首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hamam A  Lew RR 《Eukaryotic cell》2012,11(5):694-702
We characterized the electrical phenotypes of mutants with mutations in genes encoding calcium transporters-a mechanosensitive channel homolog (MscS), a Ca(2+)/H(+) exchange protein (cax), and Ca(2+)-ATPases (nca-1, nca-2, nca-3)-as well as those of double mutants (the nca-2 cax, nca-2 nca-3, and nca-3 cax mutants). The electrical characterization used dual impalements to obtain cable-corrected current-voltage measurements. Only two types of mutants (the MscS mutant; the nca-2 mutant and nca-2-containing double mutants) exhibited lower resting potentials. For the nca-2 mutant, on the basis of unchanged conductance and cyanide-induced depolarization of the potential, the cause is attenuated H(+)-ATPase activity. The growth of the nca-2 mutant-containing strains was inhibited by elevated extracellular Ca(2+) levels, indicative of lesions in Ca(2+) homeostasis. However, the net Ca(2+) effluxes of the nca-2 mutant, measured noninvasively with a self-referencing Ca(2+)-selective microelectrode, were similar to those of the wild type. All of the mutants exhibited osmosensitivity similar to that of the wild type (the turgor of the nca-2 mutant was also similar to that of the wild type), suggesting that Ca(2+) signaling does not play a role in osmoregulation. The hyphal tip morphology and tip-localized mitochondria of the nca-2 mutant were similar to those of the wild type, even when the external [Ca(2+)] was elevated. Thus, although Ca(2+) homeostasis is perturbed in the nca-2 mutant (B. J. Bowman et al., Eukaryot. Cell 10:654-661, 2011), the phenotype does not extend to tip growth or to osmoregulation but is revealed by lower H(+)-ATPase activity.  相似文献   

2.
3.
We wanted to examine the cellular locations of four Neurospora crassa proteins that transport calcium. However, the structure and distribution of organelles in live hyphae of N. crassa have not been comprehensively described. Therefore, we made recombinant genes that generate translational fusions of putative organellar marker proteins with green or red fluorescent protein. We observed putative endoplasmic reticulum proteins, encoded by grp-78 and dpm, in the nuclear envelope and associated membranes. Proteins of the vacuolar membrane, encoded by vam-3 and vma-1, were in an interconnected network of small tubules and vesicles near the hyphal tip, while in more distal regions they were in large and small spherical vacuoles. Mitochondria, visualized with tagged ARG-4, were abundant in all regions of the hyphae. Similarly, we tagged the four N. crassa proteins that transport calcium with green or red fluorescent protein to examine their cellular locations. NCA-1 protein, a homolog of the SERCA-type Ca2+-ATPase of animal cells, colocalized with the endoplasmic reticulum markers. The NCA-2 and NCA-3 proteins are homologs of Ca2+-ATPases in the vacuolar membrane in yeast or in the plasma membrane in animal cells. They colocalized with markers in the vacuolar membrane, and they also occurred in the plasma membrane in regions of the hyphae more than 1 mm from the tip. The cax gene encodes a Ca2+/H+ exchange protein found in vacuoles. As expected, the CAX protein localized to the vacuolar compartment. We observed, approximately 50 to 100 μm from the tip, a few spherical organelles that had high amounts of tagged CAX protein and tagged subunits of the vacuolar ATPase (VMA-1 and VMA-5). We suggest that this organelle, not described previously in N. crassa, may have a role in sequestering calcium.All cells maintain intracellular concentrations of calcium at precise levels, typically about 0.1 μM in the cytosol. Calcium is often present at high levels in the environment, significantly above the level that is tolerated within the cell. Nevertheless, high concentrations are maintained in some organelles because calcium has an essential role in signaling physiological processes (3, 7, 29). In root hairs, pollen tubes, and the hyphae of filamentous fungi calcium has been postulated to have a central role in directing the growth at the tips of these cells (30, 32, 34, 38, 41, 49). Investigators have reported that in filamentous fungi the concentration of calcium is highest at the hyphal tip (56, 59). Disruption of the calcium gradient by ionophores inhibits growth (52). Mutations in some genes that affect hyphal morphology, e.g., frost and spray, can be suppressed by raising the concentration of calcium in the medium (4, 16). However, the growth of wild-type strains is not significantly affected by the external concentration of calcium, which suggests that cytosolic calcium is controlled by regulating calcium uptake and release from organelles (36, 55, 59).The proteins that transport calcium into organelles have been studied extensively in Saccharomyces cerevisiae. In this organism, more than 90% of the intracellular calcium is in the vacuole (19, 22), transported there by a protein that facilitates Ca2+/H+ exchange,Vcx1p, and by a calcium-pumping ATPase, Pmc1p (13, 14, 47). Another calcium-pumping ATPase, Pmr1p, can transport calcium or manganese into the Golgi bodies (1, 51, 57). S. cerevisiae has not been reported to have a calcium-pumping ATPase in the plasma membrane or a SERCA-type ATPase in the endoplasmic reticulum (ER). Pmr1p may have a dual function in Golgi body- and ER-associated processes (20).In plant and animal cells, three types of calcium-pumping ATPases have been described (3, 7, 9, 58). The PMCA type (most closely related to the Pmc1p ATPase of S. cerevisiae) primarily pumps calcium across the plasma membrane, removing excess calcium from the cytosol. The SERCA type, named by its location in the smooth ER, has a major role in transporting calcium in muscle cells but is also present in the ER in many types of cells. S. cerevisiae has no homolog to the SERCA ATPase. The SPCA type (secretory pathway Ca2+-ATPases) is found in the Golgi bodies and is homologous to the Pmr1p ATPase of S. cerevisiae (3, 42). The mitochondria also contain a significant share of intracellular calcium. No calcium-pumping ATPase has been identified in this organelle, and transport has been hypothesized to occur through a channel protein, driven by the same electrochemical gradient that drives the synthesis of ATP (18, 35). In addition, calcium is sequestered in small vesicles and in lysosomelike compartments, presumably transported by Ca2+/H+ exchange proteins (29).The availability of the complete genomes for N. crassa and other filamentous fungi has allowed us to assess the number and types of calcium transport proteins in these organisms (62). Focusing on N. crassa, we found that all three types of calcium-pumping ATPases are present. These genes had been identified earlier in a PCR-based search for P-type ATPases (2). The N. crassa gene nca-1 encodes a SERCA type ATPase. The nca-2 and nca-3 genes are closely related to each other and appear to encode PMCA type ATPases. The pmr gene is a SPCA type. We also identified the cax gene as a homolog of VCX1, the gene encoding the Ca2+/H+ exchanger that plays a key role in vacuolar transport in S. cerevisiae.Our long-term goal is to use these five genes (nca-1, nca-2, nca-3, pmr, and cax) to find out where calcium is localized in cells and how it gets there. We first wanted to determine the intracellular location of each transporter, using proteins tagged with green and red fluorescent proteins (GFP and RFP, respectively). For N. crassa and most other filamentous fungi a comprehensive analysis of the structure and distribution of organelles in living cells is lacking. GFP and fluorescent dyes have been used successfully to examine nuclei and mitochondria (24, 26). Several reports have shown that “the vacuole” is far more dynamic and complex than the textbook presentation of a large spherical organelle (10, 24, 31, 33, 54). Our understanding of the structure and abundance of the ER and the Golgi body is limited.In this report, we have fused GFP and RFP to proteins predicted to be localized to nuclei, mitochondria, the ER, the Golgi body, and the vacuole. Similarly, we have made GFP- and RFP-tagged forms of each of the five calcium transport proteins described above. We have examined the abundance and structures of the organelles and have observed (as have others) that these change with distance from the hyphal tip. We have tried to determine whether each of the calcium transport proteins is associated with a unique organelle or with the plasma membrane. In studies parallel to those reported here, we are measuring the amount of calcium in cell organelles and characterizing the phenotypes of strains in which the calcium transport genes have been deleted.  相似文献   

4.
We use asexual development of Neurospora crassa as a model system with which to determine the causes of cell differentiation. Air exposure of a mycelial mat induces hyphal adhesion, and adherent hyphae grow aerial hyphae that, in turn, form conidia. Previous work indicated the development of a hyperoxidant state at the start of these morphogenetic transitions and a large increase in catalase activity during conidiation. Catalase 3 (CAT-3) increases at the end of exponential growth and is induced by different stress conditions. Here we analyzed the effects of cat-3-null strains on growth and asexual development. The lack of CAT-3 was not compensated by other catalases, even under oxidative stress conditions, and cat-3RIP colonies were sensitive to H2O2, indicating that wild-type (Wt) resistance to external H2O2 was due to CAT-3. cat-3RIP colonies grown in the dark produced high levels of carotenes as a consequence of oxidative stress. Light exacerbated oxidative stress and further increased carotene synthesis. In the cat-3RIP mutant strain, increased aeration in liquid cultures led to increased hyphal adhesion and protein oxidation. Compared to the Wt, the cat-3RIP mutant strain produced six times more aerial hyphae and conidia in air-exposed mycelial mats, as a result of longer and more densely packed aerial hyphae. Protein oxidation in colonies was threefold higher and showed more aerial hyphae and conidia in mutant strains than did the Wt. Results indicate that oxidative stress due to lack of CAT-3 induces carotene synthesis, hyphal adhesion, and more aerial hyphae and conidia.

  相似文献   

5.
6.
The vacuolar pH and the trans-tonoplast ΔpH modifications induced by the activity of the two proton pumps H+-ATPase and H+-PPase and by the proton exchanges catalyzed by the Na+/H+ and Ca2+/H+ antiports at the tonoplast of isolated intact vacuoles prepared from Catharanthus roseus cells enriched in inorganic phosphate (Y Mathieu et al 1988 Plant Physiol [in press]) were measured using the 31P NMR technique. The H+-ATPase induced an intravacuolar acidification as large as 0.8 pH unit, building a trans-tonoplast ΔpH up to 2.2 pH units. The hydrolysis of the phosphorylated substrate and the vacuolar acidification were monitored simultaneously to estimate kinetically the apparent stoichiometry between the vectorial proton pumping and the hydrolytic activity of the H+-ATPase. A ratio of H+ translocated/ATP hydrolyzed of 1.97 ± 0.06 (mean ± standard error) was calculated. Pyrophosphate-treated vacuoles were also acidified to a significant extent. The H+-PPase at 2 millimolar PPi displayed hydrolytic and vectorial activities comparable to those of the H+-ATPase, building a steady state ΔpH of 2.1 pH units. Vacuoles incubated in the presence of 10 millimolar Na+ were alkalinized by 0.4 to 0.8 pH unit. It has been shown by using 23Na NMR that sodium uptake was coupled to the H+ efflux and occurred against rather large concentration gradients. For the first time, the activity of the Ca2+/H+ antiport has been measured on isolated intact vacuoles. Ca2+ uptake was strongly inhibited by NH4Cl or gramicidin. Vacuoles incubated with 1 millimolar Ca2+ were alkalinized by about 0.6 pH unit and this H+ efflux was associated to a Ca2+ uptake as demonstrated by measuring the external Ca2+ concentration with a calcium specific electrode. Steady state accumulation ratios of Ca2+ as high as 100 were reached for steady state external concentrations about 200 micromolar. The rate of Ca2+ uptake appeared markedly amplified in intact vacuoles when compared to tonoplast vesicles but the antiport displayed a much lower affinity for calcium. The different behavior of intact vacuoles compared to vesicles appears mainly to be due to differences in the surface to volume ratio and in the rates of dissipation of the pH gradient. Despite its low affinity, the Ca2+/H+ antiport has a high potential capacity to regulate cytoplasmic concentration of calcium.  相似文献   

7.
We have examined the distribution of calcium in Neurospora crassa and investigated the role of four predicted calcium transport proteins. The results of cell fractionation experiments showed 4% of cellular calcium in mitochondria, approximately 11% in a dense vacuolar fraction, 40% in an insoluble form that copurifies with microsomes, and 40% in a high-speed supernatant, presumably from large vacuoles that had broken. Strains lacking NCA-1, a SERCA-type Ca(2+)-ATPase, or NCA-3, a PMC-type Ca(2+)-ATPase, had no obvious defects in growth or distribution of calcium. A strain lacking NCA-2, which is also a PMC-type Ca(2+)-ATPase, grew slowly in normal medium and was unable to grow in high concentrations of calcium tolerated by the wild type. Furthermore, when grown in normal concentrations of calcium (0.68 mM), this strain accumulated 4- to 10-fold more calcium than other strains, elevated in all cell fractions. The data suggest that NCA-2 functions in the plasma membrane to pump calcium out of the cell. In this way, it resembles the PMC-type enzymes of animal cells, not the Pmc1p enzyme in Saccharomyces cerevisiae that resides in the vacuole. Strains lacking the cax gene, which encodes a Ca(2+)/H(+) exchange protein in vacuolar membranes, accumulate very little calcium in the dense vacuolar fraction but have normal levels of calcium in other fractions. The cax knockout strain has no other observable phenotypes. These data suggest that "the vacuole" is heterogeneous and that the dense vacuolar fraction contains an organelle that is dependent upon the CAX transporter for accumulation of calcium, while other components of the vacuolar system have multiple calcium transporters.  相似文献   

8.
《Gene》1998,206(1):107-116
A novel P-type ATPase gene, Saccharomyces cerevisiae PMR1 homologue (YlPMR1), has been cloned and sequenced in the yeast, Yarrowia lipolytica. The putative gene product has 928 amino acids with a calculated molecular mass of 100 050 Da and a pI of 5.15. The deduced amino-acid sequence analysis demonstrated that the cloned gene product contains all 10 of the conserved regions in P-type ATPases and exhibits 55% amino-acid identity to the S. cerevisiae PMR1 gene product; however, it shows a relatively lower homology to PMCA (24%) and SERCA (33%), confirming the presence of a third class of Ca2+-ATPase (secretory pathway Ca2+-ATPase, SPCA). The YlPMR1-disrupted strain shows defective growth in low Ca2+ or EGTA-containing medium. In fact, a longer lag time (60 h) was observed in YlPMR1-defective mutant cells during cultivation in EGTA-containing YPD medium. These growth defects were overcome by adding Ca2+ and Mn2+ into the medium. Interestingly, whereas Mn2+ inhibits growth of the control strain, it significantly improves the growth of YlPMR1-disrupted cells. These results suggest an involvement of the YlPMR1 gene product in Ca2+ and Mn2+ ion homeostasis in Y. lipolytica.  相似文献   

9.
Human alkaline ceramidase 2 (ACER2) plays an important role in cellular responses by regulating the hydrolysis of ceramides in cells. Here we report its biochemical characterization, membrane topology, and activity regulation. Recombinant ACER2 was expressed in yeast mutant cells (Δypc1Δydc1) that lack endogenous ceramidase activity, and microsomes from ACER2-expressiong yeast cells were used to biochemically characterize ACER2. ACER2 catalyzed the hydrolysis of various ceramides and followed Michaelis-Menten kinetics. ACER2 required Ca2+ for both its in vitro and cellular activities. ACER2 has 7 putative transmembrane domains, and its amino (N) and carboxyl (C) termini were found to be oriented in the lumen of the Golgi complex and cytosol, respectively. ACER2 mutant (ACER2ΔN36) lacking the N-terminal tail (the first 36 amino acid residues) exhibited undetectable activity and was mislocalized to the endoplasmic reticulum, suggesting that the N-terminal tail is necessary for both ACER2 activity and Golgi localization. ACER2 mutant (ACER2ΔN13) lacking the first 13 residues was also mislocalized to the endoplasmic reticulum although it retained ceramidase activity. Overexpression of ACER2, ACER2ΔN13, but not ACER2ΔN36 increased the release of sphingosine 1-phosphate from cells, suggesting that its mislocalization does not affect the ability of ACER2 to regulate sphingosine 1-phosphate secretion. However, overexpression of ACER2 but not ACER2ΔN13 or ACER2ΔN36 inhibited the glycosylation of integrin β1 subunit and Lamp1, suggesting that its mistargeting abolishes the ability of ACER2 to regulation protein glycosylation. These data suggest that ACER2 has broad substrate specificity and requires Ca2+ for its activity and that ACER2 has the cytosolic C terminus and luminal N terminus, which are essential for its activity, correct cellular localization, and regulation for protein glycosylation.  相似文献   

10.
11.
Genome sequence comparisons have highlighted many novel gene families that are conserved across animal phyla but whose biological function is unknown. Here, we functionally characterize a member of one such family, the macoilins. Macoilins are characterized by several highly conserved predicted transmembrane domains towards the N-terminus and by coiled-coil regions C-terminally. They are found throughout Eumetazoa but not in other organisms. Mutants for the single Caenorhabditis elegans macoilin, maco-1, exhibit a constellation of behavioral phenotypes, including defects in aggregation, O2 responses, and swimming. MACO-1 protein is expressed broadly and specifically in the nervous system and localizes to the rough endoplasmic reticulum; it is excluded from dendrites and axons. Apart from subtle synapse defects, nervous system development appears wild-type in maco-1 mutants. However, maco-1 animals are resistant to the cholinesterase inhibitor aldicarb and sensitive to levamisole, suggesting pre-synaptic defects. Using in vivo imaging, we show that macoilin is required to evoke Ca2+ transients, at least in some neurons: in maco-1 mutants the O2-sensing neuron PQR is unable to generate a Ca2+ response to a rise in O2. By genetically disrupting neurotransmission, we show that pre-synaptic input is not necessary for PQR to respond to O2, indicating that the response is mediated by cell-intrinsic sensory transduction and amplification. Disrupting the sodium leak channels NCA-1/NCA-2, or the N-,P/Q,R-type voltage-gated Ca2+ channels, also fails to disrupt Ca2+ responses in the PQR cell body to O2 stimuli. By contrast, mutations in egl-19, which encodes the only Caenorhabditis elegans L-type voltage-gated Ca2+ channel α1 subunit, recapitulate the Ca2+ response defect we see in maco-1 mutants, although we do not see defects in localization of EGL-19. Together, our data suggest that macoilin acts in the ER to regulate assembly or traffic of ion channels or ion channel regulators.  相似文献   

12.
Previous investigators have shown that following doxorubicin treatment heart mitochondria appear swollen and contain intramitochondrial dense inclusion bodies identified as calcium phosphate. In vitro studies have shown that similar morphological changes occur in mitochondria previously loaded with excess calcium. The present studies were performed to determine the effects of doxorubicin and its aglycone metabolite on 45Ca2+ uptake by mitochondria isolated from the heart, liver, and kidney of the rabbit. Doxorubicin (100 μM) significantly inhibited the initial rate of 45Ca2+ accumulated by mitochondria isolated from the three tissues. In contrast, the aglycone metabolite (100 μM) induced the reverse effect. In preloaded mitochondria the aglycone stimulated the release of calcium while doxorubicin was without effect. Mitochondria from the heart were significantly more sensitive to the effects of these anthracyclines than were mitochondria from the other two tissues. If these in vitro effects also occur in vitro, then the aglycone metabolite would be a more likely candidate in explaining the morphological changes in heart mitochondria previously described.  相似文献   

13.
A novel staining and quantification method to investigate changes in intracellular calcium levels [Ca2+]i and morphology in filamentous fungus is presented. Using a simple protocol, two fluorescent dyes, Fluo-4-AM and Cell trace calcein red-orange-AM were loaded into the filamentous fungus Penicillium chrysogenum. The present study investigates the applicability of using Ca2+-sensitive dye to quantify and image [Ca2+]i in P. chrysogenum cultures chosen for its potential as an experimental system to study Ca2+ signalling in elicited cultures. The dye loading was optimised and investigated at different pH loading conditions. It was observed that the fluorophore was taken up throughout the hyphae, retaining cell membrane integrity and no dye compartmentalisation within organelles was observed. From the fluorescent plate-reader studies a significant rise (p < 0.001) in the relative fluorescence levels corresponding to [Ca2+]i levels in the hyphae was observed when challenged with an elicitor (mannan oligosaccharide, 150 mg L?1) which was dependent upon extracellular calcium. Concurrently a novel application of dye-loaded hyphae for morphological analysis was also examined using the imaging software Filament Tracer (Bitplane). Essential quantitative mycelial information including the length and diameter of the segments and number of branch points was obtained using this application based on the three-dimensional data.  相似文献   

14.
Microsomal vesicles from 24-hour-old radish (Raphanus sativus L.) seedlings accumulate Ca2+ upon addition of MgATP. MgATP-dependent Ca2+ uptake co-migrates with the plasma membrane H+-ATPase on a sucrose gradient. Ca2+ uptake is insensitive to oligomycin, inhibited by vanadate (IC50 40 micromolar) and erythrosin B (IC50 0.2 micromolar) and displays a pH optimum between pH 6.6 and 6.9. MgATP-dependent Ca2+ uptake is insensitive to protonophores. These results indicate that Ca2+ transport in these microsomal vesicles is catalyzed by a Mg2+-dependent ATPase localized on the plasma membrane. Ca2+ strongly reduces ΔpH generation by the plasma membrane H+-ATPase and increases MgATP-dependent membrane potential difference (Δψ) generation. These effects of Ca2+ on ΔpH and Δψ generation are drastically reduced by micromolar erythrosin B, indicating that they are primarily a consequence of Ca2+ uptake into plasma membrane vesicles. The Ca2+-induced increase of Δψ is collapsed by permeant anions, which do not affect Ca2+-induced decrease of ΔpH generation by the plasma membrane H+-ATPase. The rate of decay of MgATP-dependent ΔpH, upon inhibition of the plasma membrane H+-ATPase, is accelerated by MgATP-dependent Ca2+ uptake, indicating that the decrease of ΔpH generation induced by Ca2+ reflects the efflux of H+ coupled to Ca2+ uptake into plasma membrane vesicles. It is therefore proposed that Ca2+ transport at the plasma membrane is mediated by a Mg2+-dependent ATPase which catalyzes a nH+/Ca2+ exchange.  相似文献   

15.
Microsomal membrane vesicles isolated from goat spermatozoa contain Ca2+-ATPase, and exhibit Ca2+ transport activities that do not require exogenous Mg2+ .The enzyme activity is inhibited by calcium-channel inhibitors,e.g. verapamil and diltiazem, like the well known Ca2+ , Mg2+-ATPase. The uptake of calcium is ATP (energy)-dependent and the accumulated Ca2+ can be completely released by the Ca2+ ionophore A23187, suggesting that a significant fraction of the vesicles are oriented inside out  相似文献   

16.
The dependence of the Ca2+-ATPase activity of sarcoplasmic reticulum vesicles upon the intravesicular concentration of calcium accumulated after active uptake was studied. The internal calcium concentration was modified by addition of the ionophore A23187 at the steady state of accumulation. About half of the calcium accumulated could be released at low ionophore concentration without any concomitant activation of the Ca2+-ATPase. This population of calcium might consist of calcium free in the lumen of the vesicles or bound to the bilayer at sites which do not interact with the ATPase activity. At higher concentrations of ionophore (above 1.75 nmol A23187/mg protein) the release of calcium activated this enzyme. This phenomenon was independent of the extravesicular calcium concentration and might be explained by assuming second species of calcium ions bound to the inner side of the membrane and in close functional interaction with the Ca2+-ATPase.  相似文献   

17.
Plasma membranes from rat liver purified according to the procedure of Neville bind calcium ions by a concentration-dependent, saturable process with at least two classes of binding sites. The higher affinity sites bind 45 nmol calcium/mg membrane protein with a KD of 3 µM. Adrenalectomy increases the number of the higher affinity sites and the corresponding KD. Plasma membranes exhibit a (Na+-K+)-independent-Mg2+-ATPase activity which is not activated by calcium between 0.1 µM and 10 mM CaCl2. Calcium can, with less efficiency, substitute for magnesium as a cofactor for the (Na+-K+)-independent ATPase. Both Mg2+- and Ca2+-ATPase activities are identical with respect to pH dependence, nucleotide specificity and sensitivity to inhibitors. But when calcium is substituted for magnesium, there is no detectable membrane phosphorylation from [γ-32P] ATP as it is found in the presence of magnesium. The existence of high affinity binding sites for calcium in liver plasma membranes is compatible with a regulatory role of this ion in membrane enzymic mechanisms or in hormone actions. Plasma membranes obtained by the procedure of Neville are devoid of any Ca2+-activated-Mg2+-ATPase activity indicating the absence of the classical energy-dependent calcium ion transport. These results would suggest that the overall calcium-extruding activity of the liver cell is mediated by a mechanism involving no direct ATP hydrolysis at the membrane level.  相似文献   

18.
19.
The effect of calcium and a soluble cytoplasmic activator on (Ca2+ + Mg2+)-ATPase of density-separated human red cells was investigated. At all calcium concentrations tested, dense (old) lysed cells and their isolated membranes displayed lower activities as compared to the light (young) cells and their membranes. Isolated membranes from all density red cell fractions showed two distinct (Ca2+ + Mg2+)-ATPase activities; one at low calcium and another at moderate calcium concentrations. At high calcium concentration, (Ca2+ + Mg2+)-ATPase activity of isolated membranes was low in all cell fractions. In contrast to the isolated membranes, lysed cells from all density fractions had a maximum (Ca2+ + Mg2+)-ATPase activity only at a low concentration of calcium, while moderate and high calcium concentrations produced low activity. Upon isolation of membranes, a substantial loss of (Ca2+ + Mg2+)-ATPase activity took place from all density cell fractions. Upon membrane isolation, the relative loss of (Ca2+ + Mg2+)-ATPase activity at low Ca2+ concentration was greater in older cells. The extent of stimulation of (Ca2+ + Mg2+)-ATPase by the activator at low calcium concentration was 3–4-fold greater in older cell membranes than in the young ones.These data suggest that the lower (Ca2+ + Mg2+)-ATPase activity in old cells could be accounted for by a selective loss of (Ca2+ + Mg2+)-ATPase activity at low Ca2+ concentration presumably due to reduced affinity of old cell membranes to activator protein.  相似文献   

20.
Bordetella adenylate cyclase toxin-hemolysin (CyaA) penetrates the cytoplasmic membrane of phagocytes and employs two distinct conformers to exert its multiple activities. One conformer forms cation-selective pores that permeabilize phagocyte membrane for efflux of cytosolic potassium. The other conformer conducts extracellular calcium ions across cytoplasmic membrane of cells, relocates into lipid rafts, translocates the adenylate cyclase enzyme (AC) domain into cells and converts cytosolic ATP to cAMP. We show that the calcium-conducting activity of CyaA controls the path and kinetics of endocytic removal of toxin pores from phagocyte membrane. The enzymatically inactive but calcium-conducting CyaA-AC toxoid was endocytosed via a clathrin-dependent pathway. In contrast, a doubly mutated (E570K+E581P) toxoid, unable to conduct Ca2+ into cells, was rapidly internalized by membrane macropinocytosis, unless rescued by Ca2+ influx promoted in trans by ionomycin or intact toxoid. Moreover, a fully pore-forming CyaA-ΔAC hemolysin failed to permeabilize phagocytes, unless endocytic removal of its pores from cell membrane was decelerated through Ca2+ influx promoted by molecules locked in a Ca2+-conducting conformation by the 3D1 antibody. Inhibition of endocytosis also enabled the native B. pertussis-produced CyaA to induce lysis of J774A.1 macrophages at concentrations starting from 100 ng/ml. Hence, by mediating calcium influx into cells, the translocating conformer of CyaA controls the removal of bystander toxin pores from phagocyte membrane. This triggers a positive feedback loop of exacerbated cell permeabilization, where the efflux of cellular potassium yields further decreased toxin pore removal from cell membrane and this further enhances cell permeabilization and potassium efflux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号