首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Streptococcus bovis JB1 utilized glucose preferentially to lactose and grew diauxically, but S. bovis 581AXY2 grew nondiauxically and used glucose preferentially only when the glucose concentration was very high (greater than 5 mM). As little as 0.1 mM glucose completely inhibited the lactose transport of JB1. The lactose transport system of 581AXY2 was at least tenfold less sensitive to glucose, and 1 mM glucose caused only a 50% inhibition of lactose transport. Both strains had phosphotransferase systems (PTSs) for glucose and lactose. The glucose PTSs were constitutive, but little lactose PTS activity was detected unless lactose was the energy source for growth. JB1 had approximately threefold more glucose PTS activity than 581AXY2 (1600 versus 600 nmol glucose (mg protein)−1(min)−1. The glucose PTS of JB1 showed normal Michaelis Menten kinetics, and the affinity constant (K s ) was 0.12 mM. The glucose PTS of 581AXY2 was atypical, and the plot of velocity versus velocity/substrate was biphasic. The low capacity system had a Ks of 0.20 mM, but the Ks of the high capacity system was greater than 6 mM. On the basis of these results, diauxic growth is dependent on the affinity of glucose enzyme II and the velocity of glucose transport. Received: 22 January 1996 / Accepted: 18 March 1996  相似文献   

2.
Streptococcus bovis HC5 inhibits a variety of S. bovis strains and other Gram-positive bacteria, but factors affecting this activity had not been defined. Batch culture studies indicated that S. bovis HC5 did not inhibit S. bovis JB1 (a non-bacteriocin-producing strain) until glucose was depleted and cells were entering stationary phase, but slow-dilution-rate, continuous cultures (0.2 h−1) had as much antibacterial activity as stationary-phase batch cultures. Because the activity of continuous cultures (0.2–1.2 h−1) was inversely related to the glucose consumption rate, it appeared that the antibacterial activity was being catabolite repressed by glucose. When the pH of continuous cultures (0.2 h−1) was decreased from 6.7 to 5.4, antibacterial activity doubled, but this activity declined at pH values less than 5.0. Continuous cultures (0.2 h−1) that had only ammonia as a nitrogen source had antibacterial activity, and large amounts of Trypticase (10 mg ml−1) caused only a 2.0-fold decline in the amount of HC5 cell-associated protein that was needed to prevent S. bovis JB1 growth. Because S. bovis HC5 was able to produce antibacterial activity over a wide range of culture conditions, there is an increased likelihood that this activity could have commercial application. Received: 6 February 2002 / Accepted: 27 March 2002  相似文献   

3.
Pseudomonas putida KT2440 grew on glucose at a specific rate of 0.48 h−1 but accumulated almost no poly-3-hydroxyalkanoates (PHA). Subsequent nitrogen limitation on nonanoic acid resulted in the accumulation of only 27% medium-chain-length PHA (MCL-PHA). In contrast, exponential nonanoic acid-limited growth (μ = 0.15 h−1) produced 70 g l−1 biomass containing 75% PHA. At a higher exponential feed rate (μ = 0.25 h−1), the overall productivity was increased but less biomass (56 g l−1) was produced due to higher oxygen demand, and the biomass contained less PHA (67%). It was concluded that carbon-limited exponential feeding of nonanoic acid or related substrates to cultures of P. putida KT2440 is a simple and highly effective method of producing MCL-PHA. Nitrogen limitation is unnecessary.  相似文献   

4.
The kinetics of biomass formation, D-xylose utilization, and mixed substrate utilization were determined in a chemostat using the yeast Candida shehatae. The maximum growth rate of C. shehatae grown aerobically on D-xylose was 0.42 h−1 and the Monod constant, K s, was 0.06 g L−1. The biomass yield, Y {X/S}, ranged from 0.40 to 0.50 g g−1 over a dilution rate range of 0.2–0.3 h−1, when C. shehatae was grown on pure D-xylose. Mixtures of D-xylose and glucose (∼1 : 1) were simultaneously utilized over a dilution rate from 0.15 to 0.35 h−1 at pH 3.5 and 4.5, but pH 3.5 reduced μmax and reduced the dilution rate range over which D-xylose was utilized in the presence of glucose. At pH 4.5, μmax was not reduced with the mixed sugar feed and the overall or lumped K s value was not significantly increased (0.058 g L−1 vs 0.06 g L−1), when compared to a pure D-xylose feed. Kinetic data indicate that C. shehatae is an excellent candidate for chemostat production of value added products from renewable carbon sources, since simultaneous mixed substrate utilization was observed over a wide range of growth rates on a 1 : 1 mixture of glucose and D-xylose. Received 21 August 1997/ Accepted in revised form 28 May 1998  相似文献   

5.
Continuous hydrogen gas evolution by self-flocculated cells of Enterobacter aerogenes, a natural isolate HU-101 and its mutant AY-2, was performed in a packed-bed reactor under glucose-limiting conditions in a minimal medium. The flocs that formed during the continuous culture were retained even when the dilution rate was increased to 0.9 h−1. The H2 production rate increased linearly with increases in the dilution rate up to 0.67 h−1, giving maximum H2 production rates of 31 and 58 mmol l−1 h−1 in HU-101 and AY-2 respectively, at a dilution rate of more than 0.67 h−1. The molar H2 yield from glucose in AY-2 was maintained at about 1.1 at dilution rates between 0.08 h−1 and 0.67 h−1, but it decreased rapidly at dilution rates more than 0.8 h−1. Received: 27 August 1997 / Received revision: 11 November 1997 / Accepted: 14 December 1997  相似文献   

6.
The growth performance of malolactic fermenting bacteria Oenococcus oeni NCIMB 11648 and Lactobacillus brevis X2 was assessed in continuous culture. O. oeni grew at a dilution rate range of 0.007 to 0.052 h−1 in a mixture of 5:6 (g l−1) of glucose/fructose at an optimal pH of 4.5, and L. brevis X2 grew at 0.010 to 0.089 h−1 in 10 g l−1 glucose at an optimal pH of 5.5 in a simple and safe medium. The cell dry weight, substrate uptake and product formation were monitored, as well as growth kinetics, yield parameters and fermentation balances were also evaluated under pH control conditions. A comparison of growth characteristics of two strains was made, and this showed significantly different performance. O. oeni has lower maximum specific growth rate (μmax=0.073 h−1), lower maximum cell productivity (Q x max=17.6 mg cell l−1 h−1), lower maximum biomass yield (Y x/s max=7.93 g cell mol−1 sugar) and higher maintenance coefficient (m s=0.45 mmol−1 sugar g−1 cell h−1) as compared with L. brevis X2max=0.110 h−1; Q x max=93.2 g−1 cell mol−1 glucose; Y x/s max=22.3 g cell mol−1 glucose; m s=0.21 mmol−1 glucose g−1 cell h−1). These data suggest a possible more productive strategy for their combined use in maturation of cider and wine.  相似文献   

7.
A thermostable lipase was produced in continuous cultivation of a newly isolated thermophilic Bacillus sp. strain IHI-91 growing optimally at 65 °C. Lipase activity decreased with increasing dilution rate while lipase productivity showed a maximum of 340 U l−1 h−1 at a dilution rate of 0.4 h−1. Lipase productivity was increased by 50% compared to data from batch fermentations. Up to 70% of the total lipase activity measured was associated to cells and by-products or residual substrate. Kinetic and stoichiometric parameters for the utilisation of olive oil were determined. The maximal biomass output method led to a saturation constant K S of 0.88 g/l. Both batch growth data and a washout experiment yielded a maximal specific growth rate, μmax, of 1.0 h−1. Oxygen uptake rates of up to 2.9 g l−1h−1 were calculated and the yield coefficient, Y X/O, was determined to be 0.29 g dry cell weight/g O2. From an overall material balance the yield coefficient, Y X/S, was estimated to be 0.60 g dry cell weight/g olive oil. Received: 8 January 1997 / Received revision: 30 April 1997 / Accepted: 4 May 1997  相似文献   

8.
Anaerobic tetrachloroethene(C2Cl4)-dechlorinating bacteria were enriched in slurries from chloroethene-contaminated soil. With methanol as electron donor, C2Cl4 and trichloroethene (C2HCl3) were reductively dechlorinated to cis-1,2-dichloroethene (cis-C2H2Cl2), whereas, with l-lactate or formate, complete dechlorination of C2Cl4 via C2HCl3, cis-C2H2Cl2 and chloroethene (C2H3Cl) to ethene was obtained. In oxic soil slurries with methane as a substrate, complete co-metabolic degradation of cis-C2H2Cl2 was obtained, whereas C2HCl3 was partially degraded. With toluene or phenol both of the above were readily co-metabolized. Complete degradation of C2Cl4 was obtained in sequentially coupled anoxic and oxic chemostats, which were inoculated with the slurry enrichments. Apparent steady states were obtained at various dilution rates (0.02–0.4 h−1) and influent C2Cl4-concentrations (100–1000 μM). In anoxic chemostats with a mixture␣of␣formate and glucose as the carbon and electron source, C2Cl4 was transformed at high rates (above␣140 μmol l−1 h−1, corresponding to 145 nmol Cl min−1 mg protein−1) into cis-C2H2Cl2 and C2H3Cl. Reductive dechlorination was not affected by addition of 5 mM sulphate, but strongly inhibited after addition of 5 mM nitrate. Our results (high specific dechlorination rates and loss of dechlorination capacity in the absence of C2Cl4) suggest that C2Cl4-dechlorination in the anoxic chemostat was catalysed by specialized dechlorinating bacteria. The partially dechlorinated intermediates, cis-C2H2Cl2 and C2H3Cl, were further degraded by aerobic phenol-metabolizing bacteria. The maximum capacity for chloroethene (the sum of tri-, di- and monochloro derivatives removed) degradation in the oxic chemostat was 95 μmol l−1 h−1 (20 nmol min−1 mg protein−1), and that of the combined anoxic → oxic reactor system was 43.4 μmol l−1 h−1. This is significantly higher than reported thus far. Received: 17 April 1997 / Received revision: 6 June 1997 / Accepted: 7 June 1997  相似文献   

9.
The Aspergillus niger strain BO-1 was grown in batch, continuous (chemostat) and fed-batch cultivations in order to study the production of the extracellular enzyme glucoamylase under different growth conditions. In the pH range 2.5–6.0, the specific glucoamylase productivity and the specific growth rate of the fungus were independent of pH when grown in batch cultivations. The specific glucoamylase producivity increased linearly with the specific growth rate in the range 0–0.1 h−1 and was constant in the range 0.1–0.2 h−1. Maltose and maltodextrin were non-inducing carbon sources compared to glucose, and the maximum specific growth rate was 0.19 ± 0.02 h−1 irrespective of whether glucose or maltose was the carbon source. In fed-batch cultivations, glucoamylase titres of up to 6.5 g l−1 were obtained even though the strain contained only one copy of the glaA gene. Received: 5 May 1999 / Received revision: 7 September 1999 / Accepted: 17 September 1999  相似文献   

10.
Combined effect of light intensity and glucose concentration on Arthrospira platensis growth and photosynthetic response was evaluated using a 32 factorial design. This design was carried out with light levels of 50, 100, and 150 μmol photons m−2 s−1 and glucose concentrations of 0.5, 1.5, and 2.5 g L−1. Results from the response surface methodology were that the highest level of light intensity and glucose concentration improved biomass (1.33 g L−1), maximum specific growth rate (0.49 day−1), and net photosynthetic rate (139.89 μmol O2 mg Chl−1 h−1). Furthermore, the interaction of both factors showed that at low light, glucose had a low effect on maximum biomass and maximal net photosynthetic rate. However, at the highest light levels, the effect of glucose was more sensitive and the increase of glucose concentration increased the levels of all responses. The rates of the instantaneous relative growth, net photosynthesis, and dark respiration of growth cultures showed two different phases in mixotrophic condition. The first was distinguished by the preponderance of the photoautotrophic mode; the second was based mainly on photoheterotrophy.  相似文献   

11.
Fructose and H2 were compared as electron donors for hydrogenation of carbon-carbon double bonds using Acetobacterium woodii. Caffeate was used as a model substrate. An electron donor was required and both fructose and H2 were suitable. With fructose as the donor, the K s for caffeate was 0.5 mM and the V max was 678 mmol kgdry weight −1 h−1.␣Fructose oxidation was coupled very efficiently to caffeate reduction by an alteration in the fructose fermentation so that acetate was no longer produced. Received: 24 June 1996 / Accepted: 1 July 1996  相似文献   

12.
The physiological characteristics of growth and pentachlorophenol degradation of the bacteria Sphingomonas chlorophenolica RA2 and Mycobacterium chlorophenolicum PCP-1 were studied quantitatively in liquid culture under various conditions of pH, temperature, pO2, pCO2 and PCP concentration. Concerning their metabolic properties, RA2 and PCP-1 can be regarded as r-strategist and K-strategist, respectively. RA2 showed a higher activity concerning growth and PCP degradation than PCP-1 under optimum conditions. However, PCP-1 performed better under extreme conditions. Maximum growth rates or RA2 and PCP-1 on glucose were 0.21 h−1 and 0.024 h−1 and maximum PCP degradation rates 315 and 40 μmol (g of dry cells)−1 h−1, respectively. Optimized cultivation for RA2 on a technical scale led to the production of 40 g L−1 of cell dry mass within 55 h. The cultivation strategy including pH-controlled ammonium feeding can be used to effectively produce sufficient biomass of both strains for both research and application as inoculants in soil clean-up. Received 28 July 1998/ Accepted in revised form 30 November 1998  相似文献   

13.
The influence of (NH4)2SO4 concentration and dilution rate (D) on actual and potential H2 photoproduction has been studied in ammonium-limited chemostat cultures of Rhodobacter capsulatus B10. The actual H2 production in a photobioreactor was maximal (approx. 80 ml h−1 l−1) at D = 0.06 h−1 and 4 mM (NH4)2SO4. However, it was lower than the potential H2 evolution (calculated from hydrogen evolution rates in incubation vials), which amounted to 100–120 ml h−1 l−1 at D = 0.03–0.08 h−1. Taking into account the fact that H2 production in the photobioreactor under these conditions was not limited by light or lactate, another limiting (inhibiting) factor should be sought. One possibility is an inhibition of H2 production by the H2 accumulated in the gas phase. This is apparent from the non-linear kinetics of H2 evolution in the vials or from its inhibition by the addition of H2; initial rates were restored in both cases after the vials had been refilled with argon. The actual H2 production in the photobioreactor at D = 0.06 h−1 was shown to increase from approximately 80 ml h−1 l−1 to approximately 100 ml h−1 l−1 under an argon flow at 100 ml min−1. Under maximal H2 production rates in the photobioreactor, up to 30% of the lactate feedstock was utilised for H2 production and 50% for biomass synthesis. Received: 22 April 1997 / Received revision: 14 July 1997 / Accepted: 27 July 1997  相似文献   

14.
Oxygen consumption was measured in five Dermophis mexicanus and averaged (±SEM) 0.047 ± 0.004 ml O2 g−1 h−1. Carbon dioxide production averaged 0.053 ± 0.005 ml CO2 g−1 h−1 in the same five animals 1 week later. This metabolic rate is similar to metabolic rates of other Gymnophionans but lower than metabolic rates reported for Anurans and Urodeles. Total nitrogen excretion averaged 1.37 μmol N g−1 h−1 which is higher than that found for other amphibians. Of this, 82.5% (1.13 μmol N g−1 h−1) was in the form of urea while 17.5% (0.24 μmol N g−1 h−1) was in the form of NH3 + NH+ 4. Such ureotelism is typical of terrestrial amphibians like D. mexicanus. Osmotic water flux averaged 0.0193 ml g−1 h−1 in control (sham injected) animals and was not significantly altered by injection of either arginine vasotocin or mesotocin. This osmotic flux is similar to osmotic fluxes found for other terrestrial amphibians. The combined data suggest that metabolism in D. mexicanus is, like most other Gymnophionans, lower than other amphibians. The high rates of nitrogen (especially urea) excretion suggests that this fossorial animal accumulates urea like other burrowing amphibians. Accepted: 27 June 2000  相似文献   

15.
Bifidobacterium longum grew at 65 L pilot scale of the membrane bioreactor (MBR), externally fitted with ceramic membrane (0.7 m2). Cell mass at the MBR reached 22.18 g L−1 as dry cell weight in 12 h, which is 8.44 times higher than cell mass attained at the vial culture. The growth rate in the vial culture was μ = 0.385 h and at the batch culture was μ = 1.13 h in the exponential period and μ = 0.31 h−1 in the stationary period. In the fed-batch mode was μ = 1.102 h−1 for 6 h with inoculation and declined to μ = 0.456 h−1 with feeding of feed medium. The growth rate at the MBR was μ = 0.134 h−1. The number of viable cells was 6.01 × 1012 cfu L−1 at the batch culture, but increased to 1.15 × 1014 cfu L−1 at the MBR culture. The specific growth rate of viable cell number (colony-forming units per liter, per hour) improved by 6.01 times from the batch to the MBR culture. The wall shear stress mainly generated by the pump, and the membrane incorporated into the MBR was controlled during the cultivation at the MBR. The viability of B. longum declined to under 10% in the first 2 weeks of the 4-week stability test (40°C) as B. longum was exposed to over wall shear stress 713 Pa, but the viability improved to 30–40% in wall shear stress of 260 Pa or STR culture. The loss in the cell viability can be saved by managing with wall shear stress during the cultivation at the MBR.  相似文献   

16.
The α-amylase of Streptomyces sp. IMD 2679 was subject to catabolite repression. Four different growth rates were achieved when the organism was grown at 40 °C and 55 °C in the presence and absence of cobalt, with an inverse relationship between α-amylase production and growth rate. Highest α-amylase yields (520 units/ml) were obtained at the lowest growth rate (0.062 h−1), at 40 °C in the absence of cobalt, while at the highest growth rate (0.35 h−1), at 55 °C in the presence of cobalt, α-amylase production was decreased to 150 units/ml. As growth rate increased, the rate of specific utilisation of the carbon source maltose also increased, from 46 to 123 μg maltose (mg biomass)−1 h−1. The pattern and levels of α-glucosidase (the enzyme degrading maltose) detected intracellularly in each case, indicate that growth rate effectively controls the rate of feeding of glucose to the cell, and thus catabolite repression. Received: 17 February 1997 / Received revision: 29 April 1997 / Accepted: 11 May 1997  相似文献   

17.
In this study we measured growth and milk intake and calculated energy intake and its allocation into metabolism and stored tissue for hooded seal (Cystophora cristata) pups. In addition, we measured mass loss, change in body composition and metabolic rate during the first days of the postweaning fast. The mean body mass of the hooded seal pups (n = 5) at the start of the experiments, when they were new-born, was 24.3 ± 1.3 kg (SD). They gained an average of 5.9 ± 1.1. kg · day−1 of which 19% was water, 76% fat and 5% protein. This corresponds to an average daily energy deposition of 179.8 ± 16.0 MJ. The pups were weaned at an average body mass of 42.5 ± 1.0 kg 3.1 days after the experiment was initiated. During the first days of the postweaning fast the pups lost an average of 1.3 ± 0.5␣kg of body mass daily, of which 56% was water, 16% fat and 28% protein. During the nursing period the average daily water influx for the pups was 124.6 ± 25.8 ml · kg−1. The average CO2 production during this period was 1.10 ± 0.20 ml · g−1 · h−1, which corresponds to a field metabolic rate of 714 ± 130 kJ ·  kg−1 · day−1, or 5.8 ± 1.1 times the predicted basal metabolic rate according to Kleiber (1975). During the postweaning fast the average daily water influx was reduced to 16.1 ± 6.6 ml · kg−1. The average CO2 production in␣this period was 0.58 ± 0.17 ml · g−1 · h−1 which corresponds to a field metabolic rate of 375 ± 108 kJ · kg−1 · day−1 or 3.2 ± 0.9 times the predicted basal metabolic rate. Average values for milk composition were 33.5% water, 58.6% fat and 6.2% protein. The pups drank an average of 10.4 ± 1.8␣kg of milk daily, which represents an energy intake of 248.9 ± 39.1 MJ · day−1. The pups were able to store 73.2 ± 7.7% of this energy as body tissue. Accepted: 15 August 1996  相似文献   

18.
Sitbon F  Astot C  Edlund A  Crozier A  Sandberg G 《Planta》2000,211(5):715-721
A quantitative study of indole-3-acetic acid (IAA) turnover, and the contribution of tryptophan-dependent and tryptophan-independent IAA-biosynthesis pathways, was carried out using protoplast preparations and shoot apices obtained from wild-type and transgenic, IAA-overproducing tobacco (Nicotiana tabacum L.) plants, during a phase of growth when the level of endogenous IAA was stable. Based on the rate of disappearance of [13C6]IAA, the half-life of the IAA pool was calculated to be 1.1 h in wild-type protoplasts and 0.8 h in protoplasts from the IAA-overproducing line, corresponding to metabolic rates of 59 and 160 pg IAA (μg Chl)−1 h−1, respectively. The rate of conversion of tryptophan to IAA was 15 pg IAA (μg Chl)−1 h−1 in wild-type protoplasts and 101 pg IAA (μg Chl)−1 h−1 in protoplasts from IAA-overproducing plants. In both instances, IAA was metabolised more rapidly than it was synthesised from tryptophan. As the endogenous IAA pools were in a steady state, these findings indicate that IAA biosynthesis via the tryptophan-independent pathway was 44 pg IAA (μg Chl)−1 h−1 and 59 pg IAA (μg Chl)−1 h−1, respectively, in the wild-type and transformed protoplast preparations. In a parallel study with apical shoot tissue, the presumed site of IAA biosynthesis, the rate of tryptophan-dependent IAA biosynthesis exceeded the rate of metabolism of [13C6]IAA despite the steady state of the endogenous IAA pool. The most likely explanation for this anomaly is that, unlike the protoplast system, injection of substrates into the apical tissues did not result in uniform distribution of label, and that at least some of the [2H5]tryptophan was metabolised in compartments not normally active in IAA biosynthesis. This demonstrates the importance of using experimental systems where labelling of the precursor pool can be strictly controlled. Received: 18 January 2000 / Accepted 24 February 2000  相似文献   

19.
The change of dilution rate (D) on both Methylophilus methylotrophus NCIMB11348 and Methylobacterium sp. RXM CCMI908 growing in trimethylamine (TMA) chemostat cultures was studied in order to assess their ability to remove odours in fish processing plants. M. methylotrophus NCIMB11348 was grown at dilution rates of 0.012–0.084 h−1 and the biomass level slightly increased up to values of D around 0.07 h−1. The maximum cell production rate was obtained at 0.07 h−1 corresponding to a maximum conversion of carbon into cell mass (35%). The highest rate of TMA consumption was 3.04 mM h−1 occurring at D=0.076 h−1. Methylobacterium sp. RXM CCMI908 was grown under similar conditions. The biomass increased in a more steep manner up to values of D around 0.06 h−1. The maximum cell production rate (0.058 g l−1h−1) was obtained in the region close to 0.06 h−1 where a maximum conversion of the carbon into cell mass (40%) was observed. The maximum TMA consumption was 2.33 mM h−1 at D=0.075 h−1. The flux of carbon from TMA towards cell synthesis and carbon dioxide in both strains indicates that the cell is not excreting products but directing most of the carbon source to growth. Carbon recovery levels of approximately 100% show that the cultures are carbon-limited. Values for theoretical maximum yields and maintenance coefficients are presented along with a kinetic assessment based on the determination of the substrate saturation constant and maximum growth rate for each organism. Received: 25 February 1999 / Received revision: 14 May 1999 / Accepted: 17 May 1999  相似文献   

20.
Guo J  Zhou J  Wang D  Xiang X  Yu H  Tian C  Song Z 《Biodegradation》2006,17(4):341-346
Some experiments were conducted to study some electrochemical factors affecting the bacterial reduction (cleavage) of azo dyes, knowledge of which will be useful in the wastewater treatments of azo dyes. A common mixed culture was used as a test organism and the reductions of Acid Yellow 4, 11, 17 and Acid Yellow BIS were studied. It was found that the azo dyes were reduced at different rates, which could be correlated with the reduction potential of the azo compounds in cyclic voltammetric experiments. Acid Yellow BIS (E r − 616.75 mV) was reduced at the highest rate of 0.0284 mol g dry cell weight−1 h−1, Acid Yellow 11 (E r − 593.25 mV) at 0.0245 mol g dry cell weight−1 h−1 and Acid Yellow 4 (E r − 513 mV) at 0.0178 mol g dry cell weight−1 h−1. At the same time, the decolourization rate of Acid Yellow 17 (E r − 627.5 mV) was 0.0238 mol g dry cell weight−1 h−1, which was affected by the nature of chlorine substituent. Reduction of these azo dyes did not occur under aeration conditions. These studies with a common mixed culture indicate that the reduction of azo dyes may be influenced by the chemical nature of the azo compound. The reduction potential is a preliminary tool to predict the decolourization capacity of oxidative and reductive biocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号