation and thereby establishes pregnancy. Recent studies demonstrate that Extracellular vesicles (EVs) are emerging as one of the crucial components that are involved in embryo-maternal communication and promote pregnancy. Membrane-bound EVs release several secreted factors within the uterine fluid, which mediates an intermolecular transfer of EVs’ cargos between blastocysts and endometrium. Emerging evidences indicate that several events like imbalance in the release of endometrial or placenta-derived EVs (exosomes/MVs), uptake of their content, failure of embryo selection might lead to implantation failure. Here in this review, we have discussed the current knowledge of the involvement of EVs in maternal-fetal communications during implantation and also highlighted the EVs’ rejuvenating ability to overcome infertility-related issues. We also discussed the alteration of the EVs’ cargo in different pathological conditions that lead to infertility. Therefore, this review would give a better understanding of EVs’ contribution in successful embryo implantation, which could help in the development of new diagnostic tools and cell-free biologics to improve the in vivo reproductive process and to treat infertility by restoring normal reproductive functions.  相似文献   

5.
6.
Implantation failure in newly inseminated mice induced by food deprivation was prevented by the presence of an ectopic pituitary graft. Since a pituitary graft in an ectopic site is known to secrete prolactin continuously, it is suggested that suppression of implantation failure in pituitary-grafted females is due to the luteotrophic support provided by the graft. The results provide supportive evidence for the view that depression of hypophysial prolactin is the primary endocrine cause of the nutritional stress-induced implantation failure in mice.  相似文献   

7.
8.

Background

Implantation is a complex process that requires a delicate cooperation between the immune and reproductive system. Any interference in the fine balance could result in embryo loss and infertility. We have recently shown that Toll-like receptor 5 activation results in a decrease of trophoblast cells binding to endometrial cells in an in vitro model of human implantation. However, little is known about the downstream signalling leading to the observed failure in implantation and the factors that modulate this immune response.

Methods and Principal Findings

An in vitro model of embryo implantation was used to evaluate the effect of trophoblasts and flagellin on the activation of NF-κB in endometrial cells and whether TLR5-related in vitro implantation failure is signalled through NF-κB. We generated two different NF-κB reporting cell lines by transfecting either an immortalized endometrial epithelial cell line (hTERT-EECs) or a human endometrial carcinoma cell line (Ishikawa 3-H-12) with a plasmid containing the secreted alkaline phosphatase (SEAP) under the control of five NF-κB sites. The presence of trophoblast cells as well as flagellin increased NF-κB activity when compared to controls. The NF-κB activation induced by flagellin was further increased by the addition of trophoblast cells. Moreover, blocking NF-κB signalling with a specific inhibitor (BAY11-7082) was able to restore the binding ability of our trophoblast cell line to the endometrial monolayer.

Conclusions

These are the first results showing a local effect of the trophoblasts on the innate immune response of the endometrial epithelium. Moreover, we show that implantation failure caused by intrauterine infections could be associated with abnormal levels of NF-κB activation. Further studies are needed to evaluate the target genes through which NF-κB activation after TLR5 stimulation lead to failure in implantation and the effect of the embryo on those genes. Understanding these pathways could help in the diagnosis and treatment of implantation failure cases.  相似文献   

9.

Background

In-vitro fertilization (IVF) is the treatment of choice for unresolved infertility. It comprises a number of key steps, each of which has to be negotiated before the next is attempted, but the factors which are associated with failure at each stage have not been reported.

Methods and Findings

We analyzed anonymised national data on women undergoing their first fresh autologous IVF and intracytoplasmic sperm injection (ICSI) cycle in the United Kingdom between 2000 and 2007 to predict factors associated with overall lack of livebirth as well as the chance of non-progress at different stages of an IVF cycle. A total of 121,744 women were included in this analysis. Multivariable models underlined the importance of increased female age and duration of infertility, lack of previous pregnancy, and a diagnosis of tubal or male factor infertility in predicting the risk of not having a live birth in an IVF treatment. At each stage, a woman’s chance of proceeding to the next stage of IVF treatment is affected by increased age and duration of infertility. The intention to use intra-cytoplasmic sperm injection (ICSI) is associated with a decreased risk of treatment failure in women starting an IVF cycle (RR 0.93, 99% CI 0.92, 0.94) but this association is reversed at a later stage once fertilisation has been confirmed (RR=1.01, 99%CI 1.00, 1.03).

Conclusions

Female age is a key predictor of failure to have a livebirth following IVF as well as the risk of poor performance at each stage of treatment. While increased duration of infertility is also associated with worse outcomes at every stage, its impact appears to be less influential. Women embarking on ICSI treatment for male factor infertility have a lower chance of treatment failure but this does not appear to be due to increased chances of implantation of ICSI embryos.  相似文献   

10.
11.
12.
13.
14.
High-risk human papillomavirus (HPV) must evade innate immune surveillance to establish persistent infections and to amplify viral genomes upon differentiation. Members of the JAK-STAT family are important regulators of the innate immune response and HPV proteins downregulate expression of STAT-1 to allow for stable maintenance of viral episomes. STAT-5 is another member of this pathway that modulates the inflammatory response and plays an important role in controlling cell cycle progression in response to cytokines and growth factors. Our studies show that HPV E7 activates STAT-5 phosphorylation without altering total protein levels. Inhibition of STAT-5 phosphorylation by the drug pimozide abolishes viral genome amplification and late gene expression in differentiating keratinocytes. In contrast, treatment of undifferentiated cells that stably maintain episomes has no effect on viral replication. Knockdown studies show that the STAT-5β isoform is mainly responsible for this activity and that this is mediated through the ATM DNA damage response. A downstream target of STAT-5, the peroxisome proliferator-activated receptor γ (PPARγ) contributes to the effects on members of the ATM pathway. Overall, these findings identify an important new regulatory mechanism by which the innate immune regulator, STAT-5, promotes HPV viral replication through activation of the ATM DNA damage response.  相似文献   

15.
Blastocyst implantation into a receptive endometrium is critical to the establishment of pregnancy and is tightly regulated by factors within the blastocyst–endometrial micro-environment. Leukemia inhibitory factor (LIF) and interleukin-11 (IL11) have key roles during implantation. Female mice with a null mutation in the LIF or IL11RA gene are infertile due to a complete failure of implantation or a defective differentiation/decidualization response to the implanting blastocyst, respectively. LIF and IL11 deficiency during pregnancy is associated with infertility and miscarriage in women. Numerous cell populations at the maternal–fetal interface are regulated by LIF/IL11 including the endometrial epithelium, decidualizing stroma, placental trophoblasts and leukocytes. This review focuses on the roles of LIF/IL11 during early pregnancy and highlights their potential as contraceptive targets and therapeutic agents for infertility.  相似文献   

16.
17.
18.
Our previous studies have shown that benzyl isothiocyanate (BITC) suppresses pancreatic tumor growth by inhibiting STAT-3; however, the exact mechanism of tumor growth suppression was not clear. Here we evaluated the effects and mechanism of BITC on pancreatic tumor angiogenesis. Our results reveal that BITC significantly inhibits neovasularization on rat aorta and Chicken-Chorioallantoic membrane. Furthermore, BITC blocks the migration and invasion of BxPC-3 and PanC-1 pancreatic cancer cells in a dose dependant manner. Moreover, secretion of VEGF and MMP-2 in normoxic and hypoxic BxPC-3 and PanC-1 cells was significantly suppressed by BITC. Both VEGF and MMP-2 play a critical role in angiogenesis and metastasis. Our results reveal that BITC significantly suppresses the phosphorylation of VEGFR-2 (Tyr-1175), and expression of HIF-α. Rho-GTPases, which are regulated by VEGF play a crucial role in pancreatic cancer progression. BITC treatment reduced the expression of RhoC whereas up-regulated the expression of tumor suppressor RhoB. STAT-3 over-expression or IL-6 treatment significantly induced HIF-1α and VEGF expression; however, BITC substantially suppressed STAT-3 as well as STAT-3-induced HIF-1α and VEGF expression. Finally, in vivo tumor growth and matrigel-plug assay show reduced tumor growth and substantial reduction of hemoglobin content in the matrigel plugs and tumors of mice treated orally with 12 μmol BITC, indicating reduced tumor angiogenesis. Immunoblotting of BITC treated tumors show reduced expression of STAT-3 phosphorylation (Tyr-705), HIF-α, VEGFR-2, VEGF, MMP-2, CD31 and RhoC. Taken together, our results suggest that BITC suppresses pancreatic tumor growth by inhibiting tumor angiogenesis through STAT-3-dependant pathway.  相似文献   

19.
20.
Locally secreted cytokines of both the embryonic and the endometrial origin control the implantation process. The defects in their signaling that lead to unfavorable environment within the uterus may cause embryo implantation failure. The leukemia inhibitory factor (LIF), interleukin-11 (IL-11) as well as IL-12/IL-15/IL-18 system are regarded to be important signaling vectors. LIF plays an essential role in the preimplantation embryo development and the blastocyst implantation and its gene mutations in women contribute to the implantation failure and subsequent infertility. IL-11 signaling has been shown to be required for the uterine decidualization response as well as for the hatching and attachment of blastocysts. The IL-12/IL-15/IL-18 system interacts with endometrial leukocytes, particularly with NK cells, and influences directly the local angiogenesis and tissue remodeling. Differences in the levels of endometrial leukocytic subpopulations and in the patterns of intra-uterine cytokine concentrations that are observed between fertile and infertile women contribute to infertility probably by affecting the embryonic maternal dialogue during the implantation and early placentation period. Focusing on this cross talk promises to open new era in assisted reproduction techniques that will be based on diagnostics of missing signaling molecules and impairments of uterine receptivity as well as on therapeutic applications of individualized embryo culture and transfer media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号