首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We investigated effects of pro-atherogenic oxidized lipoproteins on phosphatidylcholine (PtdCho) biosynthesis in murine lung epithelial cells (MLE-12). Cells surface-bound, internalized, and degraded oxidized low density lipoproteins (Ox-LDL). Ox-LDL significantly reduced [3H]choline incorporation into PtdCho in cells by selectively inhibiting the activity of the rate-regulatory enzyme, CTP:phosphocholine cytdylyltransferase (CCT). Ox-LDL coordinately increased the cellular turnover of CCTalpha protein as determined by [35S]methionine pulse-chase studies by inducing the calcium-activated proteinase, calpain. Forced expression of calpain or exposure of cells to the calcium ionophore, A23187, increased CCTalpha degradation, whereas overexpression of the endogenous calpain inhibitor, calpastatin, attenuated Ox-LDL-induced CCTalpha degradation. The effects of Ox-LDL on CCTalpha breakdown were attenuated in calpain-deficient cells. In vitro calpain digestion of CCTalpha isolated from cells transfected with truncated or internal deletion mutants indicated multiple cleavage sites within the CCTalpha primary structure, leading to the generation of a 26-kDa (p26) fragment. Calpain hydrolysis of purified CCTalpha generated p26, which upon NH2-terminal sequencing localized a calpain attack site within the CCTalpha amino terminus. Expression of a CCTalpha mutant where the amino-terminal cleavage site and a putative carboxyl-terminal hydrolysis region were modified resulted in an enzyme that was significantly less sensitive to proteolytic cleavage and restored the ability of cells to synthesize surfactant PtdCho after Ox-LDL treatment. Thus, these results provide a critical link between proatherogenic lipoproteins and their metabolic target, CCTalpha, resulting in impaired surfactant metabolism.  相似文献   

2.
Although the Ca(2+)-dependent proteinase (calpain) system has been found in every vertebrate cell that has been examined for its presence and has been detected in Drosophila and parasites, the physiological function(s) of this system remains unclear. Calpain activity has been associated with cleavages that alter regulation of various enzyme activities, with remodeling or disassembly of the cell cytoskeleton, and with cleavages of hormone receptors. The mechanism regulating activity of the calpain system in vivo also is unknown. It has been proposed that binding of the calpains to phospholipid in a cell membrane lowers the Ca2+ concentration, [Ca2+], required for the calpains to autolyze, and that autolysis converts an inactive proenzyme into an active protease. Recent studies, however, show that the calpains bind to specific proteins and not to phospholipids, and that binding to cell membranes does not affect the [Ca2+] required for autolysis. It seems likely that calpain activity is regulated by binding of Ca2+ to specific sites on the calpain molecule, with binding to each site eliciting a response (proteolytic activity, calpastatin binding, etc.) specific for that site. Regulation must also involve an, as yet, undiscovered mechanism that increases the affinity of the Ca(2+)-binding sites for Ca2+.  相似文献   

3.
Calcium-activated neutral proteases (calpain, EC 3.4.22.17) bind to agarose matrices (Bio-Gel A-150m, Sepharose 4B, and Ultrogel AcA 34) with high affinity in the presence of calcium. 6-O-beta-Galactopyranosyl-D-galactose, a disaccharide which closely resembles the repeating unit of the agarose matrices, completely blocks the binding of calpains and can release agarose-bound enzymes in the presence of calcium. At least 1 microM level of free calcium is required for binding. Other calcium binding proteins, including calmodulin, calpastatin, casein, and neurofilament proteins, fail to bind under the same conditions. Both calpain I and calpain II can be readily purified from crude enzyme preparations by agarose chromatography in the presence of calcium and leupeptin. Agarose-bound enzymes are eluted with calcium-free solutions or can be released in the presence of calcium by 1% Triton X-100, but not by 1 M urea or 20% ethylene glycol. Enzymes eluted from agarose are activated, as evidenced by the appearance of faster migrating forms (76 and 78 kDa) of the 80-kDa catalytic subunit of calpain I upon electrophoresis and by the increased sensitivity of calpain II to activation by micromolar levels of calcium. The electrophoretic migration of the 30-kDa regulatory subunit is, however, unaltered in enzyme fractions eluted from an agarose column. When the enzyme subunits are dissociated in 1 M NaSCN, only the 30-kDa subunit binds to the agarose matrix. Furthermore, neither calpain I nor calpain II binds to agarose when their 30-kDa subunit is autocatalyzed to an 18-kDa fragment, indicating that the NH2-terminal of the 30-kDa subunit is important for the binding of calpains to an agarose matrix.  相似文献   

4.
We investigated the effects of tumor necrosis factor alpha (TNFalpha), a key cytokine involved in inflammatory lung disease, on phosphatidylcholine (PtdCho) biosynthesis in a murine alveolar type II epithelial cell line (MLE-12). TNFalpha significantly inhibited [(3)H]choline incorporation into PtdCho after 24 h of exposure. TNFalpha reduced the activity of CTP:phosphocholine cytidylyltransferase (CCT), the rate-regulatory enzyme within the CDP-choline pathway, by 40% compared with control, but it did not alter activities of choline kinase or cholinephosphotransferase. Immunoblotting revealed that TNFalpha inhibition of CCT activity was associated with a uniform decrease in the mass of CCTalpha in total cell lysates, cytosolic, microsomal, and nuclear subfractions of MLE cells. Northern blotting revealed no effects of the cytokine on steady-state levels of CCTalpha mRNA, and CCTbeta mRNA was not detected. Incorporation of [(35)S]methionine into immunoprecipitable CCTalpha protein in pulse and pulse-chase studies revealed that TNFalpha did not alter de novo synthesis of enzyme, but it substantially accelerated turnover of CCTalpha. Addition of N-acetyl-Leu-Leu-Nle-CHO (ALLN), the calpain I inhibitor, or lactacystin, the 20 S proteasome inhibitor, blocked the inhibition of PtdCho biosynthesis mediated by TNFalpha. TNFalpha-induced degradation of CCTalpha protein was partially blocked by ALLN or lactacystin. CCT was ubiquitinated, and ubiquitination increased after TNFalpha exposure. m-Calpain degraded both purified CCT and CCT in cellular extracts. Thus, TNFalpha inhibits PtdCho synthesis by modulating CCT protein stability via the ubiquitin-proteasome and calpain-mediated proteolytic pathways.  相似文献   

5.
Calpain I prepared from human erythrocytes was half-maximally and maximally activated at 23 and 35 microM calcium ion, and two preparations of calpain II from human liver and kidney were half-maximally activated at 340 and 220 microM calcium ion and maximally activated at 900 microM calcium ion, respectively. High molecular weight (HMW) and low molecular weight (LMW) kininogens isolated from human plasma and the heavy chain prepared from these proteins inhibited calpain I as well as calpain II. The molar ratios of calpains to HMW kininogen to give complete inhibition of calpains were 1.4 for calpain I and 2.0 for calpain II, and those of calpains to heavy chain were 0.40-0.66 for calpain I and 0.85 for calpain II. LMW kininogen did not completely inhibit the calpains even with an excess amount of kininogen. The apparent binding ratio of calpain to HMW kininogen estimated from the disc gel electrophoretic analysis, however, was found to be 2:1, whereas those of calpain to LMW kininogen and of calpain to heavy chain were found to be 1:1. Calpains and kininogens failed to form complexes in the absence of calcium ion. In the presence of calcium ion, however, they formed the complexes, which were dissociable by the addition of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. The minimum concentrations of calcium ion required to induce complex formation between calpain I and kininogens and calpain II and kininogens were 70 and 100 microM, respectively. Some other divalent cations such as Mn2+, Sr2+, and Ba2+ were also able to induce the complex formation between calpains and kininogens.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
1. Hamster skeletal muscle contains a wide-specificity calpain which was found to be a calpain II type and which is composed of a single Mr 80,000 polypeptide. 2. The muscle also contains a calpain I type enzyme which is specific for desmin degradation, and this enzyme consists of a single subunit of Mr 67,000. 3. Three calpastatins were detected in the tissue, one of which inhibited both calpains, whereas the other two appeared to be specific for the desmin-specific calpain. These calpastatins possessed the same inhibition properties when assayed with chicken gizzard calpains.  相似文献   

7.
The activity of the membrane-bound and the purified erythrocyte Ca2+-ATPase in the absence of calmodulin was stimulated by calpain digestion but could be further increased to maximal levels by calmodulin (CaM). Thus, CaM sensitivity was retained by the digested ATPase, at least at short times of incubation. In membranes digested at higher temperatures and in the purified ATPase digested at higher calpain/ATPase ratios, the ATPase became fully activated. The membrane-bound and the purified 138-kDa ATPase were converted by calpain to a fragment of approximately 124 kDa which still bound CaM and could be isolated on CaM columns when proteolysis occurred slowly but not when it occurred rapidly. Carboxypeptidase digestion of the purified enzyme and of its fragment of about 124 kDa has shown that calpain attacked the CaM-binding domain near the C terminus of the ATPase. This has also been supported by digestion of the purified enzyme and of its fragment of about 124 kDa. A first cut occurred in the middle of the domain producing a fragment of about 14 kDa and a (CaM-binding) fragment of about 124 kDa. A second cut closer to the N terminus of the domain also produced a fragment of about 124 kDa and accounted for the loss of CaM binding at prolonged times of incubation of the ATPase with calpain.  相似文献   

8.
Drosophila calpains, Calpain A and Calpain B, show typical calpain domain structures similar to mammalian calpains. However, the small subunit of mammalian calpains, shown to be essential in both genetic and biochemical aspects, is absent in Drosophila calpains and is not required for enzymatic activity. How they compensate for the lack of small subunit is mostly unknown. Here we conducted experiments using recombinant Drosophila Calpain B for further characterization of the enzyme with particular focuses on two issues: possibility of homodimerization and mode of autolysis. The native molecular weight of Calpain B indicates that the active enzyme is primarily monomeric. Co-expression of two recombinant Calpain B proteins each with a unique affinity tag and a subsequent single round of affinity tag purification resulted in isolation of only one recombinant calpain type, suggesting there is no homodimeric interaction. Also the C-termini of Drosophila calpains lack many of the key hydrophobic residues considered to be important in the dimerization of mammalian calpains. Further, initial autolysis of Calpain B seems to occur intramolecularly, which supports the monomeric nature of Drosophila calpains. These results strongly suggest that dimerization is not an essential requirement for Drosophila calpains.  相似文献   

9.
D Yin  H Sun  R F Weaver  T C Squier 《Biochemistry》1999,38(41):13654-13660
To investigate the role of hydrophobic interactions involving methionine side chains in facilitating the productive association between calmodulin (CaM) and the plasma membrane (PM) Ca-ATPase, we have substituted the polar amino acid Gln for Met at multiple positions in both the amino- and carboxyl-terminal domains of CaM. Conformationally sensitive fluorescence signals indicate that these mutations have little effect on the backbone fold of the carboxyl-terminal domain of CaM. The insertion of multiple Gln in either globular domain results in a decrease in the apparent affinity of CaM for the PM-Ca-ATPase. However, despite the multiple substitution of Gln for four methionines at positions 36, 51, 71, and 72 in the amino-terminal domain or for three methionines at positions 124, 144, and 145 in the carboxyl-terminal domain, these mutant CaMs are able to fully activate the PM-Ca-ATPase. Thus, although these CaM mutants have a decreased affinity for the CaM-binding site on the Ca-ATPase, they retain the ability to fully activate the Ca-ATPase at saturating concentrations of CaM. The role of individual methionines in modulating the affinity between the carboxyl terminus and the PM-Ca-ATPase was further investigated through the substitution of individual Met with Gln. Upon substitution of Met(124) and Met(144) with Gln, there is a 5- and 10-fold increase in the amount of CaM necessary to obtain half-maximal activation of the PM-Ca-ATPase, indicating that these methionine side chains participate in the high-affinity association between CaM and the PM-Ca-ATPase. However, substitution of Gln for Met(145) results in no change in the apparent affinity between CaM and the PM-Ca-ATPase, indicating that in contrast to all other known CaM targets, Met(145) does not participate in the interaction between CaM and the PM-Ca-ATPase. These results emphasize differences in the binding interactions between individual methionines in CaM and different target enzymes, and suggest that hydrophobic interactions between methionines in CaM and the binding site on the PM-Ca-ATPase are not necessary for enzyme activation. Calculation of the binding affinities of individual CaM domains associated with activation of the PM-Ca-ATPase suggests that mutations of methionines located in either domain of CaM can decrease the initial high-affinity association between CaM and the PM-Ca-ATPase, but have little effect upon the subsequent binding of the opposing globular domain. These results suggest that the initial associations between CaM and the CaM-binding sequence in the PM-Ca-ATPase are guided by nonspecific hydrophobic interactions involving both domains of CaM.  相似文献   

10.
Calpains I and II isolated from diverse tissues possess both Ca2+-independent, and Ca2+-dependent accessible hydrophobic regions. Possible subcellular organelle association of calpains involving these hydrophobic regions was studied. By homogenizing rat tissues directly in Ca2+ (50 microM), about 30-60% of the cytosolic calpain I and II activity reversibly associated with isolated subcellular fractions (microsomal greater than plasma membrane greater than nuclear). After binding to the particulate fraction, calpain II converted to a calpain I-like form exhibiting stronger Ca2+-independent binding to phenyl-Sepharose and a lower Ca2+ requirement for optimal activity. However, it retained its DEAE-cellulose chromatographic pattern, and precipitated with monospecific anti-calpain II antibodies. Although purified calpastatin (endogenous inhibitor) is known to form a Ca2+-dependent complex with calpains, it was not able to reverse the binding of calpains to the particulate fraction upon short incubation. It was, however, effective in blocking calpain binding when the isolated cytosolic fraction or a mixture of purified calpain and calpastatin was preincubated in the presence of Ca2+, and then added to the particulate fraction. Extraction of tissues under controlled conditions revealed that in fact calpains are already loosely associated with subcellular organelles even in the absence of Ca2+. This is the reason why in the crude homogenates with the addition of Ca2+, calpains strongly bind to the particulate fraction without interference by cytosolic calpastatin. Although calpastatin by complexing initially to calpain can prevent the association of this protease with subcellular organelles, it cannot dissociate calpains already bound to these subcellular fractions. By prior Ca2+-independent association with the hydrophobic proteins present in the subcellular fractions, calpains overcome the 3- to 30-fold inhibitory excess of calpastatin in tissues.  相似文献   

11.
Two molecular species of Ca2+-dependent neutral protease (calpains I and II) and its endogenous inhibitor (calpastatin) in cytosol fraction of bovine adrenal medulla were separated by hydrophobic interaction chromatography. Both calpains I and II, having low and high Ca2+ requirements for casein hydrolysis, respectively, were found to activate tyrosine hydroxylase(TH) that had been purified from cytosol fraction of bovine adrenal medulla. This activation of TH by calpain was inhibited by leupeptin and the endogenous inhibitor, calpastatin. The activated TH with calpain II, characterized by high-performance gel permeation chromatography, had a reduced Mr of 120,000 from the Mr of 230,000 of native enzyme.  相似文献   

12.
Kinin release from kininogens by calpains   总被引:2,自引:0,他引:2  
During the investigation of inhibitory activity of kininogens toward calpains [EC 3.4.22.17], we found that lysyl-bradykinin was liberated from both high molecular weight (HMW) and low molecular weight (LMW) kininogens by the action of the calpains. The kinin liberation occurred in a limited range of calpain to kininogen molar ratios of 0.5:1 to 8:1, and in that condition calpains were simultaneously inhibited 20 to 80% by kininogens. The maximum level of kinin release from HMW and LMW kininogens by calpain I was about 25% and that by calpain II was 20%. These results suggest that in case of inflammation the kininogens play two physiologically distinct roles by interaction with calpains: to release lysyl-bradykinin and to inhibit proteinase activity of calpains derived from the damaged tissues.  相似文献   

13.
A major cause of neuronal dysfunction is due to altered Ca2+ regulation. An increase in Ca2+ influx can activate Ca2+-dependent enzymes including calpains, causing the proteolysis of its specific substrates. In the present study, calcineurin (CaN) was found to be proteolysed by a Ca2+-dependent cysteine protease, m-calpain. In the presence of Ca2+, the 60 kDa subunit (CaN A) was degraded to a 46 kDa immunoreactive fragment, whereas in the presence of Ca2+ /calmodulin (CaM) immunoreactive fragments of 48 and 54 kDa were observed. The beta-subunit (CaN B) was not proteolysed in either condition. The proteolysis of CaN A increased its phosphatase activity and rendered it totally CaM-independent after 10 min of proteolysis. The molecular weight of the proteolytic fragments suggested that the m-calpain cleaved CaN A in the CaN B binding domain. A CaM-overlay experiment revealed that the CaM-binding site was present only in the 54 kDa fragment produced by CaN A proteolysis in the presence of Ca2+ /CaM. Thus, the increase in CaN A phosphatase activity observed in many neuronal disorders, may be due to the action of calpain.  相似文献   

14.
Calpains in muscle wasting   总被引:4,自引:0,他引:4  
Calpains are intracellular nonlysosomal Ca(2+)-regulated cysteine proteases. They mediate regulatory cleavages of specific substrates in a large number of processes during the differentiation, life and death of the cell. The purpose of this review is to synthesize our current understanding of the participation of calpains in muscle atrophy. Muscle tissue expresses mainly three different calpains: the ubiquitous calpains and calpain 3. The participation of the ubiquitous calpains in the initial degradation of myofibrillar proteins occurring in muscle atrophy as well as in the necrosis process accompanying muscular dystrophies has been well characterized. Inactivating mutations in the calpain 3 gene are responsible for limb-girdle muscular dystrophy type 2A and calpain 3 has been found to be downregulated in different atrophic situations, suggesting that it has to be absent for the atrophy to occur. The fact that similar regulations of calpain activities occur during exercise as well as in atrophy led us to propose that the calpains control cytoskeletal modifications needed for muscle plasticity.  相似文献   

15.
In a model of cerebral hypoxia-ischemia in the immature rat, widespread brain injury is produced in the ipsilateral hemisphere, whereas the contralateral hemisphere is left undamaged. Previously, we found that calpains were equally translocated to cellular membranes (a prerequisite for protease activation) in the ipsilateral and contralateral hemispheres. However, activation, as judged by degradation of fodrin, occurred only in the ipsilateral hemisphere. In this study we demonstrate that calpastatin, the specific, endogenous inhibitor protein to calpain, is up-regulated in response to hypoxia and may be responsible for the halted calpain activation in the contralateral hemisphere. Concomitantly, extensive degradation of calpastatin occurred in the ipsilateral hemisphere, as demonstrated by the appearance of a membrane-bound 50-kDa calpastatin breakdown product. The calpastatin breakdown product accumulated in the synaptosomal fraction, displaying a peak 24 h post-insult, but was not detectable in the cytosolic fraction. The degradation of calpastatin was blocked by administration of CX295, a calpain inhibitor, indicating that calpastatin acts as a suicide substrate to calpain during hypoxia-ischemia. In summary, calpastatin was up-regulated in areas that remain undamaged and degraded in areas where excessive activation of calpains and infarction occurs.  相似文献   

16.
Calpain-mediated proteolysis regulates cytoskeletal dynamics and is altered during aging and the progression of numerous diseases or pathological conditions. Although several cytoskeletal proteins have been identified as substrates, how localized calpain activity is regulated and the mechanisms controlling substrate recognition are not clear. In this study, we report that phosphoinositide binding regulates the susceptibility of the cytoskeletal adhesion protein alpha-actinin to proteolysis by calpains 1 and 2. At first, alpha-actinin did not appear to be a substrate for calpain 2; however, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) binding to alpha-actinin resulted in nearly complete proteolysis of the full-length protein, producing stable breakdown products. Calpain 1 was able to cleave alpha-actinin in the absence of phosphoinositide binding; however, PtdIns(3,4,5)P(3) binding increased the rate of proteolysis, and phosphatidylinositol 4,5-diphosphate (PtdIns(4,5)P(2)) binding significantly inhibited cleavage. Phosphoinositide binding appeared to regulate calpain proteolysis of alpha-actinin by modulating the exposure of a highly sensitive cleavage site within the calponin homology 2 domain. In U87MG glioblastoma cells, which contain elevated levels of PtdIns(3,4,5)P(3), alpha-actinin colocalized with calpain within dynamic actin cytoskeletal structures. Furthermore, proteolysis of alpha-actinin producing stable breakdown products was observed in U87MG cells treated with calcium ionophore to activate the calcium-dependent calpains. Additional evidence of PtdIns(3,4,5)P(3)-mediated calpain proteolysis of alpha-actinin was observed in rat embryonic fibroblasts. These results suggest that PtdIns(3,4,5)P(3) binding is a critical determinant for alpha-actinin proteolysis by calpain. In conclusion, phosphoinositide binding to the substrate is a potential mechanism for regulating susceptibility to proteolysis by calpain.  相似文献   

17.
cDNA coding for calpain of Schistosoma japonicum were cloned and sequenced, and serological basis of host responses to calpain were analyzed. cDNA of calpain from S. japonicum of two different isolates, Yamanashi strain (Sj-J) and Hunan strain (Sj-C), were 2, 468 bp and 2, 465 bp in length, including the same number (2, 274) of open reading frame. Nucleotide sequence and amino acid sequence between the two calpains are 99.1% and 98.8% identity, respectively. Sj-J and Sj-C calpains were considered to be translated as a preproenzyme, and a 746-amino acid mature enzyme contains eight motifs without a signal peptide at the N-terminal based on the deduced amino acid sequences. mRNA for calpain were detectable in different developmental stages, however, sera obtained from mice immunized with recombinant calpain showed enhanced binding to cercarial antigen. Human sera from S. japonicum-infected individuals recognized the large subunit of schistosomal calpain, and light-infected sera showed stronger reactivities to the recombinant calpain than moderate/high infection cases. When we tested synthetic peptides, there were four common human B cell epitopes in schistosomal calpain, all of which are shared with S. mansoni. Together with these results, calpain of S. japonicum seems to be not only a vaccine candidate, but also a target antigen for immunodiagnosis of human schistosomiasis.  相似文献   

18.
Constant efforts are ongoing for the development of new imaging methods that allow the investigation of molecular processes in vivo. Protein-protein interactions, enzymatic activities and intracellular Ca2+ fluxes, have been resolved in cultured cells using a variety of fluorescence resonance energy transfer (FRET) detection methods. However, FRET has not been used so far in conjunction with 3D intravital imaging. We evaluated here a combination of multiphoton microscopy (MPM), method of choice for non-destructive living tissue investigation, and FRET imaging to monitor calpain proteolytic activity in living mice muscle. We show that kinetics of ubiquitous calpains activation can be efficiently and quantitatively monitored in living mouse tissues at cellular level with a FRET-based indicator upon calcium influx. The ability to visualize calpain activity in living tissue offers a unique opportunity to challenge remaining questions on the biological functions of calpains and to evaluate the therapeutic potential of calpain inhibitors in many degenerative conditions.  相似文献   

19.
Proteolytic degradation of inducible nitric oxide synthase (iNOS or NOS2; EC 1.14.13.39) is one of the key steps by which the synthetic glucocorticoid dexamethasone controls the amount of iNOS protein and thus the production of nitric oxide (NO) in interferon-gamma-stimulated RAW 264.7 cells. In the present study we examined the role of the calmodulin (CaM)-binding site present within iNOS protein for the proteolytic degradation by the calcium-dependent neutral cysteine protease calpain I (EC 3.4.22.17). Using pulse chase experiments as well as cell-free degradation assays we show that the iNOS monomer is a direct substrate for cleavage by calpain I. Two structural determinants are involved in proteolytic cleavage, the canonical CaM-binding domain present at amino acids 501-532 and a conformational determinant located within iNOS. The access of the CaM-binding region appears to be critical for substrate cleavage as incubation of in vitro synthesized iNOS with purified CaM inhibits iNOS degradation by calpain I. Moreover, cytosolic CaM levels are decreased upon treatment of RAW 264.7 cells with dexamethasone as assessed by immunoprecipitation. The data shown herein provide novel insights into the underlying mechanisms involved in the anti-inflammatory actions of glucocorticoids.  相似文献   

20.
A rapid and reliable method for quantitating tissue calpains (Ca2+-activated, neutral, thiol proteases) was developed using hydrophobic chromatography with phenyl-Sepharose. Calpains I and II isolated by this method are free of endogenous inhibitor(s) (calpastatin), activator(s), and nonspecific proteases. These calpains expose hydrophobic regions in the presence of Ca2+ and bind tightly to phenyl-Sepharose. Inactivation of bound calpain is prevented by the addition of leupeptin (20 microM). Calpains I and II bound initially by phenyl-Sepharose in a Ca2+-dependent manner are then eluted successively on the basis of their Ca2+-independent binding to phenyl-Sepharose. Because calpastatin may prevent binding of calpain to phenyl-Sepharose by forming a protease-inhibitor complex in the presence of Ca2+, preadsorbing the protease to a suspension of phenyl-Sepharose beads initially in the absence of Ca2+ separates most of the calpain present in tissue extracts from calpastatin. The isolated calpains obtained are assayed by casein digestion. This quantitation procedure is suitable for measuring calpain activity in various tissues and cells including erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号