首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
H Ezoe  R B Fatt    S Mak 《Journal of virology》1981,40(1):20-27
A group of mutants (cyt mutants) with much reduced oncogenicity was isolated from the highly oncogenic human adenovirus type 12 (Takemori et al., Virology 36: 575-586, 1968). These mutants induce extensive cellular destruction during lytic infection of human cells and produce low yields of virions. We report here that human KB cells infected with cyt mutants synthesized a reduced amount of viral DNA as compared with cells infected with the parental virus. Furthermore, the newly synthesized viral and cellular DNAs were extensively degraded in mutant-infected cells. Viral DNA was first synthesized as complete genome size, and most of it was degraded to subgenomic size within 6 h after synthesis. This virus-induced DNA degradation function, as well as the low yield of virions, was prevented by co-infection with the parental virus.  相似文献   

3.
The multiplication of polyoma virus in a mouse-hamster (3T3 x BHK) somatic hybrid line (10A), which, although permissive for viral multiplication, produces very low amounts of virus, has been studied. In this cell line, the efficiency of productive infection is high, but the yield of infectious virus is on the order of 0.5% of that of 3T3 cells. The amount of viral deoxyribonucleic acid (DNA) synthesized by these cells upon infection is about 5% of that of 3T3 cells. An examination of the virus produced in hybrid 10A revealed that it was only one-tenth as infectious as the virus grown in 3T3. Although the viral DNA synthesized in the infected 10A cells is normal, the DNA extracted from purified virus grown in 10A consists of approximately 10% of normal, supercoiled polyoma DNA molecules and of approximately 90% linear DNA molecules with a sedimentation coefficient of 14 to 16S. These DNA molecules appear to be of cellular origin but contain a limited amount of viral DNA sequences. The host DNA-containing particles are not infectious but appear to possess some biological activity; they give rise to a weak complementation effect, and part of them are able to induce T-antigen synthesis. In addition, the host DNA present in these particles is predominantly that which has been synthesized after infection. The correlation between the block in viral DNA synthesis in this cell line and the abnormal encapsidation of host DNA is discussed.  相似文献   

4.
Prototype temperature-sensitive (ts) mutants of a coxsackievirus B3 parent virus capable of replication to similar levels at 34 or 39.5 degrees C were examined for the nature of the temperature-sensitive event restricting replication in HeLa cells at 39.5 degrees C. The ts mutant prototypes represented three different non-overlapping complementation groups. The ts1 mutant (complementation group III) synthesized less than 1% of the infectious genomic RNA synthesized by the coxsackievirus B3 parent virus at 39.5 degrees C and was designated an RNA- mutant. Agarose gel analysis of glyoxal-treated RNA from cells inoculated with ts1 virus revealed that cell RNA synthesis continued in the presence of synthesis of the small amount of viral RNA. This mutant was comparatively ineffective in inducing cell cytopathology and in directing synthesis of viral polypeptides, likely due to the paucity of nascent genomes for translation. The ts5 mutant (complementation group II) directed synthesis of appreciable quantities of both viral genomes (RNA+) and capsid polypeptides; however, assembly of these products into virions occurred at a low frequency, and virions assembled at 39.5 degrees C were highly unstable at that temperature. Shift-down experiments with ts5-inoculated cells showed that capsid precursor materials synthesized at 39.5 degrees C can, after shift to 34 degrees C, be incorporated into ts5 virions. We suggest that the temperature-sensitive defect in this prototype is in the synthesis of one of the capsid polypeptides that cannot renature into the correct configuration required for stability in the capsid at 39.5 degrees C. The ts11 mutant (complementation group I) also synthesized appreciable amounts of viral genomes (RNA+) and viral polypeptides at 39.5 degrees C. Assembly of ts11 virions at 39.5 degrees C occurred at a low frequency, and the stability of these virions at 39.5 degrees C was similar to that of the parent coxsackievirus B3 virions. The temperature-sensitive defect in the ts11 prototype is apparently in assembly. The differences in biochemical properties of the three prototype ts mutants at temperatures above 34 degrees C may ultimately offer insight into the differences in pathogenicity observed in neonatal mice for the three prototype ts mutants.  相似文献   

5.
M Yu  J Summers 《Journal of virology》1991,65(5):2511-2517
Mutations introduced into the capsid gene of duck hepatitis B virus (DHBV) were tested for their effects on viral DNA synthesis and assembly of enveloped viruses. Four classes of mutant phenotypes were observed among a series of deletions of covering the 3' end of the capsid open reading frame. Class I mutant capsids were able to support normal single-stranded and relaxed circular viral DNA synthesis; class II mutant capsids supported normal single-stranded DNA synthesis but not relaxed circular DNA synthesis; class III mutant capsids resembled class II capsids, but viral DNA synthesis was inhibited 5- to 10-fold; and class IV capsids were severely restricted in their ability to support viral DNA synthesis. Class I capsids were assembled into enveloped virions, but class II, III, and IV capsids were not. Viral DNA synthesized inside class II capsids was normal with respect to minus-strand DNA initiation, plus-strand DNA initiation, and circularization of the DNA, but plus strands failed to be elongated to mature 3-kb DNA. The results suggest that a function of the capsid protein specifically required for viral DNA maturation is also required for assembly of nucleocapsids into envelopes. Thus, class II mutants appear to be defective in the appearance of the "packaging signal" for virus assembly (J. Summers and W. Mason, Cell 29:403-415, 1982).  相似文献   

6.
Infection of BHK cells by Sindbis virus leads to rapid inhibition of host cell protein synthesis and cytopathic effects (CPE). We have been studying these events to determine whether the expression of a specific viral gene is required and, in the present study, have focused our attention on the role of the structural proteins--the capsid protein and the two membrane glycoproteins. We tested a variety of Sindbis viruses and Sindbis virus replicons (virus particles containing an RNA that is self-replicating but with some or all of the viral structural protein genes deleted) for their abilities to inhibit host cell protein synthesis and cause CPE in infected BHK cells. Our results show that shutoff of host cell protein synthesis occurred in infected BHK cells when no viral structural proteins were synthesized and also under conditions in which the level of the viral subgenomic RNA was too low to be detected. These results support the conclusion that the early steps in viral gene expression are the ones required for the inhibition of host cell protein synthesis in BHK cells. In contrast, the Sindbis viruses and Sindbis virus replicons were clearly distinguished by the time at which CPE became evident. Viruses that synthesized high levels of the two membrane glycoproteins on the surface of the infected cells caused a rapid (12 to 16 h postinfection) appearance of CPE, and those that did not synthesize the glycoprotein spikes showed delayed (30 to 40 h) CPE.  相似文献   

7.
《The Journal of cell biology》1983,96(5):1248-1257
The progressive cytoskeletal alterations of frog virus 3-infected baby hamster kidney (BHK) and fathead minnow (FHM) cells were studied by immunofluorescence and electron microscopy. The virus assembly sites, which contain viral genomes and viral proteins, were detected in the cytoplasm at 4 h (FHM) or 6 h (BHK) and mature virions appeared 2 h later. When infected cells were treated with Triton X-100, the assembly sites were found in association with the cytoskeleton. In infected cells, the number of microtubules progressively decreased but a few microtubules traversing in the vicinity of the assembly sites remained intact. Early in infection, the intermediate filaments retracted from the cell periphery, delimited the forming assembly sites, and remained there throughout infection. We suggest that intermediate filaments are involved in the formation of assembly sites. In addition, the filaments either by themselves or in conjunction with microtubules may anchor the assembly sites near the nucleus. The microfilament bundles (stress fibers) disappeared with the formation of assembly sites, and late in infection many projections containing microfilaments and virus particles appeared at the cell surface. The observation suggests a role for microfilaments in virus release. Taken together, these results provide the first example of a virus-infected cell in which all three cytoskeletal filaments show profound organizational changes and suggest an active participation of the host cytoskeleton in viral functions.  相似文献   

8.
Human lymphoblastoid Raji cells, which do not produce virus, supported replication of Epstein-Barr virus (EBV) upon superinfection. Early antigen, viral capsid antigen, and virions were produced in Raji cells superinfected with EBV. Viral DNA replicated under complete inhibition of host cell DNA synthesis to the extent that a few micrograms of EBV DNA were recovered from 107 superinfected Raji cells, corresponding to 5,000 viral genomes/cell. Homology of the synthesized viral DNA to parental EBV DNA was more than 90%. Virions produced by the Raji cells contained a 55S DNA but failed to induce early antigen, viral capsid antigen, and viral DNA synthesis after a second superinfection of Raji cells.  相似文献   

9.
10.
Earlier studies have shown that the U(L)31 protein is homogeneously distributed throughout the nucleus and cofractionates with nuclear matrix. We report the construction from an appropriate cosmid library a deletion mutant which replicates in rabbit skin cells carrying the U(L)31 gene under a late (gamma1) viral promoter. The mutant virus exhibits cytopathic effects and yields 0.01 to 0.1% of the yield of wild-type parent virus in noncomplementing cells but amounts of virus 10- to 1,000-fold higher than those recovered from the same cells 3 h after infection. Electron microscopic studies indicate the presence of small numbers of full capsids but a lack of enveloped virions. Viral DNA extracted from the cytoplasm of infected cells exhibits free termini indicating cleavage/packaging of viral DNA from concatemers for packaging into virions, but analyses of viral DNAs by pulsed-field electrophoresis indicate that at 16 h after infection, both the yields of viral DNA and cleavage of viral DNA for packaging are decreased. The repaired virus cannot be differentiated from the wild-type parent. These results suggest the possibility that U(L)31 protein forms a network to enable the anchorage of viral products for the synthesis and/or packaging of viral DNA into virions.  相似文献   

11.
The experiments described in this paper were part of an attempt to determine the mechanisms involved in the isomerization of the pseudorabies virus genome. To this end, [(14)C]thymidine-labeled parental virus DNA that was transferred to progeny virions produced by cells incubated in medium containing bromodeoxy-uridine was analyzed in neutral and alkaline CsCl density gradients. The buoyant density of the (14)C-labeled DNA indicated that the parental DNA strands had retained their integrity and had not undergone breakage and reunion with progeny DNA strands; neither massive intermolecular nor intramolecular recombination had occurred after replication of the DNA. Whereas breakage and reunion between parental and progeny virus DNA strands were not detectable, these processes were observed between differentially density-labeled parental DNAs. Furthermore, the frequency of recombination between progeny DNAs accumulating in the cells was low. These results indicate that in pseudorabies virus-infected rabbit kidney cells recombination occurs mainly between parental genomes and precedes DNA replication. An analysis of the kinetics of appearance of recombinants between pairwise combinations of temperature-sensitive mutants also indicated that recombination is an early event. The ratio between the number of recombinant virions and the number of temperature-sensitive mutant virions produced by the cells remained the same throughout infection. Since the relative amounts of viral DNAs synthesized early and late during the infective process that were integrated into virions were approximately the same, it appears that late viral DNA did not experience an increased number of recombinational events compared with early viral DNA. These results, which reinforce the conclusion reached from the results of the analysis of the behavior of the parental DNA molecules in density shift experiments, indicate that recombination is an early event.  相似文献   

12.
Deletion of the entire leader polypeptide of the GDVII strain of Theiler's murine encephalomyelitis virus (TMEV) results in the production of an attenuated virus that grows in baby hamster kidney (BHK) cells but cannot grow at all in mouse L-929 cells. This study examined the reasons for the failure of dl-L, the GDVII variant that lacks the leader polypeptide, to grow in mouse cells. At low multiplicities of infection, it was difficult to detect any viral proteins in mouse cells. However, levels of positive- and negative-strand RNA molecules were only moderately reduced in these infections. Viral RNA showed no major defect in translatability, as the mutant viral RNA was nearly as efficient as that of the wild-type (WT) virus in directing protein synthesis in vitro in assays using extracts prepared from mouse L cells. Viral protein synthesis was detected in dl-L-infected mouse cells as multiplicities of infection were increased and approached the levels observed in WT infections. Despite this, there was a total lack of virus production in high-multiplicity infections, and this was found to correlate with the failure of viral proteins and early virion precursors to assemble into virions in mouse cells. Thus, the inability of dl-L to grow in mouse cells reflects complex effects on various stages of the virus infection but is primarily a defect in virus assembly.  相似文献   

13.
X Yu  Q C Yu  T H Lee    M Essex 《Journal of virology》1992,66(9):5667-5670
Deletion mutations at the C terminus of the matrix (MA) protein of human immunodeficiency virus type 1 (HIV-1) were generated by site-directed mutagenesis. The resultant mutant viruses had a severe defect in virus infectivity. This defect did not involve late steps of the virus life cycle, as the synthesis and processing of the Gag polyprotein and the assembly and release of mutant virions were not greatly affected. The incorporation of viral proteins and the viral RNA genome was similar for mutant and wild-type virions. In contrast, the early steps of the virus life cycle were severely affected, as the synthesis of viral DNA postinfection was dramatically reduced in mutant-virus-infected cells. One stretch of amino acids that was deleted in one of the mutants has significant homology with a region in VP1 of the picornavirus family. This region of VP1 is presumably involved in poliovirus penetration into cells. These results suggest that in addition to its functional role in virus assembly, the MA protein of HIV-1, and possibly of other retroviruses, plays an important role in virus entry.  相似文献   

14.
HEp-2 cells or Vero cells infected with herpes simplex virus type 1 were exposed to the ionophore monensin, which is thought to block the transit of membrane vesicles from the Golgi apparatus to the cell surface. We found that yields of extracellular virus were reduced to less than 0.5% of control values by 0.2 microM monensin under conditions that permitted accumulation of cell-associated infectious virus at about 20% of control values. Viral protein synthesis was not inhibited by monensin, whereas late stages in the post-translational processing of the viral glycoproteins were blocked. The transport of viral glycoproteins to the cell surface was also blocked by monensin. Although the assembly of nucleocapsids appeared to be somewhat inhibited in monensin-treated cells, electron microscopy revealed that nucleocapsids were enveloped to yield virions, and electrophoretic analyses showed that the isolated virions contained immature forms of the envelope glycoproteins. Most of the virions which were assembled in monensin-treated cells accumulated in large intracytoplasmic vacuoles, whereas most of the virions produced by and associated with untreated cells were found attached to the cell surface. Our results implicate the Golgi apparatus in the egress of herpes simplex virus from infected cells and also suggest that complete processing of the viral envelope glycoproteins is not essential for nucleocapsid envelopment or for virion infectivity.  相似文献   

15.
The mechanism of the arginine requirement for adenovirus was studied in cultures of KB cells infected with adenovirus type 2. Macromolecular synthesis was found to be severely impaired in uninfected cells under complete arginine deprivation, whereas an arginine concentration of 50 mum yielded a moderate and reversible inhibition of growth and nucleic acid synthesis. At this concentration, viral structural proteins were accumulated in excess although the virus yield was reduced more than 1,000-fold. The arginine-sensitive step appeared to occur early during the first 15 hr postinfection in the virus growth cycle. Virus-infected cells deprived of arginine to 50 mum showed, when reversed, a 4- to 5-hr lag period before the increase in virus growth was observed. Analysis of the radioactive pattern of labeled virions synthesized after reversion showed that all polypeptides were synthesized after addition of arginine to the medium, and none of the virion-polypeptides which are revealed by gel electrophoresis appeared to be preferentially synthesized after arginine reversion. The excess pool of structural proteins formed during depletion appeared to a large extent to be unavailable for virus assembly.  相似文献   

16.
Linial and co-workers described a quail cell line, SE21Q1b, transformed by a single provirus of Rous sarcoma virus that is defective in virus assembly, in as much as the virus particles produced, SE21, contain cellular rather than viral RNA. In other respects these particles are normal, and the amount of endogenous DNA synthesis by disrupted virus particles is comparable to that of normal virus. We now report that endogenous DNA synthesis by SE21 virions uses RNA primers of the same size as tRNA species and that about 17% of these are bound to polyadenylate-containing RNA templates. Previous studies have shown that with wild-type Rous sarcoma virus, DNA synthesis is exclusively initiated on a tRNATrp species base paired to a specific location on the viral RNA. In contrast, we interpreted our data with SE21 as evidence that many different tRNA-primed initiations occurred, that predominantly species other than tRNATrp were used, and that the base pairing between template and primer RNAs included significant nucleotide mismatching. A subpopulation of the DNA synthesized by SE21 virions from tRNA-like primers was both initiated and terminated at discrete locations. These species are therefore analogous to the strong-stop DNA synthesized by wild-type virus.  相似文献   

17.
Kilham rat virus (KRV) is adsorbed into the rat nephroma cell within 1 hr after infection. There follows a latent period of about 12 hr during which less than 1% of the input infectious virus can be accounted for. New infectious virions can be detected at about 12 hr and the maximal yield of virus is attained by 23 hr after infection. The increase in final virus yield is about 200-fold over that found in the latent period. During this 23-hr period of virus growth, the rate of protein synthesis remains 75 to 100% of that in the uninfected cell. Ribonucleic acid (RNA) synthesis during this period is maintained at 100 to 150% of that found in the control cells. The addition of the inhibitor of deoxyribonucleic acid (DNA) synthesis, 5-fluoro-deoxyuridine (FUDR), up to 8 hr after infection completely suppresses virus production. After 8 hr, viral DNA production has started and FUDR inhibition progressively decreases until by 23 hr the addition of the inhibitor no longer causes a reduced virus yield. Viral DNA synthesis once initiated is required for the remainder of the 23-hr virus cycle. Viral DNA synthesis probably begins about 4 hr before the production of infectious virions. In the KRV-infected cells, DNA synthesis decreased sharply for 6 to 7 hr after infection in comparison to the uninfected cell. At 7 to 8 hr after infection, DNA synthesis in the infected cell increased and was maintained at a higher level than in the control cells for the rest of the virus growth period.  相似文献   

18.
19.
20.
Nodamura virus (NOV) was purified from the hind limbs of infected suckling mice and used as a source of the two genomic RNAs of the virus, RNA 1 and RNA 2. Upon transfection of the viral RNAs into baby hamster kidney (BHK21) cells in culture, vigorous RNA replication ensued and single-stranded RNAs 1 and 2 accumulated to reach an abundance which approximated that of the cellular rRNAs. Transient synthesis of a small subgenomic RNA (RNA 3) was also observed, and double-stranded versions of RNAs 1, 2, and 3 were detected. Three major viral proteins were synthesized in transfected cells. Protein A (about 115 kDa) and protein B (about 15 kDa) were made transiently at early times after transfection, whereas a large amount of protein alpha (43 kDa), the precursor to the two viral coat proteins, was made continuously starting later in the infectious cycle. When very low concentrations of viral RNAs were used for transfection, preferential replication of RNA 1 occurred. This result was attributed to segregation of the transfected viral RNAs to separate cells in culture and the subsequent replication and amplification of RNA 1 in cells that had received no RNA 2. Accordingly, multiple passages of the viral RNAs by transfection at the limit dilution resulted in the purification of RNA 1 free of RNA 2 and demonstrated that RNA 1 was capable of prolonged autonomous replication which was also accompanied by the continuous synthesis of RNA 3. In cells transfected with RNA 1 alone, protein alpha was not synthesized and proteins A and B were made continuously. Electron microscopic analysis of BHK21 cells 24 h after transfection with NOV RNAs 1 and 2 showed that large numbers of virus particles accumulated in the cytoplasm and formed paracrystalline arrays in some regions. Whole NOV purified from transfected BHK21 cells was infectious for suckling mice and had an electrophoretic mobility that was similar but not identical to that of NOV purified from infected mouse muscle. The high yield of NOV, its simple genetic composition, and its unusual genome strategy make this virus an attractive system for the study of viral RNA replication in animal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号