首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reyranella massiliensis is an Alphaproteobacterium member of the class Rhodospirillaceae, growing in amoebae. We sequenced the genome of type strain 521T. It is composed of a 5,792,218-bp chromosome and encodes 5,675 protein-coding genes and 53 RNA genes, including 3 rRNA genes.  相似文献   

2.
Afipia birgiae is an alphaproteobacterium from the family Bradyrhizobiaceae, growing in amoebae, and a potential human pathogen. We sequenced the genome of type strain 34632T. It is composed of 5,325,467 bp and contains 5,160 protein-coding genes and 53 RNA genes, including 3 rRNA genes.  相似文献   

3.
The Gram-negative bacterium Gluconacetobacter hansenii is considered a model organism for studying cellulose synthesis. We have determined the genome sequence of strain ATCC 23769.Plants produce cellulose, an unbranched chain of β-1,4-linked glucose units, as a structural polysaccharide. It is the most abundant polymer on earth, recently receiving much interest due to its potential use as a feedstock for bioethanol. Bacteria also produce cellulose. Among these, Gluconacetobacter hansenii (previously named Acetobacter xylinus) (4) has been extensively characterized and is a model system for cellulose biosynthesis (1, 2, 7). G. hansenii produces extracellular cellulose that is devoid of lignin or hemicellulose, making it an excellent source for pure cellulose. A lack of a completely sequenced genome for this organism has been a limiting factor in identifying other key proteins involved in cellulose synthesis.The whole-genome sequencing of G. hansenii ATCC 23769 was performed using the 454 FLX-Titanium pyrosequencing technology (5). A combinatorial sequencing approach using 489,201 reads obtained from the shotgun library and 195,088 reads from an 8-kb pair end library (3) produced a total of 221,294,116 bp. These reads were assembled using the Newbler assembler, producing 88 large contigs (>500 bp) and a chromosome-sized scaffold of 3,646,142 bp with an average coverage of ×50.5. This scaffold contained exclusively chromosomal DNA and no plasmid sequences. The gaps in the large scaffold were filled by primer walking and subsequent sequencing of the PCR products. The resulting high-quality draft assembly, consisting of a large scaffold with 71 contigs, was annotated using the Prokaryotic Genomes Automatic Annotation Pipeline (PGAAP) service of the National Institute of Biotechnology Information (NCBI).The chromosomal sequence of G. hansenii 23769 contains 3,547,122 bp, with a G+C content of 59%. The genome contains 3,351 genes, of which 3,308 are protein-encoding genes, accounting for 84% of the genome. There are 43 genes for tRNAs and 2 rRNA loci. The genes encoding proteins involved in cellulose synthesis are in an operon consisting of acsAB (GXY_04277), acsC (GXY_04282), and acsD (GXY_04292), as previously shown by Saxena et al. (7). Interestingly, there are two additional copies of acsAB, GXY_08864 and GXY_14452, which share 69% and 72% sequence identity, respectively, with the acsAB genes in the operon; the deduced amino acid sequences are 40% and 46% identical, respectively, with that deduced from acsAB in the operon. There are also two additional copies of acsC, GXY_08869 and GXY_014472, which share 72% and 65% DNA sequence identity, respectively, with the acsC gene in the operon; the deduced amino acid sequences share 28% and 30% amino acid identity, respectively, with that deduced from acsC. acsAB (GXY_08864) and acsC (GXY_08869) are only 17 bp apart, less than the distance (66 bp) between the acsAB and acsC genes in the operon. acsAB (GXY_14452) and acsC (GXY_14472) are separated by 3,299 bp, with three genes in between. However, acsD is present only in the operon, not duplicated elsewhere in the genome. The genome also contains three genes encoding diguanylate cyclase, as previously reported by Tal et al. (8). Diguanylate cyclase catalyzes the formation of cyclic di-GMP, a second messenger in bacteria that functions as an allosteric activator of cellulase synthase AcsAB (6).  相似文献   

4.
5.
Pseudomonas psychrophila HA-4 is a cold-adaptable, sulfamethoxazole-degrading bacterium. The genes related to its cold adaptation mechanism and sulfamethoxazole metabolism were unknown. We present the draft genome of strain HA-4. It could provide further insight into the sulfamethoxazole-degrading mechanism of strain HA-4.  相似文献   

6.
Sphingobium indicum B90A, an efficient degrader of hexachlorocyclohexane (HCH) isomers, was isolated in 1990 from sugarcane rhizosphere soil in Cuttack, India. Here we report the draft genome sequence of this bacterium, which has now become a model system for understanding the genetics, biochemistry, and physiology of HCH degradation.  相似文献   

7.
Bartonella quintana is a re-emerging pathogen and the causative agent of a broad spectrum of disease manifestations in humans. The present study reports the complete genome of B. quintana strain RM_11, which was isolated from rhesus macaques.  相似文献   

8.
Bartonella rattimassiliensis is a facultative intracellular bacterium isolated from the blood of Rattus norvegicus in Marseille. The present study reports the draft genome of B. rattimassiliensis strain 15908 (CIP 107705T).  相似文献   

9.
HM Gan  TH Chew  YL Tay  SF Lye  A Yahya 《Journal of bacteriology》2012,194(17):4759-4760
Hydrogenophaga sp. strain PBC is an effective degrader of 4-aminobenzenesulfonate isolated from textile wastewater. Here we present the assembly and annotation of its genome, which may provide further insights into its metabolic potential. This is the first announcement of the draft genome sequence of a strain from the genus Hydrogenophaga.  相似文献   

10.
Bartonella rattaustraliani is a facultative intracellular bacterium isolated from the blood of a Rattus sp. in Australia. The present study reports the draft genome of B. rattaustraliani strain AUST/NH4 (CSUR B609T).  相似文献   

11.
Citrobacter sp. strain A1, isolated from a sewage oxidation pond, is a facultative aerobe and mesophilic dye-degrading bacterium. This organism degrades azo dyes efficiently via azo reduction and desulfonation, followed by the successive biotransformation of dye intermediates under an aerobic environment. Here we report the draft genome sequence of Citrobacter sp. A1.  相似文献   

12.
Microbacterium yannicii is a Gram-positive, aerobic, yellow-pigmented, rod-shaped, nonmotile, oxidase-negative, and catalase-positive bacterium isolated on Columbia colistin-nalidixic acid (CNA) agar with 5% sheep blood from the sputum of a cystic fibrosis patient. The present study reports the draft genome of a Microbacterium yannicii strain.  相似文献   

13.
14.
Lactobacillus crispatus is a common member of the beneficial microbiota present in the vertebrate gastrointestinal and human genitourinary tracts. Here, we report the genome sequence of L. crispatus ST1, a chicken isolate displaying strong adherence to vaginal epithelial cells.Lactobacillus crispatus can persist in the vertebrate gastrointestinal tract and is among the most prevalent species of the Lactobacillus-dominated human vaginal microbiota (2, 9, 13, 14). It belongs to the so-called acidophilus group (3), which has attracted interest because some of its species are important factors in the production of fermented foods (12) and some can, at least transiently, colonize the human host (2, 9, 13, 14). Moreover, some specific strains, mainly L. acidophilus NCFM and L. johnsonii NCC 533, have received prominence as intestinal-health-promoting microbes (4). Although the genomes of seven members of the acidophilus complex have been sequenced to date (12), the genome sequences of L. crispatus and other predominant lactobacillar species in the urogenital flora have mostly remained obscure. Vaginal lactobacilli can have an important role in controlling the health of the host (2, 14). They can, for example, positively influence and stabilize the host''s vaginal microbiota via the production of compounds that are acidic or exert a direct inhibiting action toward pathogenic bacteria (2, 14). In addition to the antimicrobial compounds, the competitive exclusion of pathogens is another mechanism by which the host''s microbiota can be balanced (2). L. crispatus ST1 was originally isolated from the crop of a chicken, and PCR profiling of L. crispatus isolates has verified it to be an abundant colonizer of the chicken crop (6, 8). It also displays a strong protein-dependent adhesion to the epithelial cells of the human vagina and has been shown to inhibit the adhesion of avian pathogenic Escherichia coli (6, 7).The genome was sequenced (18× coverage) using a 454 pyrosequencer with GS FLX chemistry (Roche). The contig order was confirmed and gaps were filled by sequencing PCR fragments from the genomic DNA template using ABI 3730 and Big Dye chemistry (Applied Biosystems). Genomic data were processed using the Staden Package (11) and gsAssembler (Roche). Coding sequences (CDSs) were predicted using Glimmer3 (5) followed by manual curation of the start sites. The remaining intergenic regions were reanalyzed for missed CDSs by using BlastX (1). Annotation transfer was performed based on a BlastP search, followed by Blannotator analysis using default settings (http://ekhidna.biocenter.helsinki.fi/poxo/blannotator) and manual verification. Orthologous groups between the different lactobacillar proteomes were identified using OrthoMCL (10).The genome of L. crispatus ST1 consists of a single circular chromosome 2.04 Mbp in size, with an overall G+C content of 37%, without any plasmids. There are 64 tRNA genes, 4 rRNA operons, and 2 CRISPR loci. Out of the 2,024 predicted CDSs, a putative function was assigned to 77%, whereas 10% of the CDSs were annotated as conserved and 13% as novel. Based on the orthologous grouping, 302 (15%) of the CDSs encoded by ST1 have no detectable homologs in any of the Lactobacillus proteomes published to date.  相似文献   

15.
Pseudomonas stutzeri T13 is a highly efficient aerobic denitrifying bacterium. Information about the genome of this aerobic denitrifying bacterium has been limited until now. We present the draft genome of P. stutzeri T13. The results could provide further insight into the aerobic denitrification mechanism in strain T13.  相似文献   

16.
Lactobacillus helveticus R0052 is a commercially available strain that is widely used in probiotic preparations. The genome sequence consisted of 2,129,425 bases. Comparative analysis showed that it was unique among L. helveticus strains in that it contained genes encoding mucus-binding proteins similar to those found in Lactobacillus acidophilus.  相似文献   

17.
18.
The complete DNA sequence of the aerobic cellulolytic soil bacterium Cytophaga hutchinsonii, which belongs to the phylum Bacteroidetes, is presented. The genome consists of a single, circular, 4.43-Mb chromosome containing 3,790 open reading frames, 1,986 of which have been assigned a tentative function. Two of the most striking characteristics of C. hutchinsonii are its rapid gliding motility over surfaces and its contact-dependent digestion of crystalline cellulose. The mechanism of C. hutchinsonii motility is not known, but its genome contains homologs for each of the gld genes that are required for gliding of the distantly related bacteroidete Flavobacterium johnsoniae. Cytophaga-Flavobacterium gliding appears to be novel and does not involve well-studied motility organelles such as flagella or type IV pili. Many genes thought to encode proteins involved in cellulose utilization were identified. These include candidate endo-β-1,4-glucanases and β-glucosidases. Surprisingly, obvious homologs of known cellobiohydrolases were not detected. Since such enzymes are needed for efficient cellulose digestion by well-studied cellulolytic bacteria, C. hutchinsonii either has novel cellobiohydrolases or has an unusual method of cellulose utilization. Genes encoding proteins with cohesin domains, which are characteristic of cellulosomes, were absent, but many proteins predicted to be involved in polysaccharide utilization had putative D5 domains, which are thought to be involved in anchoring proteins to the cell surface.  相似文献   

19.
20.
We announce the draft genome sequence of Lactobacillus casei W56 in one contig. This strain shows immunomodulatory and probiotic properties. The strain is also an ingredient of commercially available probiotic products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号