首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N redistribution patterns and the N composition of vegetative tissues above the peduncle node of wheat (Triticum aestivum L.) plants with altered reproductive sink strength were evaluated to determine the role of vegetative storage proteins in the temporary storage of excess N destined for export. The degree of leaf senescence symptoms (loss of chlorophyll, total N, and ribulose-1,5-bisphosphate carboxylase/oxygenase) were initially reduced, but the complete senescence of vegetative tissues proceeded even for plants completely lacking reproductive sinks. Plants with 50% less sink strength than control plants with intact spikes redistributed vegetative N to the spike almost as effectively as the control plants. Plants without reproductive sinks exported less N from the flag leaf and had flag leaf blades and peduncle tissues with higher soluble protein and α-NH2 amino acid levels than control plants. An abundant accumulation of polypeptides in the soluble protein profiles of vegetative tissues was not evident in plants with reduced sink strength. Storage of amino acids apparently accommodates any excess N accumulated by vegetative tissues during tissue reproductive growth. Any significant role of vegetative storage proteins in the N economy of wheat is unlikely.  相似文献   

2.
Phosphorus stress effects on assimilation of nitrate   总被引:13,自引:3,他引:10       下载免费PDF全文
An experiment was conducted to investigate alterations in uptake and assimilation of NO3 by phosphorus-stressed plants. Young tobacco plants (Nicotiana tabacum [L.], cv NC 2326) growing in solution culture were deprived of an external phosphorus (P) supply for 12 days. On selected days, plants were exposed to 15NO3 during the 12 hour light period to determine changes in NO3 assimilation as the P deficiency progressed. Decreased whole-plant growth was evident after 3 days of P deprivation and became more pronounced with time, but root growth was unaffected until after day 6. Uptake of 15NO3 per gram root dry weight and translocation of absorbed 15NO3 out of the root were noticeably restricted in −P plants by day 3, and effects on both increased in severity with time. Whole-plant reduction of 15NO3 and 15N incorporation into insoluble reduced-N in the shoot decreased after day 3. Although the P limitation was associated with a substantial accumulation of amino acids in the shoot, there was no indication of excessive accumulation of soluble reduced-15N in the shoot during the 12 hour 15NO3 exposure periods. The results indicate that alterations in NO3 transport processes in the root system are the primary initial responses limiting synthesis of shoot protein in P-stressed plants. Elevated amino acid levels evidently are associated with enhanced degradation of protein rather than inhibition of concurrent protein synthesis.  相似文献   

3.
It is unclear if the relative content of NO3 and reduced N in xylem exudate provides an accurate estimate of the percentage reduction of concurrently absorbed NO3 in the root. Experiments were conducted to determine whether NO3 and reduced N in xylem exudate of vegetative, nonnodulated soybean plants (Glycine max [L.] Merr., `Ransom') originated from exogenous recently absorbed 15NO3 or from endogenous 14N pools. Plants either were decapitated and exposed to 15NO3 solutions for 2 hours or were decapitated for the final 20 minutes of a 50-minute exposure to 15NO3 in the dark and in the light. Considerable amounts of 14NO3 and reduced 14N were transported into the xylem, but almost all of the 15N was present as 15NO3. Dissimilar changes in transport of 14NO3, reduced 14N and 15NO3 during the 2 hours of sap collection resulted in large variability over time in the percentage of total N in the exudate which was reduced N. Over a 20-minute period the rate of 15N transport into the xylem of decapitated plants was only 21 to 36% of the 15N delivered to the shoot of intact plants. Based on the proportion of total 15N which was found as reduced 15N in exudate and in intact plants in the dark, it was estimated that 5 to 17% of concurrently absorbed 15NO3 was reduced in the root. This was much less than the 38 to 59% which would have been predicted from the relative content of total NO3 and total reduced N in the xylem exudate.  相似文献   

4.
An experiment was conducted to investigate the relative changes in NO3 assimilatory processes which occurred in response to decreasing carbohydrate availability. Young tobacco plants (Nicotiana tabacum [L.], cv NC 2326) growing in solution culture were exposed to 1.0 millimolar 15NO3 for 6 hour intervals during a normal 12 hour light period and a subsequent period of darkness lasting 42 hours. Uptake of 15NO3 decreased to 71 to 83% of the uptake rate in the light during the initial 18 hours of darkness; uptake then decreased sharply over the next 12 hours of darkness to 11 to 17% of the light rate, coincident with depletion of tissue carbohydrate reserves and a marked decline in root respiration. Changes also occurred in endogenous 15NO3 assimilation processes, which were distinctly different than those in 15NO3 uptake. During the extended dark period, translocation of absorbed 15N out of the root to the shoot varied rhythmically. The adjustments were independent of 15NO3 uptake rate and carbohydrate status, but were reciprocally related to rhythmic adjustments in stomatal resistance and, presumably, water movement through the root system. Whole plant reduction of 15NO3 always was limited more than uptake. The assimilation of 15N into insoluble reduced-N in roots remained a constant proportion of uptake throughout, while assimilation in the shoot declined markedly in the first 18 hours of darkness before stabilizing at a low level. The plants clearly retained a capacity for 15NO3 reduction and synthesis of insoluble reduced-15N even when 15NO3 uptake was severely restricted and minimal carbohydrate reserves remained in the tissue.  相似文献   

5.
Groat RG  Vance CP 《Plant physiology》1981,67(6):1198-1203
Nitrogenase-dependent acetylene reduction activity of glasshouse-grown alfalfa (Medicago sativa L.) decreased rapidly in response both to harvesting (80% shoot removal) and applied NO3 at 40 and 80 kilograms N per hectare. Acetylene reduction activity of harvested plants grown on 0 kilogram N per hectare began to recover by day 15 as shoot regrowth became significant. In contrast, acetylene reduction activity of all plants treated with 80 kilograms NO3-N per hectare and harvested plants treated with 40 kilograms NO3-N per hectare remained low for the duration of the experiment. Acetylene reduction of unharvested alfalfa treated with 40 kilograms N per hectare declined to an intermediate level and appeared to recover slightly by day 15. Changes in N2-fixing capacity were accompanied by similar changes in levels of nodule soluble protein.  相似文献   

6.
An experiment was conducted to determine the extent that NO3 taken up in the dark was assimilated and utilized differently by plants than NO3 taken up in the light. Vegetative, nonnodulated soybean plants (Glycine max L. Merrill, `Ransom') were exposed to 15NO3 throughout light (9 hours) or dark (15 hours) phases of the photoperiod and then returned to solutions containing 14NO3, with plants sampled subsequently at each light/dark transition over 3 days. The rates of 15NO3 absorption were nearly equal in the light and dark (8.42 and 7.93 micromoles per hour, respectively); however, the whole-plant rate of 15NO3 reduction during the dark uptake period (2.58 micromoles per hour) was 46% of that in the light (5.63 micromoles per hour). The lower rate of reduction in the dark was associated with both substantial retention of absorbed 15NO3 in roots and decreased efficiency of reduction of 15NO3 in the shoot. The rate of incorporation of 15N into the insoluble reduced-N fraction of roots in darkness (1.10 micromoles per hour) was somewhat greater than that in the light (0.92 micromoles per hour), despite the lower rate of whole-plant 15NO3 reduction in darkness.

A large portion of the 15NO3 retained in the root in darkness was translocated and incorporated into insoluble reduced-N in the shoot in the following light period, at a rate which was similar to the rate of whole-plant reduction of 15NO3 acquired during the light period. Taking into account reduction of NO3 from all endogenous pools, it was apparent that plant reduction in a given light period (~13.21 micromoles per hour) exceeded considerably the rate of acquisition of exogenous NO3 (8.42 micromoles per hour) during that period. The primary source of substrate for NO3 reduction in the dark was exogenous NO3 being concurrently absorbed. In general, these data support the view that a relatively small portion (<20%) of the whole-plant reduction of NO3 in the light occurred in the root system.

  相似文献   

7.
Ricinus communis L. plants were grown in nutrient solutions in which N was supplied as NO3 or NH4+, the solutions being maintained at pH 5.5. In NO3-fed plants excess nutrient anion over cation uptake was equivalent to net OH efflux, and the total charge from NO3 and SO42− reduction equated to the sum of organic anion accumulation plus net OH efflux. In NH4+-fed plants a large H+ efflux was recorded in close agreement with excess cation over anion uptake. This H+ efflux equated to the sum of net cation (NH4+ minus SO42−) assimilation plus organic anion accumulation. In vivo nitrate reductase assays revealed that the roots may have the capacity to reduce just under half of the total NO3 that is taken up and reduced in NO3-fed plants. Organic anion concentration in these plants was much higher in the shoots than in the roots. In NH4+-fed plants absorbed NH4+ was almost exclusively assimilated in the roots. These plants were considerably lower in organic anions than NO3-fed plants, but had equal concentrations in shoots and roots. Xylem and phloem saps were collected from plants exposed to both N sources and analyzed for all major contributing ionic and nitrogenous compounds. The results obtained were used to assist in interpreting the ion uptake, assimilation, and accumulation data in terms of shoot/root pH regulation and cycling of nutrients.  相似文献   

8.
In soybean (Glycine max L. Merr. cv Kingsoy), NO3 assimilation in leaves resulted in production and transport of malate to roots (B Touraine, N Grignon, C Grignon [1988] Plant Physiol 88: 605-612). This paper examines the significance of this phenomenon for the control of NO3 uptake by roots. The net NO3 uptake rate by roots of soybean plants was stimulated by the addition of K-malate to the external solution. It was decreased when phloem translocation was interrupted by hypocotyl girdling, and partially restored by malate addition to the medium, whereas glucose was ineffective. Introduction of K-malate into the transpiration stream using a split root system resulted in an enrichment of the phloem sap translocated back to the roots. This treatment resulted in an increase in both NO3 uptake and C excretion rates by roots. These results suggest that NO3 uptake by roots is dependent on the availability of shoot-borne, phloem-translocated malate. Shoot-to-root transport of malate stimulated NO3 uptake, and excretion of HCO3 ions was probably released by malate decarboxylation. NO3 uptake rate increased when the supply of NO3 to the shoot was increased, and decreased when the activity of nitrate reductase in the shoot was inhibited by WO42−. We conclude that in situ, NO3 reduction rate in the shoot may control NO3 uptake rate in the roots via the translocation rate of malate in the phloem.  相似文献   

9.
The aim of this work was to determine which of the two reactions (i.e. phosphorylation or dephosphorylation) involved in the establishment of the phosphorylated status of the wheat leaf phosphoenolpyruvate carboxylase and sucrose phosphate synthase protein responds in vivo to NO3 uptake and assimilation. Detached mature leaves of wheat (Triticum aestivum L. cv Fidel) were fed with N-free (low-NO3 leaves) or 40 mm NO3 solution (high-NO3 leaves). The specific inhibition of the enzyme-protein kinase or phosphatase activities was obtained in vivo by addition of mannose or okadaic acid, respectively, in the uptake solution. Mannose at 50 mm, by blocking the kinase reaction, inhibited the processes of NO3-dependent phosphoenolpyruvate carboxylase activation and sucrose phosphate synthase deactivation. Following the addition of mannose, the deactivation of phosphoenolpyruvate carboxylase and the activation of sucrose phosphate synthase, both due to the enzyme-protein dephosphorylation, were at the same rate in low-NO3 and high-NO3 leaves, indicating that NO3 had no effect per se on the enzyme-protein phosphatase activity. Upon treatment with okadaic acid, the higher increase of phosphoenolpyruvate carboxylase and decrease of sucrose phosphate synthase activities observed in high NO3 compared with low NO3 leaves showed evidence that NO3 enhanced the protein kinase activity. These results support the concept that NO3, or a product of its metabolism, favors the activation of phosphoenolpyruvate carboxylase and deactivation of sucrose phosphate synthase in wheat leaves by promoting the light activation of the enzyme-protein kinase(s) without affecting the phosphatase(s).  相似文献   

10.
Baer GR  Collet GF 《Plant physiology》1981,68(6):1237-1243
Six genotypes of winter wheat (Triticum aestivum L.) differing in grain protein concentration were grown on a nutrient solution containing low concentrations of NO3 (2 millimolar). Total NO3 uptake varied between genotypes but was not related to grain protein content. An in vivo nitrate reductase assay was used to determine the affinity of the enzyme for NO3, and large phenotypic variations were observed. In vivo estimations of the concentration and size of the metabolic pool were variable. However, the three genotypes with the higher ratios of metabolic pool size to leaf total NO3 concentration were the high protein varieties. It is proposed that a high affinity of nitrate reductase for nitrate might be a biochemical marker for the capacity of the plant to continue assimilating NO3 for a longer period during the last stage of growth.  相似文献   

11.
Ricinus communis L. was used to test the Dijkshoorn-Ben Zioni hypothesis that NO3 uptake by roots is regulated by NO3 assimilation in the shoot. The fate of the electronegative charge arising from total assimilated NO3 (and SO42−) was followed in its distribution between organic anion accumulation and HCO3 excretion into the nutrient solution. In plants adequately supplied with NO3, HCO3 excretion accounted for about 47% of the anion charge, reflecting an excess nutrient anion over cation uptake. In vivo nitrate reductase assays revealed that the roots represented the site of about 44% of the total NO3 reduction in the plants. To trace vascular transport of ionic and nitrogenous constituents within the plant, the composition of both xylem and phloem saps was thoroughly investigated. Detailed dry tissue and sap analyses revealed that only between 19 and 24% of the HCO3 excretion could be accounted for from oxidative decarboxylation of shoot-borne organic anions produced in the NO3 reduction process. The results obtained in this investigation may be interpreted as providing direct evidence for a minor importance of phloem transport of cation-organate for the regulation of intracellular pH and electroneutrality, thus practically eliminating the necessity for the Dijkshoorn-Ben Zioni recycling process.  相似文献   

12.
The absorption of NO3 was characterized in six regions of a 7-d-old corn root (Zea mays L. cv W64A × W182E) growing in a complete nutrient solution. Based on changing rates of 15N accumulation during 15-min time courses, translocation of the concurrently absorbed N through each region of the intact root was calculated and distinguished from direct absorption from the medium. Of the 15N accumulated in the 5-mm root tip after 15 min, less than 15 and 35% had been absorbed directly from the external solution at 0.1 and 10 mm NO3 concentration of the external solution, respectively. The characterization of the apical portion of the primary root as a sink for concurrently absorbed N was conconfirmed in a pulse-chase experiment that showed an 81% increase of 15N in the 5-mm root tip during a 12-min chase (subsequent to a 6-min labeling period). The lateral roots alone accounted for 60% of root influx and 70% of 15-min whole root 15N accumulation at either 0.1 or 10 mm. NO3 concentration of the external solution. Because relatively steady rates of 15N accumulation in the shoot were reached after 6 min, the rapidly exchanging pools in lateral roots must have been involved in supplying 15N to the shoot. The laterals and the basal primary root also showed large decreases (24 and 17%) in 15N during the chase experiment, confirming their role in rapid translocation.  相似文献   

13.
The role of NO3 and NO2 in the induction of nitrite reductase (NiR) activity in detached leaves of 8-day-old barley (Hordeum vulgare L.) seedlings was investigated. Barley leaves contained 6 to 8 micromoles NO2/gram fresh weight × hour of endogenous NiR activity when grown in N-free solutions. Supply of both NO2 and NO3 induced the enzyme activity above the endogenous levels (5 and 10 times, respectively at 10 millimolar NO2 and NO3 over a 24 hour period). In NO3-supplied leaves, NiR induction occurred at an ambient NO3 concentration of as low as 0.05 millimolar; however, no NiR induction was found in leaves supplied with NO2 until the ambient NO2 concentration was 0.5 millimolar. Nitrate accumulated in NO2-fed leaves. The amount of NO3 accumulating in NO2-fed leaves induced similar levels of NiR as did equivalent amounts of NO3 accumulating in NO3-fed leaves. Induction of NiR in NO2-fed leaves was not seen until NO3 was detectable (30 nanomoles/gram fresh weight) in the leaves. The internal concentrations of NO3, irrespective of N source, were highly correlated with the levels of NiR induced. When the reduction of NO3 to NO2 was inhibited by WO42−, the induction of NiR was inhibited only partially. The results indicate that in barley leaves NiR is induced by NO3 directly, i.e. without being reduced to NO2, and that absorbed NO2 induces the enzyme activity indirectly after being oxidized to NO3 within the leaf.  相似文献   

14.
The regulation of NO3 assimilation by xylem flux of NO3 was studied in illuminated excised leaves of soybean (Glycine max L. Merr. cv Kingsoy). The supply of exogenous NO3 at various concentrations via the transpiration stream indicated that the xylem flux of NO3 was generally rate-limiting for NO3 reduction. However, NO3 assimilation rate was maintained within narrow limits as compared with the variations of the xylem flux of NO3. This was due to considerable remobilization and assimilation of previously stored endogenous NO3 at low exogenous NO3 delivery, and limitation of NO3 reduction at high xylem flux of NO3, leading to a significant accumulation of exogenous NO3. The supply of 15NO3 to the leaves via the xylem confirmed the labile nature of the NO3 storage pool, since its half-time for exchange was close to 10 hours under steady state conditions. When the xylem flux of 15NO3 increased, the proportion of the available NO3 which was reduced decreased similarly from nearly 100% to less than 50% for both endogenous 14NO3 and exogenous 15NO3. This supports the hypothesis that the assimilatory system does not distinguish between endogenous and exogenous NO3 and that the limitation of NO3 reduction affected equally the utilization of NO3 from both sources. It is proposed that, in the soybean leaf, the NO3 storage pool is particularly involved in the short-term control of NO3 reduction. The dynamics of this pool results in a buffering of NO3 reduction against the variations of the exogenous NO3 delivery.  相似文献   

15.
Aspects of nitrogen metabolism in the rice seedling   总被引:1,自引:0,他引:1       下载免费PDF全文
The effects of nitrogen source NO3 or NH4+ on nitrogen metabolism during the first 2 weeks of germination of the rice seedling (Oryza sativa L., var. IR22) grown in nutrient solution containing 40 μg/ml N were studied. Total, soluble protein, and free amino N levels were higher in the NH4+-grown seedling, particularly during the 1st week of germination. Asparagine accounted for most of the difference in free amino acid level, in both the root and the shoot. Nitrate and nitrite reductase activities were present mainly in the shoot and were higher in the NO3-grown seedling, whereas the activity of glutamate dehydrogenase and glutamine synthetase in the root tended to be lower than that of the NH4+-grown seedling during the 1st week of germination. Glycolate oxidase and catalase activities were present mainly in the shoot. Maximum activity of the above five enzymes occurred 7 to 10 days after germination. Differences in the zymograms of nitrate reductase, glutamate dehydrogenase, and catalase were mainly between shoot and root and not from N source. Nitrite reductase bands were observed only in plants grown in plants grown in NO3.  相似文献   

16.
Wheat (Triticum aestivum L.) was grown under CO2 partial pressures of 36 and 70 Pa with two N-application regimes. Responses of photosynthesis to varying CO2 partial pressure were fitted to estimate the maximal carboxylation rate and the nonphotorespiratory respiration rate in flag and preceding leaves. The maximal carboxylation rate was proportional to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) content, and the light-saturated photosynthetic rate at 70 Pa CO2 was proportional to the thylakoid ATP-synthase content. Potential photosynthetic rates at 70 Pa CO2 were calculated and compared with the observed values to estimate excess investment in Rubisco. The excess was greater in leaves grown with high N application than in those grown with low N application and declined as the leaves senesced. The fraction of Rubisco that was estimated to be in excess was strongly dependent on leaf N content, increasing from approximately 5% in leaves with 1 g N m−2 to approximately 40% in leaves with 2 g N m−2. Growth at elevated CO2 usually decreased the excess somewhat but only as a consequence of a general reduction in leaf N, since relationships between the amount of components and N content were unaffected by CO2. We conclude that there is scope for improving the N-use efficiency of C3 crop species under elevated CO2 conditions.  相似文献   

17.
Up to 80% of the total nitrate reductase activity (NRA) determined in vivo in different parts of vegetative tobacco plant (Nicotiana tabacum) was located in the leaves. The NRA reached a peak when a leaf had expanded to 27% of its final weight and 33% of its final area. Thereafter, with advancing expansion and age of the leaf, the activity declined. This pattern of development of NRA during the ontogenesis of leaves was not influenced by raising the supply of NO3 from 3 to 6 milliequivalent per cubic decimeter in the substrate solution. The concentration of NO3 in leaves, stem and root was inversely related to NRA at both NO3 levels. Raising the supply of K+ from 1 to 6 milliequivalent per cubic decimeter at either concentration of NO3 slowed down the development of NRA in the initial stages of expansion, but promoted it subsequently. The peak of the activity which developed in a leaf of 62% of its final area was higher at the higher supply of K+. The higher activity was maintained thereafter in the expanding and in matured and older leaves. It was concluded that NRA and the pattern of its development in expanding leaves is related to the availability of metabolites and their incorporation into enzyme proteins. Both these processes are influenced by: (a) the vertical profile of concentration of K+ in the shoot and (b) the concentration of K+ in a leaf, which depend upon its supply.  相似文献   

18.
We compared growth kinetics of Prorocentrum donghaiense cultures on different nitrogen (N) compounds including nitrate (NO3 ), ammonium (NH4 +), urea, glutamic acid (glu), dialanine (diala) and cyanate. P. donghaiense exhibited standard Monod-type growth kinetics over a range of N concentraions (0.5–500 μmol N L−1 for NO3 and NH4 +, 0.5–50 μmol N L−1 for urea, 0.5–100 μmol N L−1 for glu and cyanate, and 0.5–200 μmol N L−1 for diala) for all of the N compounds tested. Cultures grown on glu and urea had the highest maximum growth rates (μm, 1.51±0.06 d−1 and 1.50±0.05 d−1, respectively). However, cultures grown on cyanate, NO3 , and NH4 + had lower half saturation constants (Kμ, 0.28–0.51 μmol N L−1). N uptake kinetics were measured in NO3 -deplete and -replete batch cultures of P. donghaiense. In NO3 -deplete batch cultures, P. donghaiense exhibited Michaelis-Menten type uptake kinetics for NO3 , NH4 +, urea and algal amino acids; uptake was saturated at or below 50 μmol N L−1. In NO3 -replete batch cultures, NH4 +, urea, and algal amino acid uptake kinetics were similar to those measured in NO3 -deplete batch cultures. Together, our results demonstrate that P. donghaiense can grow well on a variety of N sources, and exhibits similar uptake kinetics under both nutrient replete and deplete conditions. This may be an important factor facilitating their growth during bloom initiation and development in N-enriched estuaries where many algae compete for bioavailable N and the nutrient environment changes as a result of algal growth.  相似文献   

19.
The effect of water stress on patterns of nitrate reductase activity in the leaves and nodules and on nitrogen fixation were investigated in Medicago sativa L. plants watered 1 week before drought with or without NO3. Nitrogen fixation was decreased by water stress and also inhibited strongly by the presence of NO3. During drought, leaf nitrate reductase activity (NRA) decreased significantly particularly in plants watered with NO3, while with rewatering, leaf NRA recovery was quite important especially in the NO3-watered plants. As water stress progressed, the nodular NRA increased both in plants watered with NO3 and in those without NO3 contrary to the behavior of the leaves. Beyond −15.105 pascal, nodular NRA began to decrease in plants watered with NO3. This phenomenon was not observed in nodules of plants given water only.  相似文献   

20.
A more sensitive analytical method for NO3 was developed based on the conversion of NO3 to N2O by a denitrifier that could not reduce N2O further. The improved detectability resulted from the high sensitivity of the 63Ni electron capture gas chromatographic detector for N2O and the purification of the nitrogen afforded by the transformation of the N to a gaseous product with a low atmospheric background. The selected denitrifier quantitatively converted NO3 to N2O within 10 min. The optimum measurement range was from 0.5 to 50 ppb (50 μg/liter) of NO3 N, and the detection limit was 0.2 ppb of N. The values measured by the denitrifier method compared well with those measured by the high-pressure liquid chromatographic UV method above 2 ppb of N, which is the detection limit of the latter method. It should be possible to analyze all types of samples for nitrate, except those with inhibiting substances, by this method. To illustrate the use of the denitrifier method, NO3 concentrations of <2 ppb of NO3 N were measured in distilled and deionized purified water samples and in anaerobic lake water samples, but were not detected at the surface of the sediment. The denitrifier method was also used to measure the atom% of 15N in NO3. This method avoids the incomplete reduction and contamination of the NO3 -N by the NH4+ and N2 pools which can occur by the conventional method of 15NO3 analysis. N2O-producing denitrifier strains were also used to measure the apparent Km values for NO3 use by these organisms. Analysis of N2O production by use of a progress curve yielded Km values of 1.7 and 1.8 μM NO3 for the two denitrifier strains studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号