首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pristionchus pacificus has been developed as a model system in evolutionary developmental biology, evolutionary ecology, and population genetics. This species has a well-known ecological association with scarab beetles. Generally, Pristionchus nematodes have a necromenic association with their beetle hosts. Arrested dauer larvae invade the insect and wait for the host's death to resume development. Only one Pristionchus species is known to frequently associate with a non-scarab beetle. Pristionchus uniformis has been isolated from the chrysomelid Leptinotarsa decemlineata, also known as the Colorado potato beetle, in Europe and North America, but is also found on scarab beetles. This unusual pattern of association with two unrelated groups of beetles on two continents requires the involvement of geographical and host range expansion events. Here, we characterized a collection of 81 P. uniformis isolates from North America and Europe and from both scarab beetles and L. decemlineata. We used population genetic and phylogenetic analyses of the mitochondrial gene nd2 to reconstruct the genetic history of P. uniformis and its beetle association. Olfactory tests on beetles chemical extracts showed that P. uniformis has a unique chemoattractive profile toward its beetle hosts. Our results provide evidence for host range expansion through host-switching events in Europe where P. uniformis was originally associated with scarab beetles and the nematode's subsequent invasion of North America.  相似文献   

2.
The Asian longhorned beetle, (Coleoptera, Cerambycidae, Anoplophora glabripennis (Motschulsky)), is endemic to China and Korea and an important invasive insect in North America and Europe. We analyzed mitochondrial DNA sequence data of invasive populations of A. glabripennis in North America and Europe, and microsatellite allele frequency data of beetles from North America. We show that populations in New York City and Long Island NY; New Jersey, Chicago, IL, and Toronto, Canada have limited genetic diversity compared to populations in China. In addition, the data suggest that separate introduction events were responsible for many of the populations in North America and for European populations in Austria, France, Germany and Italy. Populations on Long Island, NY are suspected to have been initiated by the transport of cut wood from New York City. A. glabripennis beetles found in Jersey City, NJ appear to be derived from an expansion of the New York City, NY population, whereas beetles found in Linden, NJ are an expansion from the Carteret, NJ population. Limited genetic diversity did not stop this invasive insect from establishing damaging populations in North America. Founders of introduced A. glabripennis populations in North America and Europe are likely derived from populations in China that are themselves invasive, rendering difficult the identification of source populations. Invasiveness in an insect’s natural range could be an important predictor of potential pest status of introduced populations.  相似文献   

3.
Individuals of widely spread species are expected to show local adaption in temperature tolerance as they encounter a range of thermal conditions. We tracked thermal adaptations of the Colorado potato beetle (Leptinotarsa decemlineata) that invaded Europe within the last 100 years. It has occupied various conditions although, like the majority of invasive species, it lost a measurable amount of neutral genetic variation due to bottleneck effect when it invaded Europe. We exposed diapausing beetles originated from three different latitudes (54°N, 59°N, 60°N) to cold shock (-5°C, 1.5 hrs) in order to test if beetles from the northern populations express differential levels of cold-induced and constitutive Hsp70 compared to the beetles from milder temperature regime. The level of cold-induced Hsp70 was lowest in the northernmost beetle populations while the level of constitutive Hsp70 did not differ with the population. Moreover, the southernmost beetles were more plastic in their response to cold shock than the northernmost beetles. These results suggest that physiological adaptation, like the synthesis of Hsp70, can evolve very quickly.  相似文献   

4.
5.
Rhithropanopeus harrisii (Gould 1841) has a native distribution from New Brunswick (Canada) to Veracruz (Mexico) and is considered an invasive species in northwestern North American (Oregon and California), South American (Brazil) and European estuaries and rivers. In Europe, it was observed for the first time in 1874, in The Netherlands. We sequenced and analyzed part of the cytochrome oxidase subunit I gene (mitochondrial DNA) of eight populations, three from the east coast of the United States of America (USA) and five from Europe, in order to assess their genetic diversity and to determine a potential founder population. European populations are characterized by a lower number of haplotypes than the whole native region of the eastern USA, suggesting that genetic bottlenecks occurred during the European colonisation. Along the North American East Coast, there is evidence of clearcut genetic heterogeneity, New Jersey being the most similar population in its genetic structure to the postulated Europe-founding population. Also the different European populations are heterogeneous and there is a tendency of higher genetic diversity in the populations founded earlier. R. harrisii is still in the process of expansion in Europe and may have been introduced once or repeatedly by different invasion mechanisms. The pronounced lack of gene flow among populations is of great ecological significance, since it may facilitate rapid adaptation and specialization to local conditions within single estuarine systems.  相似文献   

6.
Predicting the spread of invasive species is a challenge for modern ecology. Although many invasive species undergo genetic bottlenecks during introduction to new areas resulting in a loss of genetic diversity, successful invaders manage to flourish in novel environments either because of pre-adaptations or because important traits contain adaptive variation enabling rapid adaptation to changing conditions. To predict and understand invasion success, it is crucial to analyse these features. We assessed the potential of a well-known invader, the Colorado potato beetle (Leptinotarsa decemlineata), to expand north of its current range in Europe. A short growing season and harsh overwintering conditions are apparent limiting factors for this species’ range. By rearing full-sib families from four geographically distinct populations (Russia, Estonia, Poland, Italy) at two fluctuating temperature regimes, we investigated (a) possible differences in survival, development time, and body size among populations and (b) the amount of adaptive variation within populations in these traits. All populations were able to complete their development in cooler conditions than in their current range. A significant genotype–environment interaction for development time and body size suggests the presence of adaptive genetic variation, indicating potential to adapt to cooler conditions. The northernmost population had the highest survival rates and fastest development times on both temperature regimes, suggesting pre-adaptation to cooler temperatures. Other populations had minor differences in development times. Interestingly, this species lacks the classical trade-off between body size and development time which could have contributed to its invasion potential. This study demonstrates the importance of considering both ecological and evolutionary aspects when assessing invasion risk.  相似文献   

7.
The success of a biological invasion and the ability to control an invader may partially depend on the genetic diversity of the invasive species and the amount of dispersal and gene flow occurring throughout its introduced range. Here, we used nuclear microsatellites to analyze genetic diversity and structure and whole mitogenomic sequences to analyze the phylogeography of Silver Carp (SC; Hypophthalmichthys molitrix) and Bighead Carp (BHC; H. nobilis) across their North American ranges. Our objectives were to assess: (1) the number of mitochondrial haplotypes that were introduced and how they are distributed in North America, which may provide insight into the history of the invasion, (2) how genetic diversity compares between the native Asian and introduced North American populations, (3) how genetic variation is structured across the North American ranges of SC and BHC as well as between the two species, and (4) whether patterns of genetic diversity and structure are likely to affect success of environmental DNA programs for monitoring these species. In both species, we found relatively few mitochondrial haplotypes, and most were present throughout the range. For both SC and BHC, unique haplotypes were found only in a portion of the species’ range, possibly indicating the location of additional, more recent introductions. In both species, genetic diversity was moderately lower in North American populations (i.e., 75–90% of that found in Asian populations), but genetic diversity still remained high. We found very little population genetic structure, consistent with a rapidly spreading invasive species, and did not find evidence of cryptic interspecific hybrids. The markers developed for eDNA monitoring will be effective for detecting the majority of individuals of these species in North America. The relatively high level of genetic variation and lack of population structure of SC and BHC in North America indicate that genetic diversity likely will not limit their persistence and that high connectivity will likely complicate efforts to control these invasive species.  相似文献   

8.
Introduced species have the potential to outperform natives via the introduction of new parasites to which the native ecosystem is vulnerable. Cryptic diversity within an invasive species can obscure invasion patterns and confound proper management measures. The aim of this study is to use coalescent theory based methodology to trace recent routes of invasion in populations of Ligula intestinalis, a globally distributed fish parasite possessing both native and recently introduced populations in North Africa. Molecular analyses of mitochondrial DNA discerned a pronounced genetic divergence between introduced and native populations. Distribution of mitochondrial haplotypes demonstrated common origin of European populations with North African parasites sampled from introduced fish species in Tunisia. To test the suggested pathway of introduction, microsatellite data were examined in a model-based coalescent analysis using the software MIGRATE, where Europe to Tunisia direction of migration was favoured over alternative hypotheses of gene flow. Specificity of Tunisian populations to different host species was assessed in an epidemiologic survey confirming prevailing host-based division between introduced and native parasites in North Africa. This approach combining advanced analysis of molecular markers with host-specificity data allows revealing the evolution of host-parasite interactions following biological invasion and provides basis for devising future management measurements.  相似文献   

9.
The red clover casebearer, Coleophora deauratella, is an invasive pest of red clover grown for seed in North America. In 2006, an outbreak in Alberta, Canada was discovered that resulted in significant seed losses, while further invasion threatens the world’s largest red clover forage seed production region in Oregon, USA. Prior to the recent outbreak, C. deauratella was thought to be restricted to eastern North America in its invasive range. We sequenced a 615-bp fragment of the mitochondrial cytochrome c oxidase subunit 1 gene, and developed three microsatellite markers to assess the genetic diversity and population structure of C. deauratella in North America and its native range in Europe. We observed signatures of a founder effect in North American populations and a further loss of genetic diversity within Alberta populations. Most genetic differentiation was found between continents, with no evidence of isolation-by-distance within each continent. From the limited number of European populations sampled, a single introduction from Switzerland is the most probable source of North American populations based on similar mitochondrial diversity and lack of population differentiation. Within North America, based on increased genetic diversity compared to the rest of the continent, the first North American record from Ithaca, NY, and the first documented outbreak in southern Ontario in 1989, the initial C. deauratella invasion most likely occurred in southern Ontario, Canada or adjacent states in the USA, followed by transport throughout the continent. This study provides insight into the phylogeographic history of C. deauratella in North America and Europe and may help to identify a regional source of future classical biological control agents.  相似文献   

10.
Ophiostoma ips is a common fungal associate of various conifer-infesting bark beetles in their native ranges and has been introduced into non-native pine plantations in the Southern Hemisphere. In this study, we used 10 microsatellite markers to investigate the population biology of O. ips in native (Cuba, France, Morocco and USA) and non-native (Australia, Chile and South Africa) areas to characterize host specificity, reproductive behaviour, and the potential origin as well as patterns of spread of the fungus and its insect vectors. The markers resolved a total of 41 alleles and 75 haplotypes. Higher genetic diversity was found in the native populations than in the introduced populations. Based on the origin of the insect vectors, the populations of O. ips in Australia would be expected to reflect a North American origin, and those in Chile and South Africa to reflect a European origin. However, most alleles observed in the native European population were also found in the native North American population; only the allele frequencies among the populations varied. This admixture made it impossible to confirm the origin of the introduced Southern Hemisphere (SH) populations of O. ips. There was also no evidence for specificity of the fungus to particular bark beetle vectors or hosts. Although O. ips is thought to be mainly self-fertilizing, evidence for recombination was found in the four native populations surveyed. The higher genetic diversity in the North American than in the European population suggests that North America could be the possible source region of O. ips.  相似文献   

11.
Novel predator–prey interactions can contribute to the invasion success of non‐native predators. For example, native prey can fail to recognize and avoid non‐native predators due to a lack of co‐evolutionary history and cue dissimilarity with native predators. This might result in a competitive advantage for non‐native predators. Numerous lady beetle species were globally redistributed as biological control agents against aphids, resulting in novel predator–prey interactions. Here, we investigated the strength of avoidance behavior of the pea aphid (Acyrthosiphon pisum) toward chemical cues of native lady beetles and non‐native Asian Harmonia axyridis and European Coccinella septempunctata and Hippodamia variegata in North America, hypothesizing that cues of non‐native lady beetles induce weaker avoidance behavior than cues of co‐evolved native lady beetles. Additionally, we compared aphid consumption of lady beetles, examining potential predation advantages of non‐native lady beetles. Finally, we compared cue avoidance behavior between North American and European pea aphid populations and aphid consumption of native and non‐native lady beetles in North America and Europe. In North America, pea aphids avoided chemical cues of all ladybeetle species tested, regardless of their origin. In contrast to pea aphids in North America, European pea aphids did not avoid cues of the non‐native H. axyridis. The non‐native H. axyridis and C. septempunctata were among the largest and most voracious lady beetle species tested, on both continents. Consequently, in North America non‐native lady beetle species might have a competitive advantage on shared food resources due to their relatively large body size, compared to several native American lady beetle species. In Europe, however, non‐native H. axyridis might benefit from missing aphid cue avoidance as well as a large body size. The co‐evolutionary time gap between the European and North American invasion of H. axyridis likely explains the intercontinental differences in cue avoidance behavior and might indicate evolution in aphids toward non‐native predators.  相似文献   

12.
Monitoring of 10 and 12 commercial potato, Solanum tuberosum L., fields in 2004 and 2005, respectively, confirmed for a low-density population of Colorado potato beetle, Leptinotarsa decemlineata (Say), that potato fields nearest to the previous year's potato fields are significantly more colonized by this beetle than more distant fields. This pattern is partially explained by the presence of a reservoir of colonizers estimated at 35% of the season-long colonizing population in 2004 and 2005. These beetles, which emerged before potato plants broke the ground, were ready to establish themselves on nearby potato plants. The colonizing Colorado potato beetles dispersed within the maximum range of 1.5 km over a season, and the colonization risk for the new crop decreased with distance from the previous year's crop. There was no evidence that rotation distance delayed colonization. In terms of pest management, although the findings confirm that only long 1.5-km rotations can prevent Colorado potato beetle colonization, they also demonstrate that short rotations of 100 m or more can make substantial contributions to pest management programs for low-density beetle populations.  相似文献   

13.
Biological invasions are rapid evolutionary events in which populations are usually subject to a founder event during introduction followed by rapid adaptation to the new environment. Molecular tools and Bayesian approaches have shown their utility in exploring different evolutionary scenarios regarding the invasion routes of introduced species. We examined the situation for the tobacco aphid, Myzus persicae nicotianae, a recently introduced aphid species in Chile. Using seven microsatellite loci and approximate Bayesian computation, we studied populations of the tobacco aphid sampled from several American and European countries, identifying the most likely source populations and tracking the route of introduction to Chile. Our population genetic data are consistent with available historical information, pointing to an introduction route of the tobacco aphid from Europe and/or from other putative populations (e.g. Asia) with subsequent introduction through North America to South America. Evidence of multiple introductions to North America from different genetic pools, with successive loss of genetic diversity from Europe towards North America and a strong bottleneck during the southward introduction to South America, was also found. Additionally, we examined the special case of a widespread multilocus genotype that was found in all American countries examined. This case provides further evidence for the existence of highly successful genotypes or 'superclones' in asexually reproducing organisms.  相似文献   

14.
The behavior ofMyiopharus doryphorae andM. aberrans, North American tachinid parasitoids of the Colorado potato beetle, was recorded under field and laboratory conditions throughout three growing seasons in western Massachusetts. Eight common behaviors associated with resting, searching, feeding, and larviposition were distinguished, which together accounted for nearly all daytime activity of the females of both tachinids. Several of these behaviors, and in particular larviposition, were closely related to temperature but differed between species. A sequence of five defensive behaviors by the different larval stages of the Colorado potato beetle prevented larviposition in 49% of resisted attempts and perhaps one-fourth of total larviposition attempts byMyiopharus species, yet both parasitoids were highly successful in allocating their progeny during most of the summer. Second- and third-instar beetle larvae were least effective in resisting larviposition. Females of bothMyiopharus species actively guarded recently parasitized hosts from otherMyiopharus females for a period of several minutes after larviposition during the last month of the growing season when second- and third-instar Colorado potato beetle larvae were most scarce. Laboratory studies based on the field observation that femaleM. aberrans doggedly pursued circum-diapausing adult beetles led to the first recorded account ofM. aberrans larvipositing in adult hosts. Flies gained access to a beetle’s vulnerable abdominal dorsum at the instant it lifted its elytra to initiate flight. The late-season switch ofM. aberrans to adult Colorado potato beetles contributed to a seasonal sequence of larviposition-related behaviors concordant with prevailing host densities, which should lend complementarity toM. doryphorae andM. aberrans as biological controls of pest populations.  相似文献   

15.
The phylogeography of the bark beetle Ips typographus was assessed using five microsatellite markers. Twenty-eight populations were sampled throughout Europe on the host tree Picea abies . I. typographus showed very low levels of genetic diversity, and the study revealed a lack of genetic structure across Europe. No significant barrier to gene flow was found, even though P. abies has a fragmented distribution. A weak but significant effect of isolation by distance was found. These results suggest a high dispersal capacity of I. typographus , which leads to low genetic differentiation between populations. Its high dispersal capacity is likely to have prevented I. typographus from developing important local adaptations to its host, which would have influenced its genetic structure. The nuclear data was compared to previously published mitochondrial data that showed strong differentiation between Central–Northern European populations and Russian–Baltic populations, and a founder effect in Scandinavia, probably reflecting the postglacial history of I. typographus . Discrepancies between nuclear and mitochondrial markers could be due to the maternal inheritance of mitochondrial DNA, and to sex-biased dispersal in I. typographus . The overall low genetic diversity observed on both markers on a large geographical scale is discussed. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 239–246.  相似文献   

16.
Mielichhoferia elongata, one of the so-called “copper mosses,” has a broad but highly disjunctive geographic distribution and is rare throughout its range. A genetic analysis of 30 populations based on a survey of 21 allozyme loci reveals the following. 1) Total gene diversity at the specific level is high (0.41). 2) Within-population diversity is low, and over 90% of all genetic variation is among rather than within populations (mean GST = 0.93). 3) There is little differentiation in allele frequencies between North American and European populations. 4) Populations consist of one to six multilocus genotypes; 13 of the populations appear to consist of a single clone. 5) Colorado populations contain a tremendous reservoir of genetic variation (88% of all alleles found in the species in North America and Europe occur in one or more Colorado populations). 6) Populations in the eastern and western United States, and in Europe, contain subsets of the allelic diversity found in Colorado. The genetic structure of M. elongata suggests repeated dispersal and founding of populations.  相似文献   

17.
Originally resident in southeastern Europe, the codling moth (Cydia pomonella L.) (Tortricidae) has achieved a nearly global distribution, being one of the most successful pest insect species known today. As shown in our accompanying study, mitochondrial genetic markers suggest a Pleistocenic splitting of Cydia pomonella into two refugial clades which came into secondary contact after de-glaciation. The actual distribution pattern shows, however, that Central European codling moths have experienced a geographic splitting into many strains and locally adapted populations, which is not reflected by their mitochondrial haplotype distribution. We therefore have applied, in addition to mitochondrial markers, an approach with a higher resolution potential at the population level, based on the analysis of amplification fragment length polymorphisms (AFLPs). As shown in the present study, AFLP markers elucidate the genetic structure of codling moth strains and populations from different Central European apple orchard sites. While individual genetic diversity within codling moth strains and populations was small, a high degree of genetic differentiation was observed between the analyzed strains and populations, even at a small geographic scale. One of the main factors contributing to local differentiation may be limited gene flow among adjacent codling moth populations. In addition, microclimatic, ecological, and geographic constraints also may favour the splitting of Cydia pomonella into many local populations. Lastly, codling moths in Central European fruit orchards may experience considerable selective pressure due to pest control activities. As a consequence of all these selective forces, today in Central Europe we see a patchy distribution of many locally adapted codling moth populations, each of them having its own genetic fingerprint. Because of the complete absence of any correlation between insecticide resistance and geographic or genetic distances among populations, AFLP markers do not have a prognostic value for predicting an outbreak of pesticide resistance in the field. By combining mitochondrial genetic data and AFLP analysis it was possible, however, to track the recent evolutionary history of Cydia pomonella on three different time scales: from population splitting in Pleistocene, to interbreeding of mitochondrial haplotypes in Holocene, to human-aided complete intermixing and splitting into many locally adapted populations in very recent times. The case of Cydia pomonella is reminiscent of examples of sympatric speciation and another example of a human-induced globally successful pest species.  相似文献   

18.
The genetic structure of a Colorado potato beetle population from Kiev oblast was examined by cluster analysis of individual RAPD patterns. The obtained clustering indicates that the population is structured. This may be explained by adaptation to pyrethroid insecticides used for controlling the population size of this pest. Microevolutionary factors affecting the genetic structure of local populations of Colorado potato beetle are discussed.  相似文献   

19.
Sidorenko AP  Berezovskaia OP 《Genetika》2002,38(11):1485-1491
The genetic structure of a Colorado potato beetle population from Kiev oblast was examined by cluster analysis of individual RAPD patterns. The obtained clustering indicates that the population is structured. This may be explained by adaptation to pyrethroid insecticides used for controlling the population size of this pest. Micro-evolutionary factors affecting the genetic structure of local populations of Colorado potato beetle are discussed.  相似文献   

20.
Biological invasions are recognized as a major threat to both natural and managed ecosystems. Phylogeographic and population genetic analyses can provide information about the geographical origins and patterns of introduction and explain the causes and mechanisms by which introduced species have become successful invaders. Reticulitermes flavipes is a North American subterranean termite that has been introduced into several areas, including France where introduced populations have become invasive. To identify likely source populations in the USA and to compare the genetic diversity of both native and introduced populations, an extensive molecular genetic study was undertaken using the COII region of mtDNA and 15 microsatellite loci. Our results showed that native northern US populations appeared well differentiated from those of the southern part of the US range. Phylogenetic analysis of both mitochondrial and nuclear markers showed that French populations probably originated from southeastern US populations, and more specifically from Louisiana. All of the mtDNA haplotypes shared between the United States and France were found in Louisiana. Compared to native populations in Louisiana, French populations show lower genetic diversity at both mtDNA and microsatellite markers. These findings are discussed along with the invasion routes of R. flavipes as well as the possible mechanisms by which French populations have evolved after their introduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号