首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
In P. tetraurelia each cell is determined to express only one of the two complementary mating types, O and E. This determination is under cytoplasmic control and seems to be achieved only by the commitment or noncommitment to the expression of mating type E. All the previously known mutations affecting the differentiation of mating type prevent the expression of the E mating type (O-restricted mutations) without affecting the determination process. An E-restricted mutation was obtained: mtFE. Its phenotypic properties indicate that the mutation affects the determination process itself. When an O cell becomes mtFE/mtFE it acquires the E mating type and an E-determining cytoplasm. We propose that this constitutive determination for the E mating type is due to the inefficiency of a factor which is normally active in an O cell. This factor would act like a repressor and stabilize the E functions under an inactive state.  相似文献   

2.
SYNOPSIS. The sensitivity of Paramecium tetraurelia (=P. aurelia syngen 4) cells to pulse treatments with various doses of Actinomycin D (AMD) was estimated by comparing the generation times of treated and untreated sister cells. It was found that the delay of division in treated cells depended on the concentration of AMD, on their “age” at the time of the pulse treatment, and on their individual sensitivity. Sensitivity of Paramecium to AMD changes during the cell cycle in a predictable way. About 3 1/2 hr before the normally expected cell fission (total generation time ~ 5 1/2 hr) there is a decrease of sensitivity. Thereafter, the cell enters a new stage with a progressive increase of sensitivity. This 2nd phase ends at the “transition point” (~ 2 hr before cell division), when sensitivity drops abruptly. The division process itself may be altered and slowed down by high concentrations of AMD, even if the drug is applied after the transition point, but this process can never be completely annulled. The impairment of the division mechanism may lead to morphologic anomalies in the offspring. Resorption of oral anlagen in P. tetraurelia probably never occurs during the cell cycle after AMD treatment. The reason for individual variability of the cells, mechanisms controlling development, and the question of an obligate sequence of gene action in each cell cycle are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号