首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
过量表达NADH氧化酶加速光滑球拟酵母合成丙酮酸   总被引:1,自引:0,他引:1  
[目的]进一步提高光滑球拟酵母(Torulopsis glabrata)发酵生产丙酮酸的生产强度.[方法]将来源于乳酸乳球菌(Lactococcus lactis)中编码形成水的NADH氧化酶noxE基因过量表达于丙酮酸工业生产菌株T. glabrata CCTCC M202019中,获得了一株NADH氧化酶活性为34.8 U/mg蛋白的重组菌T. glabrata-PDnoxE.[结果]与出发菌株T. glabrata CCTCC M202019相比,细胞浓度、葡萄糖消耗速率和丙酮酸生产强度分别提高了168%、44.9%和12%,发酵进行到36 h葡萄糖消耗完毕.补加50 g/L葡萄糖继续发酵20 h,则使丙酮酸浓度提高到67.2 g/L.葡萄糖消耗速度和丙酮酸生产强度增加的原因在于形成水的NADH氧化酶过量表达,导致NADH和ATP含量分别降低了18.1%和15.8%.而NAD<' 增加了11.1%.[结论]增加细胞内NAD<' 含量能有效地提高酵母细胞葡萄糖的代谢速度及目标代谢产物的生产强度.  相似文献   

2.
This study investigated that the importing of compatible solute proline could enhance the growth of the yeast Torulopsis glabrata under hyperosmotic stress. Osmolarity progressively increased from 860 to 2,603 mOsmol/kg by accumulation of sodium pyruvate in the culture broth, leading to a significant decrease in cell growth. When 1.0 g/L of proline as a compatible solute was added to the culture medium, it was imported and enhanced cell growth by 59.0% at 2,603 mOsmol/kg. By addition of proline during pyruvate production, the concentration, productivity, and yield of pyruvate increased 22.1, 38.4, and 14.3%, respectively. These results suggested that T. glabrata can import proline as an osmoprotectant against high osmotic stress, thus enhance pyruvate productivity. The improvement of yeast growth and viability under hyperosmotic stress by the addition of proline provided an alternative approach to enhance the organic acids production by yeast.  相似文献   

3.
The waste mycelium of Penicillium chrysogenum HA-10 (obtained at the end of penicillin fermentation), or a 24-hr-old freshly grown vegetative inoculum of this organism, was found to utilize glucose for the production of calcium gluconate by submerged fermentation in shake flasks. After 72 to 96 hr of fermentation at 24 C, 90 to 95% of the reducing sugar from the 15% glucose medium was converted to calcium gluconate. Reuse of the mycelium for successive experiments reduced the fermentation period to 72 hr or less because of an enhancement of glucose utilization. Ten successive batches of 15% glucose medium were fermented by the reuse method. Fermentation media containing up to 30% glucose could be used, provided boric acid was added to prevent the precipitation of calcium gluconate formed. We found that 30% hydrol (a by-product of glucose manufacture containing 50 to 55% reducing sugar), when used in place of glucose in the fermentation medium, inhibited the rate of glucose utilization. However, this effect was partially reversed by pretreatment of hydrol with 2 to 4% activated charcoal before addition to the fermentation medium.  相似文献   

4.
A two-stage fed-batch process was designed to enhance erythritol productivity by the mutant strain of Candida magnoliae. The first stage (or growth stage) was performed in the fed-batch mode where the growth medium was fed when the pH of the culture broth dropped below 4.5. The second stage (or production stage) was started with addition of glucose powder into the culture broth when the cell mass reached about 75 g dry cell weight l−1. When the initial glucose concentration was adjusted to 400 g l−1 in the production stage, 2.8 g l−1 h−1 of overall erythritol productivity and 41% of erythritol conversion yield were achieved, which represented a fivefold increase in erythritol productivity compared with the simple batch fermentation process. A high glucose concentration in the production phase resulted in formation of organic acids including citrate and butyrate. An increase in dissolved oxygen level caused formation of gluconic acid instead of citric acid. Journal of Industrial Microbiology & Biotechnology (2000) 25, 100–103. Received 25 February 2000/ Accepted in revised form 08 June 2000  相似文献   

5.
The semicontinuous production of red pigment by immobilized cells ofBacillus sp. BH-99 was investigated in comparison with free cells. The red pigment produced highest productivity under the conditions of aeration of 0.2 mL/min and 2 mm diameter of gel beads by using 3.0% sodium alginate. Semicontinuous production by immobilized cells showed the highest productivity with replacement of fresh production medium in every 72 h for fourth fermentation cycle following the conditions of red pigment productivity.  相似文献   

6.
Summary Ethanol concentration and fermentation productivity using Saccharomyces cerevisiae were substantially increased in shake flask cultures with a normal inoculum by combining 3 methods: (a) by making nutrient additions to the standard medium for ethanol production, (b) by immobilizing the cells in alginate beads and (c) by using a glucose step-feeding batch process. Ethanol concentration by free yeast was improved from 5.9% (w/w) to 9.6% (w/w) when a further 0.8% yeast extract and 1% animal peptone were added to the standard 30% (w/v) glucose nutrient medium. This was further increased to 12.8% (w/w) by using alginate immobilized yeast. The ethanol concentration was increased again, to 15.0% (w/w) by using the glucose step-feeding batch process.  相似文献   

7.
In order to control suitable mycelium morphology to obtain high lipase productivity by Rhizopus chinensis in submerged fermentation, the effects of fungal morphology on the lipase production by this strain both in shake flask and fermentor were investigated. Different inoculum level and shear stress were used to develop distinctive morphologies. Analyses and investigations both on micromorphology and macromorphology were performed. Study of micromorphology reveals that micromorphologies for dispersed mycelia and aggregated mycelia are different in cell shape, biosynthetic activity. Macromorphology and broth rheology study in fermentor indicate that pellet formation results in low broth viscosity. Under this condition, the oil can disperse sufficiently in broth which is very important for lipase production. These results indicate that morphology changes affected the lipase production significantly for R. chinensis and the aggregated mycelia were suggested to achieve high lipase production.  相似文献   

8.
Propionate and acetate salts are environmentally friendly, effective road deicer substitutes for widely used sodium chloride. A low-cost medium, using raw cheese whey and hydrolyzed whey permeate/whey permeate powder as substrates, and corn-steep liquor as a nutrient supplement, was studied for lactic acid production, replacing synthetic lactose and other high-cost nutrients. A non-sterile stage-I fermentation process for improved lactate productivity using an inexpensive commercial medium was performed at a 20-L fermenter level. A lactate yield of 0.98 g/g lactose and a productivity of 1.1 g/L/h was obtained with complete lactose utilization. When synthetic lactate and glucose were used as substrates in propionate and acetate fermentation, a total acid yield of 0.55 g/g glucose and lactate consumed and a batch productivity of 0.22 g/L/h was obtained. A stage-II fermentation process to produce propionate and acetate salts from cheese whey-derived lactate (stage-I fermentation broth) resulted in 1.6%( w/v) propionate after a total of 161 h (stages I and II).  相似文献   

9.
红曲菌(Monascus spp.)是我国重要的药食同源微生物,红曲色素(Monascus pigments,MPs)是其主要次级代谢产物之一。有研究表明,甘油可促进红曲菌产MPs,但作用机制不明。以丛毛红曲菌(Monascus pilosus)MS-1为实验菌株,考察甘油与葡萄糖或蔗糖复合对红曲菌产MPs的影响。在不含碳源的合成培养基中,将甘油与葡萄糖或蔗糖复合,采用分光光度法和高效液相色谱法等分析MPs的产量和组分、生物量及发酵液pH。当甘油与葡萄糖复合,添加甘油后发酵液pH、生物量无显著变化(P0.05),总色价显著降低(P0.05)。当2 g/L或40 g/L甘油与蔗糖复合,发酵液pH显著降低而生物量及总色价显著增加(P0.05)。当40 g/L甘油与蔗糖复合时,总色价是仅以蔗糖为碳源时的16.5倍,且MPs同系物数量明显增多(P0.05)。在合成培养基条件下,甘油促进红曲菌产MPs具有碳源种类的选择性。该结果可为研究甘油影响红曲菌产MPs的作用机制提供参考,为甘油用于MPs生产提供依据。  相似文献   

10.
The development of fermentation conditions for the production of C595 diabody fragment (dbFv) inE. coli HB2151 clone has been explored. Investigations were carried out to study the effect of carbon supplements over the expression period, the comparison of C595 dbfv production in synthetic and complex media, the influence of acetic acid upon antibody production, and comparison of one-stage and two-stage processes operated at batch or fed-batch modes in bioreactor. Yeast extract supplied during expression yielded more antibody fragment than any other carbon supply. The synthetic medium presented higher specific productivity (0.066 mg dbFv g−1 dry cell weight) when compared to the complex medium (0.044 mg dbFv g−1 DCW). The comparison of fermentation strategies demonstrated that (1) one-stage fed-batch fermentation performed higher C595 dbFv production than that operated in batch mode which was significantly affected by acetate concentration; (2) a two-stage batch operation could enhance C595 dbFv production. It was found that a concentration of 12.3 mg L−1 broth of C595 dbFv and a cell concentration of 10.8 g L−1 broth were achieved at the end of two-stage operation in 5-L fermentation.  相似文献   

11.
A suitable medium was developed from modified Richard's medium plus V8 juice (RM8) to produce high levels of desiccation-tolerant conidia ofTrichoderma harzianumstrain 1295-22. The addition of 9% (v/v) glycerol to RM8 improved both biomass production and desiccation tolerance of the conidia ofT. harzianum.This medium was then used in a laboratory scale fermenter (1.5 liter) to determine optimal operating conditions. The optimal temperature for conidial production and desiccation tolerance improvement in the fermenter was 32°C when dissolved oxygen was maintained at 50% saturation of air, and the stirring rate was 1000 revolutions per minute. The initial water potential of the medium (with 9% glycerol) was −3.7 MPa, the pH was 6, and neither was controlled during fermentation. Changes in medium pH and dissolved oxygen were associated with the stages of morphological development and conidiation. The pH of the medium decreased concurrently with germ-tube elongation and mycelium development and then increased to 6.0–6.2 at phialide formation. Intensive conidiation occurred at pH 6.3–6.5 and reached its maximal level at 6.9–7.1. Changes in pH values could be used as indicators to monitor the morphological development and conidiation ofT. harzianumduring fermentation. The use of a 48-h-old culture inoculum, rather than conidial inoculum, to start fermentation reduced the time required to complete the shift from vegetative growth to phialide formation. Intensive conidiation occurred immediately after the addition of culture inoculum and reached maximum levels within 68 h of fermentation. Dry weight of biomass increased with the duration of fermentation and was greatest at 96 h. However, no improvements in conidia/gram and CFU/gram were achieved after 72 h of fermentation. The desiccation tolerance of conidia harvested at 72 or 96 h was significantly (P = 0.05) greater than that of conidia harvested at 48 h of fermentation. Results obtained from this study could be used for further scale-up of the fermentation process.  相似文献   

12.
Production of lactic acid from glucose by immobilized cells of Lactococcus lactis IO-1 was investigated using cells that had been immobilized by either entrapment in beads of alginate or encapsulation in microcapsules of alginate membrane. The fermentation process was optimized in shake flasks using the Taguchi method and then further assessed in a production bioreactor. The bioreactor consisted of a packed bed of immobilized cells and its operation involved recycling of the broth through the bed. Both batch and continuous modes of operation of the reactor were investigated. Microencapsulation proved to be the better method of immobilization. For microencapsulated cells at immobilized cell concentration of 5.3 g l−1, the optimal production medium had the following initial concentrations of nutrients (g l−1): glucose 45, yeast extract 10, beef extract 10, peptone 7.5 and calcium chloride 10 at an initial pH of 6.85. Under these conditions, at 37 °C, the volumetric productivity of lactic acid in shake flasks was 1.8 g l−1 h−1. Use of a packed bed of encapsulated cells with recycle of the broth through the bed, increased the volumetric productivity to 4.5 g l−1 h−1. The packed bed could be used in repeated batch runs to produce lactic acid.  相似文献   

13.
主要研究了发酵法生产葡萄糖酸钠过程中的各参数的变化规律,通过在线监测和离线分析检测,得出各参数的变化规律:各参数的变化均与黑曲霉的生长周期有关;发酵初期(0~5 h)各参数维持恒定;发酵期(5~16 h)溶氧、残糖质量浓度分别快速降低至30%、15 g/L;酶活、葡萄糖酸钠含量快速上涨至500 U/mL、18 g/L;发酵中后期(16~20 h)维持阶段,各参数缓慢变化;发酵结束后溶氧回升。各参数的变化规律与黑曲霉生长周期的关系研究为工厂进一步优化发酵工艺、缩短发酵周期提供原始的理论依据。  相似文献   

14.
Liu L  Li Y  Shi Z  Du G  Chen J 《Journal of biotechnology》2006,126(2):173-185
This study aimed at increasing the pyruvate productivity from a multi-vitamin auxotrophic yeast Torulopsis glabrata, by increasing the availability of NAD+. We examined two strategies for increasing availability of NAD+. To supplement nicotinic acid (NA), the precursor of NAD+; and to increase the activity of alcohol dehydrogenase integrating with addition acetaldehyde as exterior electron acceptor. The addition of 8 mg l(-1) NA to the fermentation medium resulted in a significant increase in the glucose consumption rate (48.4%) and the pyruvate concentration (29%). An ethanol-utilizing mutant WSH-13 was screened and selected after nitrosoguanidine mutagenesis of the parent strain T. glabrata CCTCC M202019. Compared with the parent strain, the alcohol dehydrogenase activity of the mutant WSH-13 increased about 110% and the mutant could utilize ethanol as the sole carbon source for growth (1.8 g l(-1) dry cell weight). When growing with glucose, the addition of 4 mg l(-1) acetaldehyde to the mutant WSH-13 culture broth led to a significant increase in the glucose consumption rate (26.3%) and pyruvate production (22.5%), but the ratio of NADH/NAD+ decreased to 0.22. Acetaldehyde did not affect the glucose and energy metabolism at high dissolved oxygen (DO) concentration. However, at lower DO concentration (20%), maintaining the acetaldehyde concentration in the mutant culture broth at 4 mg l(-1) caused an increased NAD+ concentration but a decreased NADH concentration. As a consequence, the pyruvate production rate, the pyruvate yield on glucose and the pyruvate concentration were 68, 44 and 45% higher, respectively, than the corresponding values of the control (without acetaldehyde). The strategy for increasing the glycolytic flux and the pyruvate productivity in T. glabrata by increasing the availability of NAD+ may provide an alternative approach to enhance the metabolites productivity in yeast.  相似文献   

15.
We report a Klebsiella pneumoniae DSM2026 fermentation procedure for the efficient production of a key enzyme of 1,3-propanediol formation: 1,3-propanediol oxidoreductase (E.C. 1.1.1.202). The fermentation process is composed of an aerobic batch phase on glucose and glycerol and an anaerobic phase on glycerol. The role of the aerobic phase is to produce sufficiently high cell mass (12.9–14.6 g/l dry weight) and to activate the aerobic branch of the Klebsiella glycerol pathway, whereas in the anaerobic phase there is a rapid initiation of 1,3-propanediol oxidoreductase formation. A fast change from an aerobic to an anaerobic environment led to a redox imbalance, which resulted in the abrupt activation of the anaerobic branch of glycerol utilization, with the occurrence of a high 1,3-propanediol-oxidoreductase activity. A mathematical model with substrate inhibition showed that the adequate glycerol concentration for enzyme production was 14–16 g/l. The combination of the optimal substrate concentration together with the subsequent use of glucose and glycerol resulted in 90.6 ± 11.6 U enzyme activity referred to 1 l of fermentation broth and 10.3 ± 0.9 U/(1 h) productivity.  相似文献   

16.
A novel feeding strategy in fedbatch recombinant yeast fermentation was developed to achieve high plasmid stability and protein productivity for fermentation using low-cost rich (non-selective) media. In batch fermentations with a recombinant yeast, Saccharomyces cerevisiae, which carried the plasmid pSXR125 for the production of beta-galactosidase, it was found that the fraction of plasmid-carrying cells decreased during the exponential growth phase but increased during the stationary phase. This fraction increase in the stationary phase was attributed to the death rate difference between the plasmid-free and plasmid-carrying cells caused by glucose starvation in the stationary phase. Plasmid-free cells grew faster than plasmid-carrying cells when there were plenty of growth substrate, but they also lysed or died faster upon the depletion of the growth substrate. Thus, pulse additions of the growth substrate (glucose) at appropriate time intervals allowing for significant starvation period between two consecutive feedings during fedbatch fermentation should have positive effects on stabilizing plasmid and enhancing protein production. A selective medium was used to grow cells in the initial batch fermentation, which was then followed with pulse feeding of concentrated non-selective media in fedbatch fermentation. Both experimental data and model simulation show that the periodic glucose starvation feeding strategy can maintain a stable plasmid-carrying cell fraction and a stable specific productivity of the recombinant protein, even with a non-selective medium feed for a long operation period. On the contrary, without glucose starvation, the fraction of plasmid-carrying cells and the specific productivity continue to drop during the fedbatch fermentation, which would greatly reduce the product yield and limit the duration that the fermentation can be effectively operated. The new feeding strategy would allow the economic use of a rich, non-selective medium in high cell density recombinant fedbatch fermentation. This new feeding strategy can be easily implemented with a simple IBM-PC based control system, which monitors either glucose or cell concentration in the fermentation broth.  相似文献   

17.
Escherichia coli AFP111 cells recovered from spent two-stage fermentation broth were investigated for additional production of succinic acid under anaerobic conditions. Recovered cells produced succinic acid in an aqueous environment with no nutrient supplementation except for glucose and MgCO3. In addition, initial glucose concentration and cell density had a significant influence on succinic acid mass yield and productivity. Although the final concentration of succinic acid from recovered cells was lower than from two-stage fermentation, an average succinic acid mass yield of 0.85 g/g was achieved with an average productivity of 1.81 g/l h after three rounds of recycling, which was comparable to two-stage fermentation. These results suggested that recovered cells might be reused for the efficient production of succinic acid.  相似文献   

18.
Extractive fermentation is a technique that can be used to reduce the effect of end product inhibition through the use of a water-immiscible phase that removes fermentation products in situ. This has the beneficial effect of not only removing inhibitory products as they are formed (thus keeping reaction rates high) but also has the potential for reducing product recovery costs. We have chosen to examine the ethanol fermentation as a model system for end product inhibition and extractive fermentation and have developed a computer model predicting the productivity enhancement possible with this technique together with other key parameters such as extraction efficiency and residual glucose concentration. The model accommodates variable liquid flowrates entering and leaving the system, since it was found that the aqueous outlet flowrate could be up to 35% lower than the inlet flowrate during extractive fermentation of concentrated glucose feeds due to the continuous removal of ethanol from the fermentation broth by solvent extraction. The model predicts a total ethanol productivity of 82.6 g/L h if a glucose feed of 750 g/L is fermented with a solvent having a distribution coefficient of 0.5 at a solvent dilution rate of 5.0 h(-1). This is more than 10 times higher than for a conventional chemostat fermentation of a 250 g/L glucose feed. The model has furthermore illustrated the possible trade-offs that exist between obtaining a high extraction efficiency and a low residual glucose concentration.  相似文献   

19.
The production of fungal spores using on-site, non-sterile, portable fermentation equipment is technically constrained. Very little information is available on the production requirements, such as medium concentration, inoculum stabilization, required fermentation times, and maintenance of axenic growth. In this study, we developed a two-part, liquid concentrate of the production medium that remains stable and soluble at room temperature. We also examined inoculum stability and showed that freeze- or air-dried blastospore preparations were stable for 7 days after rehydration when stored at 4 °C. The use of a low-pH (pH 4), relatively rich complex medium provided a growth environment deleterious to bacterial growth yet conducive to rapid sporulation by Paecilomyces fumosoroseus. High concentrations of blastospores (7.9×108/ml) of P. fumosoroseus were produced in a 40-h fermentation with very low levels of bacterial contamination when the fermentor was charged with a blastospore production medium with a starting pH of 4 and inoculated with blastospore concentrations greater than 1×106 spores/ml. These studies demonstrate that the use of disinfected, portable fermentation equipment has potential for on-site production of high concentrations of blastospores of the bioinsecticidal fungus P. fumosoroseus.  相似文献   

20.
The commercial demand for pyruvate has been expanding. However, some challenges need to be overcome in the microbial production of pyruvate, such as low glucose consumption caused by excessive accumulation of NADH. In this study, weakening or block of the TCA cycle, overexpression of foreign NADH oxidase, and carbon sources with different oxidation state was attempted to decrease NADH accumulation in engineered strain YP211. Results showed that blocking or weakening TCA cycle could not lower the intracellular redox state in strain YP211.Overexpressing NADH oxidase from Lactococcus lactis significantly decreased the intracellular NADH content and increased the consumption rate of glucose. However, the yield of pyruvate did not increase significantly. Compared with glucose as carbon source, sodium gluconate with a higher oxidation state resulted in a significant decrease of NADH/NAD+, and the concentration and yield of pyruvate increased by 62 and 6%, respectively. In the fed-batch fermentation, the yield of pyruvate increased to 0.78 g/g gluconate, and the concentration of pyruvate reached 78.8 g/L. It was suggested that sodium gluconate was a more ideal carbon source for strain YP211, which could effectively decrease NADH content and improve the pyruvate production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号