首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports the synthesis and the biological activities of six new glucagon analogues. In these compounds N-terminal modifications of the glucagon sequence were made, in most cases combined with changes in the C-terminal region which had been shown previously to enhance receptor affinity. The design of these analogues was based on [Lys17,18,Glu21]glucagon,1 a superagonist, which binds five times better than glucagon to the glucagon receptor, and on the potent glucagon antagonist [D-Phe4,Tyr5,Arg12]glucagon, which does not stimulate adenylate cyclase system even at very high concentrations. The N-terminal modifications involved substitution of His1 by the unnatural conformationally constrained residue, 4,5,6,7-tetrahydro-1H-imidazo[c]pyridine-6-carboxylic acid (Tip) and by desaminohistidine (dHis). In addition we prepared two analogues (6 and 7), in which we deleted the Phe6 residue, which was suggested to be part of a hydrophobic patch and involved in receptor binding. The following compounds were synthesized: [Tip1, Lys17,18,Glu21]glucagon (2); [Tip1,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21]glucagon (3); [dHis1,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21]glucagon (4); [dHis1,Asp3,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21+ ++]glucagon (5); des-Phe6-[Tip1,D-Phe4,Tyr5,Arg12,Glu21]glucagon (6); des-Phe6-[Asp3,D-Phe4,Tyr5,Arg12,Glu21]glucagon (7). The binding potencies of these new analogues relative to glucagon (= 100) are 3.2 (2), 2.9 (3), 10.0 (4), 1.0 (5), 8.5 (6), and 1.7 (7). Analogue 2 is a partial agonist (maximum stimulation of adenylate cyclase (AC) approximately 15% and a potency 8.9% that of glucagon, while the remaining compounds 3-7 are antagonists unable to activate the AC system even at concentrations as high as 10(-5) M. In addition, in competition experiments, analogues 3-7 caused a right-shift of the glucagon stimulated adenylate cyclase dose-response curve.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Eleven new analogues were synthesized by modification of the potent oxytocin antagonist (OTA) [(S)Pmp(1), D-Trp(2), Pen(6), Arg(8)]-Oxytocin, or PA (parent antagonist), in which (S)Pmp = beta,beta-(3-thiapentamethylene)-beta-mercapto-propionic acid. By internal acylation of Lys, Orn, L-1,4-diaminobutyric acid (Dab), L-1,3-diaminopropionic acid (Dap) at position 4 with the C-terminal Gly of the peptide tail, we prepared cyclo-(4-9)-[Lys(4), Gly(9)]-PA (pA(2) = 8.77 +/- 0.27), 1, and cyclo-(4-9)-[Orn(4), Gly(9)]-PA (pA(2) = 8.81 +/- 0.25), 3, which are equipotent with PA (pA(2) = 8.68 +/- 0.18) in the rat uterotonic assay and cyclo-(4-9)-[Dab(4), Gly(9)]-PA, 4, cyclo-(4-9)-[Dap(4), Gly(9)]-PA, 5, and cyclo-(4-9)-[Pmp(1), Lys(4), Gly(9)]-PA, 2, which were weaker OTAs. Neither 1 nor 3 had activity as agonists or antagonists in the antidiuretic assay. In the pressor assay, both analogues 1 and 3, with pA(2) = 7.05 +/- 0.10 and pA(2) = 6.77 +/- 0.12, respectively, are somewhat weaker antagonists than PA (pA(2) = 7.47 +/- 0.35) showing significant gain in specificity. The [desamido(9)] PA-ethylenediamine monoamide, 6, and the dimer ([desamido(9)]-PA)(2) ethylenediamine diamide, 7, had lower potency in the uterotonic assay than PA. Additionally, we synthesized cyclo-(1-5)-[(HN)Pmp(1), Asp(5)]-PA, 8, inactive in all tests, which suggests that the intact Asn(5) side chain may be critical in the interaction of the OTAs with the oxytocin (OT) receptor. Similarly, cyclo-(5-9)-[Dap(5), Gly(9)]-PA, 9, had very low uterotonic potency. Two derivatives of PA truncated from the C-terminus were internally cyclized to Lys(4), giving rise to cyclo-(4-8)-desGly-NH(2)(9)[Lys(4), Arg(8)]-PA, 10 (pA(2) = 8.35 +/- 0.20), which maintains the high potency of PA and has no activity in the rat antidiuretic assay, and in the rat pressor assay it is about ten times weaker (pA2 = 6.41 +/- 0.15) than PA (pA2 = 7.47 +/- 0.35), thus showing gains in specificity, and to cyclo-(4-7)-desArg-Gly-(NH)(2)(8-9)[Lys(4), Pro(7))-PA, 11, which has much weaker potency than PA. Synthesis of cyclo-(4-6)-desPro-Arg-Gly-(NH)(2)(7-9)[Lys(4)]-PA failed.  相似文献   

3.
The N-terminal domain of PTH(1-34) is critical for PTH-1 receptor (P1R) activation and has been postulated to be alpha-helical when bound to the receptor. We investigated the possibility that the side chains of residues 6 (Gln) and 10 (Gln or Asn) of PTH analogues, which would align on the same face of the predicted alpha-helix, could interact and thereby contribute to the PTH/P1R interaction process. We utilized PTH(1-11), PTH(1-14), and PTH(1-34) analogues substituted with alanine at one or both of these positions and functionally evaluated the peptides in cell lines (HKRK-B7 and HKRK-B28) stably expressing the P1R, as well as in COS-7 cells transiently expressing either the P1R or a P1R construct that lacks the amino-terminal extracellular domain (P1R-DelNt). In HKRK-B7 cells, the single substitutions of Gln(6) --> Ala and Gln(10) --> Ala reduced the cAMP-stimulating potency of [Ala(3),Gln(10),Arg(11)]rPTH(1-11)NH(2) approximately 60- and approximately 2-fold, respectively, whereas the combined Ala(6,10) substitution resulted in a approximately 2-fold gain in potency, relative to the single Ala(6) substitution. Similar effects on P1R-mediated cAMP-signaling potency and P1R-binding affinity were observed for these substitutions in [Aib(1,3),Gln(10),Har(11),Ala(12),Trp(14)]rPTH(1-14)NH(2). Installation of a lactam bridge between the Lys(6) and the Glu(10) side chains of [Ala(3,12),Lys(6),Glu(10),Har(11),Trp(14)]rPTH(1-14)NH(2) increased signaling potency 6-fold, relative to the nonbridged linear analogue. Alanine substitutions at positions 6 and/or 10 of [Tyr(34)]hPTH(1-34)NH(2) did not affect signaling potency nor binding affinity on the intact P1R; however, Ala(6) abolished PTH(1-34) signaling on P1R-DelNt, and this effect was reversed by Ala(10). The overall data support the hypothesis that the N-terminal portion of PTH is alpha-helical when bound to the activation domain of the PTH-1 receptor and they further suggest that intrahelical side chain interactions between residues 6 and 10 of the ligand can contribute to the receptor interaction process.  相似文献   

4.
5.
Substitution of the side chain carboxamido group at position 4 in the potent oxytocin antagonist (OTA) [ThiaPmp(1), D-Trp(2), Cys(6), Arg(8)]-OT, PA, in which ThiaPmp = beta,beta-(3-thiapentamethylene)-beta-mercaptopropionic acid, led to [Orn(Car)(4)]-PA, ([Cit(4)]-PA), which had uterotonic antagonistic activity equal to that of PA. The same modification at position 5, leading to [Cit(5)]-PA, resulted in antagonistic potency more than 10 times lower than that of PA. This paper also describes the same substitutions introduced in the highly potent OTA [Pen(6)]-PA (antioxytocic in vitro pA(2) = 8.72). Analogues of the general formula [U(4)-X(5)-Pen(6)]-PA, in which U = Lys, Orn, Dab, Dap or X = Orn, Dab or Dap, were synthesized by SPPS. Each of these analogues was carbamoylated by treatment with KCNO in DMF-H(2)O, yielding the corresponding U(Car)(4) or X(Car)(5) derivatives. In the uterotonic assay, the substitution with the ureido group at Gln(4) results in retention of high antagonistic potency, albeit somewhat lower than that of PA, e.g. [Orn(Car)(4), Pen(6)]-PA and [Dab(Car)(4), Pen(6)]-PA having pA(2) = 8.52 and pA(2) = 8.42 respectively. In the pressor assay, [Lys(Car)(4), Pen(6)]-PA and [Dab(Car)(4), Pen(6)]-PA were somewhat weaker antagonists of arginine vasopressin than [Pen(6)]-PA; [Dap(Car)(4), Pen(6)]-PA showed only a faint trace of pressor agonistic activity. The substitution with the ureido group at position 5 leads to a significant loss of OTA potency in the in vitro uterotonic assay. The [Orn(Car)(5), Pen(6)]-PA was the most potent of the series (pA(2) = 8.05). An interesting finding is that [Dap(Car)(5), Pen(6)]-PA is equipotent with its precursor [Dap(5), Pen(6)]-PA (potency in the uterotonic test in vitro, pA(2) = 7.71 and pA(2) = 7.68, respectively). Furthermore, neither [Dap(5), Pen(6)]-PA nor [Dap(5), Pen(6), Gly(9)]-PA exhibited activity in the antidiuretic or pressor assays. Although these last two analogues show some decrease in antioxytocin potency, they behave as pure oxytocin antagonists, which makes them attractive candidates for further studies on the development of potent and specific OTAs.  相似文献   

6.
Coetsee M  Millar RP  Flanagan CA  Lu ZL 《Biochemistry》2008,47(39):10305-10313
Molecular modeling showed interactions of Tyr (290(6.58)) in transmembrane domain 6 of the GnRH receptor with Tyr (5) of GnRH I, and His (5) of GnRH II. The wild-type receptor exhibited high affinity for [Phe (5)]GnRH I and [Tyr (5)]GnRH II, but 127- and 177-fold decreased affinity for [Ala (5)]GnRH I and [Ala (5)]GnRH II, indicating that the aromatic ring in position 5 is crucial for receptor binding. The receptor mutation Y290F decreased affinity for GnRH I, [Phe (5)]GnRH I, GnRH II and [Tyr (5)]GnRH II, while Y290A and Y290L caused larger decreases, suggesting that both the para-OH and aromatic ring of Tyr (290(6.58)) are important for binding of ligands with aromatic residues in position 5. Mutating Tyr (290(6.58)) to Gln increased affinity for Tyr (5)-containing GnRH analogues 3-12-fold compared with the Y290A and Y290L mutants, suggesting a hydrogen-bond between Gln of the Y290Q mutant and Tyr (5) of GnRH analogues. All mutations had small effects on affinity of GnRH analogues that lack an aromatic residue in position 5. These results support direct interactions of the Tyr (290(6.58)) side chain with Tyr (5) of GnRH I and His (5) of GnRH II. Tyr (290(6.58)) mutations, except for Y290F, caused larger decreases in GnRH potency than affinity, indicating that an aromatic ring is important for the agonist-induced receptor conformational switch.  相似文献   

7.
B Gysin  D Trivedi  D G Johnson  V J Hruby 《Biochemistry》1986,25(25):8278-8284
The hyperglycemia and ketosis of diabetes mellitus are generally associated with elevated levels of glucagon in the blood. This suggests that glucagon is a contributing factor in the metabolic abnormalities of diabetes mellitus. A glucagon-receptor antagonist might provide important evidence for glucagons's role in this disease. In this work we describe how we combined structural modifications that led to glucagon analogues with partial agonist activity to give glucagon analogues that can act as competitive antagonists of glucagon-stimulated adenylate cyclase activity. Using solid-phase synthesis methodology and preparative reverse-phase high-performance liquid chromatography, we synthesized the following seven glucagon analogues and obtained them in high purity: [D-Phe4,Tyr5,Arg12]glucagon (2); [D-Phe4,Tyr5,Lys17,18]glucagon (3); [Phe1,Glu3,Lys17,18]glucagon (4); [Glu3,Val5,Lys17,18]glucagon (5); [Asp3,D-Phe4,Ser5,Lys17,18]glucagon (6); I4-[Asp3,D-Phe4,Ser5,Lys17,18]glucagon (7); [Pro3]glucagon (8). Purity was assessed by enzymatic total hydrolysis, by chymotryptic peptide mapping, and by reverse-phase high-performance liquid chromatography. The new analogues were tested for specific binding, for their effect on the adenylate cyclase activity in rat liver membranes, and for their effect on the blood glucose levels in normal rats relative to glucagon. Analogues showing no adenylate cyclase activity were examined for their ability to act as antagonists by displacing glucagon-stimulated adenylate cyclase dose-response curves to the right (higher concentrations). The binding potencies of the new analogues relative to glucagon (= 100) were respectively 1.0 (2), 1.3 (3), 3.8 (4), 0.4 (5), 1.3 (6), 5.3 (7), and 3 (8). Glucagon analogues 3-5 and 8 were all weak partial agonists with EC50 values of 500 (3), 250 (4), 1600 (5), and 395 nM (8), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The synthesis, purification, and characterization of biotinylated analogues of parathyroid hormone (PTH) and PTH-related protein (PTHrP) are described. A novel methodology was developed which allowed the selective biotinylation during solid-phase synthesis of either the Lys13 or Lys26 residue in PTH/PTHrP sequences. Incorporation of orthogonally protected N alpha-Boc-Lys(N epsilon-Fmoc) at a selected position in the sequence, followed by selective side-chain deprotection and biotinylation of the epsilon-amino group, permitted modification of the specific lysine only. Biotinylated analogues of [Nle8,18,Tyr34]bPTH(1-34)NH2 (analogue 1a) were prepared by modification of Lys13 with a biotinyl group (analogue 1) or a biotinyl-epsilon-aminohexanoyl group (analogue 2) or at Lys26 with a biotinyl-epsilon-aminohexanoyl group (analogue 3). A biotinylated PTHrP antagonist [Leu11,D-Trp12,Lys13(N epsilon-(biotinyl-beta-Ala))]PTHrP(7-34)NH2 (analogue 5), was also prepared. In a different synthetic approach, selective modification of the thiol group of [Cys35]PTHrP(1-35)NH2, in solution, with N-biotinyl-N'-(6-maleimidohexanoyl)hydrazide, resulted in analogue 4. The high affinities of the biotinylated analogues for PTH receptors present in human osteosarcoma B-10 cells or in porcine renal cortical membranes (PRCM), were comparable to those of the underivatized parent peptides. The analogues were also highly potent in stimulation of cAMP formation (analogues 1-4) or inhibition of PTH-stimulated adenylyl cyclase (analogue 5) in B-10 cells. The most potent analogue (analogue 1) had potencies in B-10 cells (Kb = 1.5 nM, Km = 0.35 nM) and in porcine renal membranes (Kb = 0.70 nM) identical or similar to those of its parent peptide, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Lysine occupies position 13 in the parathyroid hormone (PTH) antagonist, [Nle8,18,Tyr34]bPTH(7-34)NH2. Acylation of the epsilon-amino group in lysine 13 by a hydrophobic moiety is well tolerated in terms of bioactivity: the analog [Nle8,18, D-Trp12,Lys 13 (epsilon-3-phenylpropanoyl),Tyr34]bPTH(7-34)NH2 is equivalent to the parent peptide in its affinity for PTH receptors and its ability to inhibit PTH-stimulated adenylate cyclase in both kidney- and bone-based assays. Truncation of this peptide by deletion of phenylalanyl7 with concomitant removal of the amino-terminal alpha-amino group yielded the analog desamino[Nle8,18,D-Trp12,Lys13 (epsilon-3-phenylpropanoyl),Tyr34]bPTH(8-34)NH2, an antagonist of high potency in vitro (Kb = 4 and 9 nM, Ki = 73 and 3.5 nM in kidney- and bone-based assays, respectively). Also this analog is potentially stable to aminopeptidases present in many biological systems.  相似文献   

10.
Podstawka E  Ozaki Y 《Biopolymers》2008,89(10):807-819
In this article, surface-enhanced Raman scattering (SERS) spectra of bombesin (BN) and its six modified analogues ([D-Phe(12)]BN, [Tyr(4)]BN, [Tyr(4),D-Phe(12)]BN, [D-Phe(12),Leu(14)]BN, [Leu(13)-(R)-Leu(14)]BN, and [Lys(3)]BN) on a colloidal silver surface are reported and compared with SERS spectra of these species immobilized onto an ellectrochemically roughen silver electrode. Changes in enhancement and wavenumber of proper bands upon adsorption on different silver surfaces are consistent with BN and its analogues adsorption primarily through Trp(8). Slightly different adsorption states of these molecules are observed depending upon natural amino acids substitution. For example, the indole ring in all the peptides interacts with silver nanoparticles in a edge-on orientation. It is additionally coordinated to the silver through the N(1)--H bond for all the peptides, except [Phe(12)]BN. This is in contrary to the results obtained for the silver roughen electrode that show direct but not strong N(1)--H/Ag interaction for all peptides except [D-Phe(12),Leu(14)]BN and [Leu(13)-(R)-Leu(14)]BN. For BN only C==O is not involved in the chemical coordination with the colloidal surface. [Lys(3)]BN and BN also adsorb with the C--N bond of NH(2) group normal and horizontal, respectively, to the colloidal surface, whereas C--NH(2) in other peptides is tilted to this surface. Also, the Trp(8) --CH(2)-- moiety of only [Tyr(4)]BN, [Lys(3)]BN, and [Tyr(4),D-Phe(12)]BN coordinates to Ag, whereas the Phe(12) ring of [Phe(12)]BN, [Tyr(4),D-Phe(12)]BN, and [D-Phe(12),Leu(14)]BN assists in the peptides binding only on the colloidal silver.  相似文献   

11.
The N-terminal fragment of PTH(1-34) is critical for PTH1 receptor activation. Various modifications of PTH(1-14) have been shown to result in a considerable increase in signaling potency [Shimizu et al. (2000) J. Biol. Chem. 275, 21836-21843]. Our structural investigations revealed an unusually stable helical structure of the signaling domain (1-14), where residues 6 (Gln) and 10 (Gln or Asn) were located on the same face of the alpha-helix. To test whether a stable N-terminal alpha-helix is required for productive interaction with PTH1 receptor, we designed two conformationally restricted PTH(1-14) analogues, each containing a lactam bridge at positions 6 and 10. Specifically, substitutions Gln(6)-->Glu(6) and Asn(10)-->Lys(10) were introduced into the most potent [Ala(1,3,12),Gln(10),Har(11),Trp(14)]PTH(1-14)NH2 agonist. Both the Glu(6)-Lys(10) and Lys(6)-Glu(10) lactam-bridged analogues were characterized to examine the importance of orientation of the lactam. According to biological studies [Shimizu et al. (2003) Biochemistry 42, 2282-2290], none of the 6/10 substituted analogues (linear or cyclic) remained as active as the parent peptide. However, relative to their corresponding linear peptides, lactam-bridged analogues either maintained potency or showed 6-fold improvement. High-resolution structures as determined by 1H NMR and NOE-restrained molecular dynamics simulations clearly illustrate the structural differences between the linear and cyclic PTH(1-14) fragments, supporting the hypothesis that an alpha-helix is the preferred bioactive conformation of the N-terminal fragment of PTH. In addition, our results demonstrate that the structural order of the very first residues (1-4) of the signaling domain plays a significant role in PTH action.  相似文献   

12.
Six [Pen(6)]oxytocin analogs were synthesized by substituting penicillamine for cysteine in oxytocin, [Mpa(1)]oxytocin, [dPen(1)]oxytocin, [5-t-BuPro(7)]oxytocin, [Mpa(1), 5-t-BuPro(7)]oxytocin and [dPen(1), 5-t-BuPro(7)]oxytocin. When tested in the uterotonic test in vitro [Pen(6)]oxytocin, [Pen(6), 5-t-BuPro(7)]oxytocin, [Mpa(1), Pen(6)]oxytocin and [Mpa(1), Pen(6), 5-t-BuPro(7)]oxytocin, all were found to possess both agonistic and antagonistic properties. Their agonistic potency ranged from negligible (0.08 IU/mg) to low (5.85 IU/mg) and their antagonistic potency (pA2) was estimated to range from 6.6 to 7.9. [dPen(1), Pen(6)]Oxytocin and [dPen(1), Pen(6), 5-t-BuPro(7)]oxytocin were found to be pure antagonists with similarly high pA2 values of approximately 8.2. Replacement of proline by 5-tert-butylproline increased binding affinity by a factor of two in [Pen(6)]oxytocin and had no influence on the binding affinity of [Mpa(1), Pen(6)]oxytocin and [dPen(1), Pen(6)]oxytocin. Assignment of the proton signals for prolyl amide cis- and trans-isomers by NMR experiments in water indicated that the Pen(6)-5-tert-BuPro(7) peptide bond cis-isomer population was augmented relative to the prolyl peptides and measured, respectively, at 20, 35 and 35% in the 5-tert-butylproline(7) analogs of [Pen(6)]oxytocin, [Mpa(1), Pen(6)]oxytocin and [dPen(1), Pen(6)]oxytocin. This augmentation in cis-isomer population was correlated with a 21-fold reduction in the agonistic potency and 2-fold augmentation in antagonistic potency for [Pen(6), 5-t-BuPro(7)]oxytocin relative to [Pen(6)]oxytocin. Augmentation of cis-isomer population was also correlated to reduced agonist potency without effect on antagonism on conversion of [Mpa(1), Pen(6)]oxytocin to [Mpa(1), Pen(6), 5-t-BuPro(7)]oxytocin. In the potent oxytocin antagonist, [dPen(1), Pen(6)]oxytocin, substitution of 5-tert-butylproline for proline augmented the cis-isomer population without affecting antagonistic potency. The synthesis and evaluation of [Pen(6)]oxytocin and [Pen(6), 5-t-BuPro(7)]oxytocin analogs 1-6 indicated that steric interactions influenced agonist and antagonist activity by modifying peptide conformation. Augmentations in the prolyl cis-isomer population caused by 5-tert-butylproline occurred concurrently with enhanced or maintained antagonistic potency and binding affinity and reduced agonistic potency.  相似文献   

13.
Truncated N-terminal fragments of parathyroid hormone (PTH), [Tyr34]bovine PTH(7-34)NH2, and parathyroid hormone related protein (PTHrP), PTHrP(7-34)NH2, inhibit [Nle8,18,[125I]iodo-Tyr34]-bPTH(1-34)NH2 binding and PTH-stimulated adenylate cyclase in bone and kidney assays. However, the receptor interactions of these peptides are 2-3 orders of magnitude weaker than those of their agonist counterparts. To produce an antagonist with increased receptor-binding affinity but lacking agonist-like properties, structure-function studies were undertaken. Glycine at position 12 (present in all homologues of PTH and in PTHrP), which is predicted in both hormones to participate in a beta-turn, was examined by substituting conformational reporters, such as D- or L-Ala, Pro, and alpha-aminoisobutyric acid (Aib), in both agonist and antagonist analogues. Except for N-substituted amino acids, which substantially diminished potency, substitutions were well tolerated, indicating that this site can accept a wide latitude of modifications. To augment receptor avidity, hydrophobic residues compatible with helical secondary structure were introduced. Incorporation of the nonnatural amino acids D-Trp, D-alpha-naphthylalanine (D-alpha-Nal), or D-beta-Nal into either [Tyr34]bPTH(7-34)NH2 or [Nle8,18,Tyr34]bPTH(7-34)NH2 resulted in antagonists that were about 10-fold more active than their respective 7-34 parent compound. Similarly, [D-Trp12]PTHrP(7-34)NH2 was 6 times more potent than the unsubstituted peptide but retained partial agonistic properties, although markedly reduced, similar to PTHrP(7-34)NH2. The antagonistic potentiating effect was configurationally specific.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The conformational properties in DMSO of two head-to-tail cyclic analogues of kallidin ([Lys(0)]-bradykinin, KL) as well as those of the corresponding linear peptides were studied by NMR and molecular dynamics (MD) simulations. The modifications in the sequence were introduced at position 6, resulting in the four peptides, [Tyr(6)]-KL (YKL), [Trp(6)]-KL (WKL), cyclo-([Tyr(6)]-KL) (YCKL) and cyclo-([Trp(6)]-KL) (WCKL).The linear WKL analogue was significantly more potent than kallidin on rat duodenum preparations, whereas YKL was significantly less potent. Both cyclic peptides, YCKL and WCKL displayed similar activity, lower than that of the linear analogues and also of cyclo-KL.The two linear analogues display high conformational flexibility in DMSO. In the predominant conformer, for both peptides, all three X-Pro bonds adopt a trans configuration. Three out of four conformers present in YCKL and WCKL were completely assigned. The configurations at the X-Pro bonds are the same for the two analogues. All cyclic conformers show a cis configuration in at least one X-Pro bond and always opposite configuration for the two consecutive X-Pro bonds.The NOE-restrained MD calculations resulted in the detection of several elements of secondary structure in each of the conformers. Such elements are described and their possible relevance to biological activity is discussed.  相似文献   

15.
Magee BA  Shooter GK  Wallace JC  Francis GL 《Biochemistry》1999,38(48):15863-15870
The biological activity of the insulin-like growth factors (IGF-I and IGF-II) is regulated by six IGF binding proteins (IGFBPs 1-6). To examine the surface of IGF-I that associates with the IGFBPs, we created a series of six IGF-I analogues, [His(4)]-, [Gln(9)]-, [Lys(9)]-, [Ser(16)]-, [Gln(9),Ser(16)]-, and [Lys(9),Ser(16)]IGF-I, that contained substitutions for residues Thr(4), Glu(9), or Phe(16). Substitution of Ser for Phe(16) did not affect secondary structure but significantly decreased the affinity for all IGFBPs by between 14-fold and >330-fold, indicating that Phe(16) is functionally important for IGFBP association. While His(4) or Gln(9) substitutions had little effect on IGFBP affinity, changing the negative charge of Glu(9) to a positive Lys(9) selectively decreased the affinities of IGFBP-2 and -6 by 140- and 30-fold, respectively. Furthermore, the effects of mutations to both residues 9 and 16 appear to be additive. The analogues are biologically active in rat L6 myoblasts and they retain native structure as assessed by their far-UV circular dichroism (CD) profiles. We propose that Phe(16) and adjacent hydrophobic residues (Leu(5) and Leu(54)) form a functional binding pocket for IGFBP association.  相似文献   

16.
A polyphemusin peptide analogue, T22 ([Tyr(5,12), Lys7]-polyphemusin II), and its shortened potent analogues, T134 (des-[Cys(8,13), Tyr(9,12)]-[D-Lys10, Pro11, L-citrulline16]-T22 without C-terminal amide) and T140 [[L-3-(2-naphthyl)alanine3]-T134], strongly inhibit the T-cell line-tropic (T-tropic) HIV-1 infection through their specific binding to a chemokine receptor, CXCR4. T22 is an extremely basic peptide possessing five Arg and three Lys residues in the molecule. In our previous study, we found that there is an apparent correlation in the T22-related peptides between the number of total positive charges and anti-HIV activity or cytotoxicity. Here, we have conducted the conventional Ala-scanning study in order to define the anti-HIV activity pharmacophore of T140 (the strongest analogue among our compounds) and identified four indispensable amino acid residues (Arg2, Nal3, Tyr5, and Arg14). Based on this result, a series of L-citrulline (Cit)-substituted analogues of T140 with decreased net positive charges have been synthesized and evaluated in terms of anti-HIV activity and cytotoxicity. As a result, novel effective inhibitors, TC14003 and TC14005, possessing higher selectivity indexes (SIs, 50% cytotoxic concentration/50% effective concentration) than that of T140 have been developed.  相似文献   

17.
Twelve new [Tyr(Me)1, Leu5]-enkephalin analogues with substituents at position 3' of the Tyr ring have been synthesized using traditional solution methods. The substituents were -CO2H, -CONH2, -CO2Me, -(E)-CH=NOH, -(E)-CH=NOMe and CH2OH. The analogues were C-terminated with methyl esters, amides or as free acids. In the in vitro biological assays a remarkable agonist activity to the opiate receptor mu in guinea pig ileum (GPI) relative to Leu-ENK was shown by the following: Leu-ENK, 100; [Tyr(Me)(3'-CO2Me)1, Leu-OMe5]-ENK (I), 8.1; [Tyr(Me)(3'-(E)-CH=NOH)1, Leu-OMe5]-ENK (VI), 26.2; [Tyr(Me)(3'-(E)-CH=NOH)1, Leu-OH5]-ENK (VII), 2.9; [Tyr(Me)(3'-(E)-CH=NOH)1, Leu-NH2(5)]-ENK (VIII), 4.7; and [Tyr(Me)(3'-CH2OH)1, Leu-OMe5]-ENK (X), 5.6. The agonist effect was naltrexone- or naloxone-reversible. The masking of the hydroxyl group in (E)-hydroxyiminomethyl group of analogue (VI) by O-methylation has totally abolished its GPI agonist activity. It seems that the (E)-CH=NOH group shows affinity and plays an analogous role to the phenol group Tyr1 in leucine-enkephalin and in the tyramine group of the opiate alkaloids. The analogues: [Tyr(Me)(3'-CO2Me)1, Leu-OMe5]-ENK (I), [Tyr(Me)(3'-CO2H)1, Leu-OMe5]-ENK (II), [Tyr(Me)(3'-CO2Me)1, Leu-NH2(5)]-ENK (III), [Tyr(Me)(3'-CO2H)1, Leu-NH2(5)]-ENK (IV), [Tyr(Me)(3'-CONH2)1, Leu-NH2(5)]-ENK (V), [Tyr(Me)(3'-(E)-CH=NOH)1, Leu-OMe5]-ENK (VI), [Tyr(Me)(3'-(E)-CH=NOH)1, Leu-OH5]-ENK (VII), [Tyr(Me)(3'-(E)-CH=NOH)1, Leu-NH2(5)]-ENK (VIII), [Tyr(Me)(3'-(E)-CH=NOMe)1, Leu-OMe5]-ENK (IX), [Tyr(Me)(3'-CH2OH)1, Leu-OMe5]-ENK (X), [Tyr(Me)(3'-CH2OH)1, Leu-OH5]-ENK (XI) and [Tyr(Me)(3'-CH2OH)1, Leu-NH2(5)]-ENK (XII) under testing had no significant agonist activity to the enkephalinergic receptor in mouse vas deferens (MVD). All methyl esters of synthesized analogues of [Leu5]-ENK showed higher activity to mu receptors than structurally identical C-terminal amides. It is a surprising result since usually C-terminate amides are stronger agonists than C-terminate esters.  相似文献   

18.
A series of analogues of neurokinin A(4-10) was synthesized using solid phase techniques with Chiron pins, and purified by HPLC. The potencies of 10 peptides with substitution at Ser5 were assessed at rat fundus NK2 receptors. In membrane binding studies with [125I]-[Lys5,Tyr(I2)7,MeLeu9,Nle10]-NKA(4-10), all compounds except [Asp5]NKA(4-10) showed reasonable affinity, and analogues with Lys and Arg substitutions were five-fold more potent than NKA(4-10). In functional studies, all peptides were able to contract the rat isolated fundus strips. Analogues with Phe, His and Asn substitutions were substantially weaker in functional than in binding studies, whereas there was an excellent correlation (r = 0.95) between binding and functional potency for the remaining seven peptides. [Phe5]NKA(4-10) is in fact neurokinin B(4-10) and this residue may be critical in determining selectivity between NK2 and NK3 receptors. Analogues with a basic residue (Lys, Arg) at position 5 showed both increased affinity and functional potency, whereas the neutral [Asn5]NKA(4-10) was equally as weak in contractile studies as the acidic [Asp5]NKA(4-10). However, [Glu5]NKA(4-10) and [Gln5]NKA(4-10) were no different from NKA(4-10). Our results could indicate the presence of a negative charge on the NK2 receptor, close to position 5 of NKA. This would facilitate interaction with positively charged side chains and impede interaction with negatively charged side chains, particularly the inflexible side chain of aspartic acid. Thus, not only the charge, but also the length of the side chain of the residue at position 5, seems to be important for interaction with the rat NK2 receptor.  相似文献   

19.
Previous structure-activity and NMR studies on nociceptin/orphanin FQ (N/OFQ) demonstrated that Aib substitution of Ala(7) and/or Ala(11) increases the peptide potency through an alpha helix structure induction mechanism. On these bases we synthesised and evaluated pharmacologically in the mouse vas deferens assay a series of N/OFQ-NH(2) analogues substituted in position 7 and 11 with Calpha,alpha-disubstituted cyclic, linear and branched amino acids. None of the 20 novel N/OFQ analogues produced better results than [Aib(7)]N/OFQ-NH(2). Thus, this substitution was combined with other chemical modifications known to modulate peptide potency and/or efficacy generating compound 21 [Nphe(1)Aib(7)Arg(14)Lys(15)]N/OFQ-NH(2) (coded as UFP-111), compound 22 [(pF)Phe(4)Aib(7)Arg(14)Lys(15)]N/OFQ-NH(2) (UFP-112) and compound 23 [Phe(1)Psi(CH(2)-NH)Gly(2)(pF)Phe(4)Aib(7)Arg(14)Lys(15)]N/OFQ-NH(2) (UFP-113). These novel peptides behaved as highly potent NOP receptor ligands showing full (UFP-112) and partial (UFP-113) agonist and pure antagonist (UFP-111) activities in a series of in vitro functional assays performed on pharmacological preparations expressing native as well as recombinant NOP receptors.  相似文献   

20.
The three-dimensional structure of a potent SSTR3-selective analogue of somatostatin, cyclo(3-14)H-Cys(3)-Phe(6)-Tyr(7)-D-Agl(8)(N(beta) Me, 2-naphthoyl)-Lys(9)-Thr(10)-Phe(11)-Cys(14)-OH (des-AA(1, 2, 4, 5, 12, 13)[Tyr(7), D-Agl(8)(N(beta) Me, 2-naphthoyl)]-SRIF) (peptide 1) has been determined by (1)H NMR in water and molecular dynamics (MD) simulations. The peptide exists in two conformational isomers differing mainly by the cis/trans isomerization of the side chain in residue 8. The structure of 1 is compared with the consensus structural motifs of other somatostatin analogues that bind predominantly to SSTR1, SSTR2/SSTR5 and SSTR4 receptors, and to the 3D structure of a non-selective SRIF analogue, cyclo(3-14)H-Cys(3)-Phe(6)-Tyr(7)-D-2Nal(8)-Lys(9)-Thr(10)-Phe(11)-Cys(14)-OH (des-AA(1, 2, 4, 5, 12, 13)[Tyr(7), D-2Nal(8)]-SRIF) (peptide 2). The structural determinant factors that could explain selectivity of peptide 1 for SSTR3 receptors are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号