首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of surgical end-to-side portacaval anastomosis (PCSA) on systemic and splanchnic circulation has been studied in cirrhotic rats with portal hypertension (CCl4-phenobarbital method) and in control animals. Hemodynamics have been measured using the microsphere technique, with a reference sample for the systemic hemodynamic measurements, and intrasplenic injection for portal systemic shunting rate measurements. Compared with controls, sham-operated (SO) cirrhotic rats showed a hyperdynamic circulation with increased cardiac output (CO) and decreased mean arterial pressure and peripheral resistances. PCSA in control rats induced only a small change in systemic hemodynamics, with parallel decreases in arterial pressure and peripheral resistances, and a small, nonsignificant increase in CO. In cirrhotic rats, PCSA induced a decrease of CO to values similar to those of control rats, with an increase in total peripheral resistances. PCSA induced an increase in hepatic arterial blood flow in control and in cirrhotic rats, portal pressure becoming in this latter group not different from that of control rats. Blood flow to splanchnic organs was higher in SO cirrhotic than in SO control animals. Thus portal venous inflow was also increased in SO cirrhotic rats. PCSA induced an increase in portal venous inflow in control rats, which was only significant in cirrhotic rats when expressed as a percentage of CO. In SO control animals, a significant correlation was observed between total peripheral resistances and splanchnic arteriolar resistances and between CO and splanchnic blood flow. These correlations were not observed in cirrhotic rats. These results do not support the hypothesis that hyperdynamic circulation shown by cirrhotic rats is based on increases in splanchnic blood flow and (or) massive portal systemic shunting.  相似文献   

2.
The role of nitric oxide (NO) mediated vasorelaxation in splanchnic blood flow during heat stress was studied in rats before and after heat acclimation (1 month, at 34°C). Superior mesenteric artery and portal vein blood flows were measured on-line in the conscious rats during heat stress at 40°C and 42°C before and after LNNA administration. NO mediated vasorelaxation in these vessels was studies in vitro, in response to pilocarpine, Ca ionophore and Na nitroprusside stimulation. The data suggest that NO is an integral part of the thermoregulatory splanchnic vasomotor response, and that heat acclimation enhances its regulatory importance.  相似文献   

3.
We investigated the central and peripheral sympathetic responses to intermittent dehydration in rats. The norepinephrine (NE) turnover, a biochemical index correlated with noradrenergic neuronal activity, was measured. The modification of blood pressure was also determined by telemetry during the different cycles of dehydration. Dehydration caused a decrease of NE turnover in A2, A5 and A6 nuclei and in peripheral organs. The vasopressinergic level of dehydrated rats decreased in hypophysis and hypothalamus, and increased in plasma. A repeated gradual increase of arterial blood pressure during the first three days of dehydration, followed by a sudden drop when the rats were rehydrated on the fourth day was observed. In conclusion, our study revealed an increase in blood pressure and in central sympathetic activity during dehydration.  相似文献   

4.
1. Plasma albumin synthesis was measured in rats and sand rats (Psammomys obesus) during heat acclimation (34 degrees C) and following thermal dehydration (37 degrees C) using 3H 1-leucine as a tracer. 2. In rats, heat acclimation resulted in 48% reduction in albumin synthesis. In sand rats synthesis increased by 160%. Both species achieved a new stabilization of the albumin synthetic system on the 5th day of acclimation. 3. Following thermal dehydration albumin synthesis increased in rats and decreased in sand rats. Acclimation did not alter this response. 4. In our dehydrating system plasma volume was maintained via maintenance of adequate albumin mass. In rats, albumin synthesis apparently contributes to this process. In sand rat, vascular permeability rather than albumin synthesis plays this role.  相似文献   

5.
1. 1. The beneficial effects of heat acclimation on thermal induced vasomotor responses of hypohydrated aged rats were assessed by measuring the isometric tension of aortic and portal rings of old and young rats under heat acclimation and hypohydration in response to -adrenergic (-AR) and β-adrenergic (β-AR) stimulation (phenylephrine 10−9–10−2 mM and isoprenaline 10−9–10−4 respectively). In parallel, portal blood flow (PBF), which drains the splanchnic vasculature, was measured in conscious rats, before and during heat stress (42°C).
2. 2. In the aorta, heat acclimation augmented phenylephrine (-AR) induced tension, to a great extent in the older rats. Hypohydration increased -AR sensitivity in all experimental groups. Acclimation and aging brought about decreased responsiveness in isoprenaline induced relaxation (β-AR) in both the aorta and the portal vein. Hypohydration increased β-AR responsiveness in the portal vein of OR, acclimated and acclimated-hypohydrated rats.
3. 3. Normothermic euhydrated resting PBF was similar for young and old rats. Hypohydration decreased resting PBF. Upon heat stress, thermal induced vasoconstriction in hypohydrated YR and OR occurred earlier than in the euhydrated groups and was more pronounced. The latter responses were attenuated in the old rats.
4. 4. Taken together, these results imply that chronic environmental stressors such as heat acclimation and hypohydration produce selective alterations in AR responsiveness of the vasculature in both young and old rats. Consequently, thermoregulatory vasomotor mediated mechanisms, as exhibited in this study in PBF, may differ in their responsiveness in these two age groups.
  相似文献   

6.
This study examined the effects of heat acclimation and subject gender on treadmill exercise in comfortable (20 degrees C, 40% rh), hot-dry (49 degrees C, 20% rh), and hot-wet (35 degrees C, 79% rh) environments while subjects were hypo- or euhydrated. Six male and six female subjects, matched for maximal aerobic power and percent body fat, completed two exercise tests in each environment both before and after a 10-day heat acclimation program. One exercise test was completed during euhydration and one during hypohydration (-5.0% from baseline body weight). In general, no significant (P greater than 0.05) differences were noted between men and women at the completion of exercise for rectal temperature (Tre), mean skin temperature (Tsk), or heat rate (HR) during any of the experimental conditions. Hypohydration generally increased Tre and HR values and decreased sweat rate values while not altering Tsk values. In the hypohydration experiments, heat acclimation significantly reduced Tre (0.19 degrees C) and HR (13 beats X min-1) values in the comfortable environment, but only HR values were reduced in hot-dry (21 beats X min-1) and hot-wet (21 beats X min-1) environments. The present findings indicated that men and women respond in a physiologically similar manner to hypohydration during exercise. They also indicated that for hypohydrated subjects heat acclimation decreased thermoregulatory and cardiovascular strain in a comfortable environment, but only cardiovascular strain decreased in hot environments.  相似文献   

7.
Upright posture and lower body negative pressure (LBNP) both induce reductions in central blood volume. However, regional circulatory responses to postural changes and LBNP may differ. Therefore, we studied regional blood flow and blood volume changes in 10 healthy subjects undergoing graded lower-body negative pressure (-10 to -50 mmHg) and 8 subjects undergoing incremental head-up tilt (HUT; 20 degrees , 40 degrees , and 70 degrees ) on separate days. We continuously measured blood pressure (BP), heart rate, and regional blood volumes and blood flows in the thoracic, splanchnic, pelvic, and leg segments by impedance plethysmography and calculated regional arterial resistances. Neither LBNP nor HUT altered systolic BP, whereas pulse pressure decreased significantly. Blood flow decreased in all segments, whereas peripheral resistances uniformly and significantly increased with both HUT and LBNP. Thoracic volume decreased while pelvic and leg volumes increased with HUT and LBNP. However, splanchnic volume changes were directionally opposite with stepwise decreases in splanchnic volume with LBNP and stepwise increases in splanchnic volume during HUT. Splanchnic emptying in LBNP models regional vascular changes during hemorrhage. Splanchnic filling may limit the ability of the splanchnic bed to respond to thoracic hypovolemia during upright posture.  相似文献   

8.
Endocrine and thermoregulatory responses were studied in male rats exposed to heat (32.5 +/- 0.1 degrees C) from acclimation temperatures of either 24.5 +/- 0.1 degrees C or 29.2 +/- 0.1 degrees C. After 1 hr in the heat, evaporative water loss and tail skin temperature changes in the 24.5 degrees C acclimated rats were greater than in the 29.2 degrees C acclimated rats; both groups displayed similar changes in metabolic rate and rectal temperature. At the respective acclimation temperatures, 29.2 degrees C rats displayed lowered plasma thyroid hormones, elevated beta-endorphin-like immunoreactivity (beta-END-LI) in the plasma, neurointermediate and anterior lobes of the pituitary gland, and no change in plasma corticosterone levels compared to 24.5 degrees C rats. After exposure to 32.5 degrees C for 1 hr, both groups of rats maintained similar plasma corticosterone levels; however, only the 24.5 degrees C group increased plasma thyroxine and beta-END-LI. These data suggest that beta-endorphin may be involved in body temperature regulation during acclimation to elevated environmental temperatures.  相似文献   

9.
The aim of the study was to characterize the effects of induced moderate hypothermia on splanchnic blood flow, with particular reference to that of the pancreas and the islets of Langerhans. We also investigated how interference with the autonomic nervous system at different levels influenced the blood perfusion during hypothermia. For this purpose, hypothermia (body temperature of 28 degrees C) was induced by external cooling, whereas normothermic (37.5 degrees C) anesthetized Sprague-Dawley rats were used as controls. Some rats were pretreated with either propranolol, yohimbine, atropine, hexamethonium, or a bilateral abdominal vagotomy. Our findings suggest that moderate hypothermia elicits complex, organ-specific circulatory changes, with increased perfusion noted in the pylorus, as well as the whole pancreas and the pancreatic islets. The pancreatic islets maintain their high blood perfusion through mechanisms involving both sympathetic and parasympathetic mediators, whereas the increased pyloric blood flow is mediated through parasympathetic mechanisms. Renal blood flow was decreased, and this can be prevented by ganglionic blockade and is also influenced by beta-adrenoceptors.  相似文献   

10.
The effect of acetysalicylic acid (aspirin) on thermoregulation in a warm environment was studied in hydrated and dehydrated adult rats to test the hypothesis that dehydration hyperthermia can be modified by an antipyretic drug. Metabolic rate (MR), evaporative water loss (EWL), and deep body temperature (Tb) were measured during 2 h of exposure to an ambient temperature of 36 degrees C after the rats had received an oral pellet of aspirin (100 mg.kg-1) or placebo. The dehydrated placebo group had a higher Tb and lower EWL than the hydrated placebo group. Aspirin increased MR and EWL in both hydrated and dehydrated animals. Aspirin did not affect Tb in hydrated rats, but reduced Tb by 0.2 degree C in dehydrated rats during the heat exposure. The elevation in EWL appears to be a thermoregulatory response to increased heat production in both hydrated and dehydrated animals after aspirin treatment. The possibility that aspirin may act in dehydrated animals to restore central thermosensitivity toward hydrated levels needs to be tested further.  相似文献   

11.
This study was to elucidate thermoregulation in dehydrated heat-exposed broilers. When broilers were dehydrated, heat production (HP), comb surface temperature (Tcs) and respiration rate (RR) decreased significantly. Conversely, rectal (Tr) and back skin (Tbs) temperatures, whole blood viscosity (WBV), haematocrit (HCT), plasma protein concentration (PPC) and plasma osmolality (PO) increased. During heat exposure, HP, WBV, HCT and PPC decreased significantly, while Tr, Tcs, Tbs and RR increased. The onset of panting against rectal temperature was delayed in dehydrated birds. These results suggest that dehydration leads to a lower blood volume, resulting in a decrease in blood flow to heat exchange organs and surfaces in broilers. This induces a lower sensible heat loss from extremities, a lower evaporative heat loss and a higher sensible heat loss from trunk, subsequent to regulate their body temperature at a higher level of deep body temperature.  相似文献   

12.
Systemic and splanchnic hemodynamics were studied by using the radioactive microsphere technique, in rats in which a chronic and progressive portal or intrahepatic hypertension was produced by the placement of a nonconstricting, well fitted ligature around the portal or suprahepatic vein when the rat weighted about 100 g. The hemodynamic measurements were performed 80-90 days after ligature placement. Suprahepatic ligated rats presented portal and intrahepatic hypertension, but nonportal-systemic shunts (PSS). The only hemodynamic disturbance observed was a decrease in renal blood flow. Portal ligated rats showed a wide range of PSS and were divided in two subgroups. The subgroups with high PSS rate (greater than 10%) showed increased cardiac output and plasma renin content, as well as decreased splanchnic blood flow, portal venous inflow, hepatic blood flow and renal blood flow. Low portal-systemic shunts subgroups showed decreased cardiac output while its distribution was similar to the control rats. There was no correlation between portal pressure and shunt rate. Low shunt groups, furthermore, showed increased levels of plasma renin concentration.  相似文献   

13.
Previous investigations have demonstrated a subset of postural tachycardia syndrome (POTS) patients characterized by normal peripheral resistance and blood volume while supine but thoracic hypovolemia and splanchnic blood pooling while upright secondary to splanchnic hyperemia. Such "normal-flow" POTS patients often demonstrate hypocapnia during orthostatic stress. We studied 20 POTS patients (14-23 yr of age) and compared them with 10 comparably aged healthy volunteers. We measured changes in heart rate, blood pressure, heart rate and blood pressure variability, arm and leg strain-gauge occlusion plethysmography, respiratory impedance plethysmography calibrated against pneumotachography, end-tidal partial pressure of carbon dioxide (Pet(CO2)), and impedance plethysmographic indexes of blood volume and blood flow within the thoracic, splanchnic, pelvic (upper leg), and lower leg regional circulations while supine and during upright tilt to 70 degrees. Ten POTS patients demonstrated significant hyperventilation and hypocapnia (POTS(HC)) while 10 were normocapnic with minimal increase in postural ventilation, comparable to control. While relative splanchnic hypervolemia and hyperemia occurred in both POTS groups compared with controls, marked enhancement in peripheral vasoconstriction occurred only in POTS(HC) and was related to thoracic blood flow. Variability indexes suggested enhanced sympathetic activation in POTS(HC) compared with other subjects. The data suggest enhanced cardiac and peripheral sympathetic excitation in POTS(HC).  相似文献   

14.
The aim of the study was to evaluate effects of cardiac natriuretic peptides on splanchnic circulation, especially to the pancreatic islets. Pentobarbital-anesthetized rats were infused intravenously (0.01 ml/min for 20 min) with saline, atrial natriuretic peptide (ANP; 0.25 or 0.5 microg/kg BW/min), brain natriuretic peptide (BNP; 0.5 microg/kg BW/min) or C-type natriuretic peptide (CNP; 0.5 or 2.0 microg/kg BW/min). Splanchnic blood perfusion was then measured with a microsphere technique. Mean arterial blood pressure was decreased by ANP and BNP, but not by CNP. The animals given the highest dose of ANP became markedly hypoglycemic, whilst no such effects were seen in any of the other groups of animals. Total pancreatic blood flow was decreased by the highest dose of CNP, whereas no change was seen after administration of the other peptides. Islet blood flow was increased by the highest dose of ANP. Neither BNP nor CNP affected islet blood flow. None of the natriuretic peptides influenced duodenal, colonic or arterial hepatic blood flow. It is concluded that cardiac natriuretic peptides exert only minor effects on splanchnic blood perfusion in anesthetized rats. However, islet blood perfusion may be influenced by ANP.  相似文献   

15.
Cardiac output, blood flow distribution and regional perfusion were determined in free-swimming rainbow trout acclimated to 6, 12 and 18°C, using the indicator dilution and microsphere methods. Cardiac output (ml min−1 kg−1) increased linearly with increasing temperature, while circulation time decreased. Blood flow distribution (% of cardiac output) to the spleen, liver, kidney, gall bladder and gastro-intestinal tract was significantly reduced at 18°C relative to 6°C-acclimated fish. White muscle received the largest fraction of cardiac output, and blood flow distribution to white muscle increased significantly with increasing acclimation temperature. Blood perfusion (ml h−1 g−1) of various organs and red muscle was not influenced by acclimation temperature, while white muscle perfusion increased with increasing temperature. These results demonstrate physiological adaptation of the cardiovascular system of rainbow trout to changes in acclimation temperature.  相似文献   

16.
To investigate the effects of carbon dioxide (CO2) hot spring baths on physiological functions, head-out immersion of urethane-anesthetized, fursheared male Wistar rats was performed. Animals were immersed in water (30 or 35 degrees C) with high-CO2 content ( approximately 1,000 parts/million; CO2-water). CO2-water for bathing was made by using an artificial spa maker with normal tap water and high-pressure CO2 from a gas cylinder. When a human foot was immersed for 10 min in the CO2-water at 35 degrees C, the immersed skin reddened, whereas skin color did not change in normal tap water at the same temperature. Arterial blood pressure, heart rate (HR), underwater skin tissue blood flow, and temperatures of the colon and immersed skin were continuously measured while animals were immersed in a bathtub of water for approximately 30 min at room temperature (26 degrees C). Immersed skin vascular resistance, computed from blood pressure and tissue blood flow, was significantly lower in the CO2-water bath than in tap water at 30 degrees C, but no differences were apparent at 35 degrees C. HR of rats in CO2-water was significantly slower than in tap water at 35 degrees C. Decreased HR in CO2-water was inhibited by infusion of atenolol (beta1-adrenoceptor blocker), but it was unaffected by atropine (muscarinic cholinoceptor blocker). Theses results suggest that bradycardia in CO2 hot spring bathing is caused by inhibition of the cardiac sympathetic innervation. This CO2-water maker should prove a useful device for acquiring physiological evidence of balneotherapy.  相似文献   

17.
This study investigates the effects of a short-term aerobic training program in a hot environment on thermoregulation, blood parameters, sweat secretion and composition in tropic-dwellers who have been exposed to passive heat. Sixteen healthy Malaysian-Malay male volunteers underwent heat acclimation (HA) by exercising on a bicycle ergometer at 60% of VO2max for 60 min each day in a hot environment (Ta: 31.1+/-0.1 degrees C, rh: 70.0+/-4.4%) for 14 days. All parameters mentioned above were recorded on Day 1 and at the end of HA (Day 16). On these two days, subjects rested for 10 min, then cycled at 60% of VO2max for 60 min and rested again for 20 min (recovery) in an improvised heat chamber. Rectal temperature (Tre), mean skin temperature (Tsk) heart rate (HR), ratings of perceived exertion (RPE), thermal sensation (TS), local sweat rate and percent dehydration were recorded during the test. Sweat concentration was analysed for sodium [Na+]sweat and potassium. Blood samples were analysed for biochemical changes, electrolytes and hematologic indices. Urine samples were collected before and after each test and analysed for electrolytes.After the period of acclimation the percent dehydration during exercise significantly increased from 1.77+/-0.09% (Day 1) to 2.14+/-0.07% (Day 16). Resting levels of hemoglobin, hematocrit and red blood cells decreased significantly while [Na+]sweat increased significantly. For Tre and Tsk there were no differences at rest. Tre, HR, RPE, TS, plasma lactate concentration, hemoglobin and hematocrit at the 40th min of exercise were significantly lower after the period of acclimation but mean corpuscular hemoglobin and serum osmolality were significantly higher while no difference was seen in [Na+]sweat and Tsk. It can be concluded that tropic-dwelling subjects, although exposed to prolonged passive heat exposure, were not fully heat acclimatized. To achieve further HA, they should gradually expose themselves to exercise-heat stress in a hot environment.  相似文献   

18.
The hemodynamic responses to vasoconstrictor agents are blunted during heating in anesthetized rats. It is unknown whether reflex neural responses to these agents are also altered during hyperthermia. Therefore, the purpose of this study was to determine the effect of hyperthermia on the hemodynamic and baroreflex-mediated sympathetic neural responses to vasoactive agents in conscious, unrestrained rats. The splanchnic sympathetic nerve activity (SpNA) and systemic and regional hemodynamic responses to injections of phenylephrine and sodium nitroprusside were measured during normothermia (37 degrees C) and hyperthermia (41.5 degrees C). The hemodynamic responses to phenylephrine and sodium nitroprusside were blunted with heating, whereas the SpNA responses to both agents were augmented or unchanged. At 41.5 degrees C, the baroreflex curves relating heart rate (HR) and SpNA to mean arterial blood pressure were shifted to the right. The operating range and gain of the blood pressure (BP)-HR reflex were significantly reduced during heating, whereas the operating range of the BP-SpNA reflex was augmented at 41.5 degrees C. These results indicate that heating alters the cardiovascular and sympathetic neural responses to vasoactive agents in vivo. Furthermore, the data suggest that heating differentially affects arterial baroreflex control of HR and SpNA, shifting both curves toward higher BP values but selectively attenuating baroreflex control of HR.  相似文献   

19.
冷习服大鼠血管内皮细胞适应性改变与抗冻能力的研究   总被引:3,自引:0,他引:3  
本文观测了冷习服大鼠及其冻伤后血管内皮细胞(VEC)的某些功能的变化。结果表明,与未习服组比,冷习服鼠循环血中VEC计数显著增加,血中6-keto-PGF1α和TXB2含量明显升高,而T/P比值接近,血清血管紧张素Ⅰ转换酶(ACE)活性减低。冻伤后未习服组这些指标除ACE显著降低外,其余均急剧升高;而冷习服组仅见短暂轻微的改变或改变不明显,且其冻足组织活存面积亦显著增加。表明冷习服后,VEC发生了代谢更新率加快、功能增强的适应性改变,有利于提高机体对寒冷损伤的应激和修复能力  相似文献   

20.
Cardioventilatory variables and blood-gas, acid-base status were measured in cannulated white sturgeon (Acipenser transmontanus) maintained at 19 degrees C during normocapnic and hypercapnic (Pw(CO(2)) approximately 20 Torr) water conditions and after the injection of adrenergic analogs. Hypercapnia produced significant increases in arterial PCO(2), ventilatory frequency, and plasma concentration of cortisol and epinephrine, and it produced significant decreases in arterial pH and plasma concentration of glucose but no change in arterial PO(2), hematocrit, and concentration of lactate or norepinephrine. Hypercapnia significantly increased cardiac output (Q) by 22%, mean arterial pressure (MAP) by 8%, and heart rate (HR) by 8%. However, gut blood flow (GBF) remained constant. In normocapnic fish, phenylephrine significantly constricted the splanchnic circulation, whereas isoproterenol significantly increased Q and produced a systemic vasodilation. During hypercapnia, propranolol significantly decreased Q, GBF, MAP, and HR, whereas phentolamine significantly decreased MAP and increased GBF. These changes suggest that cardiovascular function in the white sturgeon is sensitive to both alpha- and beta-adrenergic modulation. We found microspheres to be unreliable in predicting GBF on the basis of our comparisons with simultaneous direct measurements of GBF. Overall, our results demonstrate that environmental hypercapnia (e.g., as is experienced in high-intensity culture situations) elicits stress responses in white sturgeon that significantly elevate steady-state cardiovascular and ventilatory activity levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号