首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating. Fisetin sped HCN2 activation and shifted the conductance-voltage relationship to more depolarizing potentials with a half-maximal effective concentration (EC50) of 1.8 μm. When applied together, fisetin and cAMP regulated HCN2 gating in a nonadditive fashion. Fisetin did not potentiate HCN2 channels lacking their CNBD, and two independent fluorescence-based binding assays reported that fisetin bound to the purified CNBD. These data suggest that the CNBD mediates the fisetin potentiation of HCN2 channels. Moreover, binding assays suggest that fisetin and cAMP partially compete for binding to the CNBD. NMR experiments demonstrated that fisetin binds within the cAMP-binding pocket, interacting with some of the same residues as cAMP. Together, these data indicate that fisetin is a partial agonist for HCN2 channels.  相似文献   

2.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dually activated by hyperpolarization and binding of cAMP to their cyclic nucleotide binding domain (CNBD). HCN isoforms respond differently to cAMP; binding of cAMP shifts activation of HCN2 and HCN4 by 17 mV but shifts that of HCN1 by only 2-4 mV. To explain the peculiarity of HCN1, we solved the crystal structures and performed a biochemical-biophysical characterization of the C-terminal domain (C-linker plus CNBD) of the three isoforms. Our main finding is that tetramerization of the C-terminal domain of HCN1 occurs at basal cAMP concentrations, whereas those of HCN2 and HCN4 require cAMP saturating levels. Therefore, HCN1 responds less markedly than HCN2 and HCN4 to cAMP increase because its CNBD is already partly tetrameric. This is confirmed by voltage clamp experiments showing that the right-shifted position of V(½) in HCN1 is correlated with its propensity to tetramerize in vitro. These data underscore that ligand-induced CNBD tetramerization removes tonic inhibition from the pore of HCN channels.  相似文献   

3.
The hyperpolarization-activated cyclic nucleotide-modulated cation (HCN) channels are regulated by both membrane voltage and the binding of cyclic nucleotides to a cytoplasmic, C-terminal cyclic nucleotide-binding domain (CNBD). Here we have addressed the mechanism of this dual regulation for HCN2 channels, which activate with slow kinetics that are strongly accelerated by cAMP, and HCN1 channels, which activate with rapid kinetics that are weakly enhanced by cAMP. Surprisingly, we find that the rate of opening of HCN2 approaches a maximal value with extreme hyperpolarization, indicating the presence of a voltage-independent kinetic step in the opening process that becomes rate limiting at very negative potentials. cAMP binding enhances the rate of this voltage-independent opening step. In contrast, the rate of opening of HCN1 is much greater than that of HCN2 and does not saturate with increasing hyperpolarization over the voltage range examined. Domain-swapping chimeras between HCN1 and HCN2 reveal that the S4-S6 transmembrane region largely determines the limiting rate in opening kinetics at negative voltages. Measurements of HCN2 tail current kinetics also reveal a voltage-independent closing step that becomes rate limiting at positive voltages; the rate of this closing step is decreased by cAMP. These results are consistent with a cyclic allosteric model in which a closed-open transition that is inherently voltage independent is subject to dual allosteric regulation by voltage sensor movement and cAMP binding. This mechanism accounts for several properties of HCN channel gating and has potentially important physiological implications.  相似文献   

4.
Members of the hyperpolarization-activated cation (HCN) channel family generate HCN currents (I(h)) that are directly regulated by cAMP and contribute to pacemaking activity in heart and brain. The four different HCN isoforms show distinct biophysical properties. In cell-free patches from Xenopus oocytes, the steady-state activation curve of HCN2 channels is 20 mV more hyperpolarized compared with HCN1. Whereas the binding of cAMP to a COOH-terminal cyclic nucleotide binding domain (CNBD) markedly shifts the activation curve of HCN2 by 17 mV to more positive potentials, the response of HCN1 is much less pronounced (4 mV shift). A previous deletion mutant study suggested that the CNBD inhibits hyperpolarization-gating in the absence of cAMP; the binding of cAMP shifts gating to more positive voltages by relieving this inhibition. The differences in basal gating and cAMP responsiveness between HCN1 and HCN2 were proposed to result from a greater inhibitory effect of the CNBD in HCN2 compared with HCN1. Here, we use a series of chimeras between HCN1 and HCN2, in which we exchange the NH(2) terminus, the transmembrane domain, or distinct domains of the COOH terminus, to investigate further the molecular bases for the modulatory action of cAMP and for the differences in the functional properties of the two channels. Differences in cAMP regulation between HCN1 and HCN2 are localized to sequence differences within the COOH terminus of the two channels. Surprisingly, exchange of the CNBDs between HCN1 and HCN2 has little effect on basal gating and has only a modest one on cAMP modulation. Rather, differences in cAMP modulation depend on the interaction between the CNBD and the C-linker, a conserved 80-amino acid region that connects the last (S6) transmembrane segment to the CNBD. Differences in basal gating depend on both the core transmembrane domain and the COOH terminus. These data, taken in the context of the previous data on deletion mutants, suggest that the inhibitory effect of the CNBD on basal gating depends on its interactions with both the C-linker and core transmembrane domain of the channel. The extent to which cAMP binding is able to relieve this inhibition is dependent on the interaction between the C-linker and the CNBD.  相似文献   

5.
6.
Hyperpolarization-activated cyclic nucleotide-regulated HCN channels underlie the Na+-K+ permeable IH pacemaker current. As with other voltage-gated members of the 6-transmembrane KV channel superfamily, opening of HCN channels involves dilation of a helical bundle formed by the intracellular ends of S6 albeit this is promoted by inward, not outward, displacement of S4. Direct agonist binding to a ring of cyclic nucleotide-binding sites, one of which lies immediately distal to each S6 helix, imparts cAMP sensitivity to HCN channel opening. At depolarized potentials, HCN channels are further modulated by intracellular Mg2+ which blocks the open channel pore and blunts the inhibitory effect of outward K+ flux. Here, we show that cAMP binding to the gating ring enhances not only channel opening but also the kinetics of Mg2+ block. A combination of experimental and simulation studies demonstrates that agonist acceleration of block is mediated via acceleration of the blocking reaction itself rather than as a secondary consequence of the cAMP enhancement of channel opening. These results suggest that the activation status of the gating ring and the open state of the pore are not coupled in an obligate manner (as required by the often invoked Monod-Wyman-Changeux allosteric model) but couple more loosely (as envisioned in a modular model of protein activation). Importantly, the emergence of second messenger sensitivity of open channel rectification suggests that loose coupling may have an unexpected consequence: it may endow these erstwhile “slow” channels with an ability to exert voltage and ligand-modulated control over cellular excitability on the fastest of physiologically relevant time scales.  相似文献   

7.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels control neuronal and cardiac electrical rhythmicity. There are four homologous isoforms (HCN1–4) sharing a common multidomain architecture that includes an N-terminal transmembrane tetrameric ion channel followed by a cytoplasmic “C-linker,” which connects a more distal cAMP-binding domain (CBD) to the inner pore. Channel opening is primarily stimulated by transmembrane elements that sense membrane hyperpolarization, although cAMP reduces the voltage required for HCN activation by promoting tetramerization of the intracellular C-linker, which in turn relieves auto-inhibition of the inner pore gate. Although binding of cAMP has been proposed to relieve auto-inhibition by affecting the structure of the C-linker and CBD, the nature and extent of these cAMP-dependent changes remain limitedly explored. Here, we used NMR to probe the changes caused by the binding of cAMP and of cCMP, a partial agonist, to the apo-CBD of HCN4. Our data indicate that the CBD exists in a dynamic two-state equilibrium, whose position as gauged by NMR chemical shifts correlates with the V½ voltage measured through electrophysiology. In the absence of cAMP, the most populated CBD state leads to steric clashes with the activated or “tetrameric” C-linker, which becomes energetically unfavored. The steric clashes of the apo tetramer are eliminated either by cAMP binding, which selects for a CBD state devoid of steric clashes with the tetrameric C-linker and facilitates channel opening, or by a transition of apo-HCN to monomers or dimer of dimers, in which the C-linker becomes less structured, and channel opening is not facilitated.  相似文献   

8.
Hyperpolarization-activated cyclic nucleotide–regulated cation (HCN) channels generate the hyperpolarization-activated cation current Ih present in many neurons. These channels are directly regulated by the binding of cAMP, which both shifts the voltage dependence of HCN channel opening to more positive potentials and increases maximal Ih at extreme negative voltages where voltage gating is complete. Here we report that the HCN channel brain-specific auxiliary subunit TRIP8b produces opposing actions on these two effects of cAMP. In the first action, TRIP8b inhibits the effect of cAMP to shift voltage gating, decreasing both the sensitivity of the channel to cAMP (K1/2) and the efficacy of cAMP (maximal voltage shift); conversely, cAMP binding inhibits these actions of TRIP8b. These mutually antagonistic actions are well described by a cyclic allosteric mechanism in which TRIP8b binding reduces the affinity of the channel for cAMP, with the affinity of the open state for cAMP being reduced to a greater extent than the cAMP affinity of the closed state. In a second apparently independent action, TRIP8b enhances the action of cAMP to increase maximal Ih. This latter effect cannot be explained by the cyclic allosteric model but results from a previously uncharacterized action of TRIP8b to reduce maximal current through the channel in the absence of cAMP. Because the binding of cAMP also antagonizes this second effect of TRIP8b, application of cAMP produces a larger increase in maximal Ih in the presence of TRIP8b than in its absence. These findings may provide a mechanistic explanation for the wide variability in the effects of modulatory transmitters on the voltage gating and maximal amplitude of Ih reported for different neurons in the brain.  相似文献   

9.
Hyperpolarization-activated, cyclic nucleotide-sensitive (HCN4) channels produce the “funny current,” If, which contributes to spontaneous pacemaking in sinoatrial myocytes (SAMs). The C-terminus of HCN channels inhibits voltage-dependent gating, and cAMP binding relieves this “autoinhibition.” We previously showed 1) that autoinhibition in HCN4 can be relieved in the absence of cAMP in some cellular contexts and 2) that PKA is required for β adrenergic receptor (βAR) signaling to HCN4 in SAMs. Together, these results raise the possibility that native HCN channels in SAMs may be insensitive to direct activation by cAMP. Here, we examined PKA-independent activation of If by cAMP in SAMs. We observed similar robust activation of If by exogenous cAMP and Rp-cAMP (an analog than cannot activate PKA). Thus PKA-dependent βAR-to-HCN signaling does not result from cAMP insensitivity of sinoatrial HCN channels and might instead arise via PKA-dependent limitation of cAMP production and/or cAMP access to HCN channels in SAMs.  相似文献   

10.
Activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is facilitated in vivo by direct binding of the second messenger cAMP. This process plays a fundamental role in the fine-tuning of HCN channel activity and is critical for the modulation of cardiac and neuronal rhythmicity. Here, we identify the pyrimidine cyclic nucleotide cCMP as another regulator of HCN channels. We demonstrate that cCMP shifts the activation curves of two members of the HCN channel family, HCN2 and HCN4, to more depolarized voltages. Moreover, cCMP speeds up activation and slows down deactivation kinetics of these channels. The two other members of the HCN channel family, HCN1 and HCN3, are not sensitive to cCMP. The modulatory effect of cCMP is reversible and requires the presence of a functional cyclic nucleotide-binding domain. We determined an EC(50) value of ~30 μm for cCMP compared with 1 μm for cAMP. Notably, cCMP is a partial agonist of HCN channels, displaying an efficacy of ~0.6. cCMP increases the frequency of pacemaker potentials from isolated sinoatrial pacemaker cells in the presence of endogenous cAMP concentrations. Electrophysiological recordings indicated that this increase is caused by a depolarizing shift in the activation curve of the native HCN current, which in turn leads to an enhancement of the slope of the diastolic depolarization of sinoatrial node cells. In conclusion, our findings establish cCMP as a gating regulator of HCN channels and indicate that this cyclic nucleotide has to be considered in HCN channel-regulated processes.  相似文献   

11.
Cyclic nucleotide-sensitive ion channels are molecular pores that open in response to cAMP or cGMP, which are universal second messengers. Binding of a cyclic nucleotide to the carboxyterminal cyclic nucleotide binding domain (CNBD) of these channels is thought to cause a conformational change that promotes channel opening. The C-linker domain, which connects the channel pore to this CNBD, plays an important role in coupling ligand binding to channel opening. Current structural insight into this mechanism mainly derives from X-ray crystal structures of the C-linker/CNBD from hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels. However, these structures reveal little to no conformational changes upon comparison of the ligand-bound and unbound form. In this study, we take advantage of a recently identified prokaryote ion channel, SthK, which has functional properties that strongly resemble cyclic nucleotide-gated (CNG) channels and is activated by cAMP, but not by cGMP. We determined X-ray crystal structures of the C-linker/CNBD of SthK in the presence of cAMP or cGMP. We observe that the structure in complex with cGMP, which is an antagonist, is similar to previously determined HCN channel structures. In contrast, the structure in complex with cAMP, which is an agonist, is in a more open conformation. We observe that the CNBD makes an outward swinging movement, which is accompanied by an opening of the C-linker. This conformation mirrors the open gate structures of the Kv1.2 channel or MthK channel, which suggests that the cAMP-bound C-linker/CNBD from SthK represents an activated conformation. These results provide a structural framework for better understanding cyclic nucleotide modulation of ion channels, including HCN and CNG channels.  相似文献   

12.
Members of the HCN channel family generate hyperpolarization-activated cation currents (Ih) that are directly regulated by cAMP and contribute to pacemaker activity in heart and brain. The four HCN isoforms show distinct but overlapping patterns of expression in different tissues. Here, we report that HCN1 and HCN2, isoforms coexpressed in neocortex and hippocampus that differ markedly in their biophysical properties, coassemble to generate heteromultimeric channels with novel properties. When expressed in Xenopus oocytes, HCN1 channels activate 5-10-fold more rapidly than HCN2 channels. HCN1 channels also activate at voltages that are 10-20 mV more positive than those required to activate HCN2. In cell-free patches, the steady-state activation curve of HCN1 channels shows a minimal shift in response to cAMP (+4 mV), whereas that of HCN2 channels shows a pronounced shift (+17 mV). Coexpression of HCN1 and HCN2 yields Ih currents that activate with kinetics and a voltage dependence that tend to be intermediate between those of HCN1 and HCN2 homomers, although the coexpressed channels do show a relatively large shift by cAMP (+14 mV). Neither the kinetics, steady-state voltage dependence, nor cAMP dose-response curve for the coexpressed Ih can be reproduced by the linear sum of independent populations of HCN1 and HCN2 homomers. These results are most simply explained by the formation of heteromeric channels with novel properties. The properties of these heteromeric channels closely resemble the properties of I(h) in hippocampal CA1 pyramidal neurons, cells that coexpress HCN1 and HCN2. Finally, differences in Ih channel properties recorded in cell-free patches versus intact oocytes are shown to be due, in part, to modulation of Ih by basal levels of cAMP in intact cells.  相似文献   

13.
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels are important for rhythmic activity in the brain and in the heart. In this study, using ionic and gating current measurements, we show that cloned spHCN channels undergo a hysteresis in their voltage dependence during normal gating. For example, both the gating charge versus voltage curve, Q(V), and the conductance versus voltage curve, G(V), are shifted by about +60 mV when measured from a hyperpolarized holding potential compared with a depolarized holding potential. In addition, the kinetics of the tail current and the activation current change in parallel to the voltage shifts of the Q(V) and G(V) curves. Mammalian HCN1 channels display similar effects in their ionic currents, suggesting that the mammalian HCN channels also undergo voltage hysteresis. We propose a model in which HCN channels transit between two modes. The voltage dependence in the two modes is shifted relative to each other, and the occupancy of the two modes depends on the previous activation of the channel. The shifts in the voltage dependence are fast (tau approximately 100 ms) and are not accompanied by any apparent inactivation. In HCN1 channels, the shift in voltage dependence is slower in a 100 mM K extracellular solution compared with a 1 mM K solution. Based on these findings, we suggest that molecular conformations similar to slow (C-type) inactivation of K channels underlie voltage hysteresis in HCN channels. The voltage hysteresis results in HCN channels displaying different voltage dependences during different phases in the pacemaker cycle. Computer simulations suggest that voltage hysteresis in HCN channels decreases the risk of arrhythmia in pacemaker cells.  相似文献   

14.
15.
An important step toward understanding the molecular basis of the functional diversity of pacemaker currents in spontaneously active cells has been the identification of a gene family encoding hyperpolarization-activated cyclic nucleotide-sensitive cation nonselective (HCN) channels. Three of the four gene products that have been expressed so far give rise to pacemaker channels with distinct activation kinetics and are differentially distributed among the brain, with considerable overlap between some isoforms. This raises the possibility that HCN channels may coassemble to form heteromeric channels in some areas, similar to other K(+) channels. In this study, we have provided evidence for functional heteromerization of HCN1 and HCN2 channels using a concatenated cDNA construct encoding two connected subunits. We have observed that heteromeric channels activate several-fold faster than HCN2 and only a little slower than HCN1. Furthermore, the voltage dependence of activation is more similar to HCN2, whereas the cAMP sensitivity is intermediate between HCN1 and HCN2. This phenotype shows marked similarity to the current arising from coexpressed HCN1 and HCN2 subunits in oocytes and the native pacemaker current in CA1 pyramidal neurons. We suggest that heteromerization may increase the functional diversity beyond the levels expected from the number of HCN channel genes and their differential distribution.  相似文献   

16.
HCN (hyperpolarization-activated cyclic nucleotide gated) pacemaker channels have an architecture similar to that of voltage-gated K+ channels, but they open with the opposite voltage dependence. HCN channels use essentially the same positively charged voltage sensors and intracellular activation gates as K+ channels, but apparently these two components are coupled differently. In this study, we examine the energetics of coupling between the voltage sensor and the pore by using cysteine mutant channels for which low concentrations of Cd2+ ions freeze the open–closed gating machinery but still allow the sensors to move. We were able to lock mutant channels either into open or into closed states by the application of Cd2+ and measure the effect on voltage sensor movement. Cd2+ did not immobilize the gating charge, as expected for strict coupling, but rather it produced shifts in the voltage dependence of voltage sensor charge movement, consistent with its effect of confining transitions to either closed or open states. From the magnitude of the Cd2+-induced shifts, we estimate that each voltage sensor produces a roughly three- to sevenfold effect on the open–closed equilibrium, corresponding to a coupling energy of ∼1.3–2 kT per sensor. Such coupling is not only opposite in sign to the coupling in K+ channels, but also much weaker.  相似文献   

17.
Opening of hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels is controlled by membrane hyperpolarization and binding of cyclic nucleotides to the tetrameric cyclic nucleotide-binding domain (CNBD), attached to the C-linker (CL) disk. Confocal patch-clamp fluorometry revealed pronounced cooperativity of ligand binding among protomers. However, by which pathways allosteric signal transmission occurs remained elusive. Here, we investigate how changes in the structural dynamics of the CL-CNBD of mouse HCN2 upon cAMP binding relate to inter- and intrasubunit signal transmission. Applying a rigidity-theory-based approach, we identify two intersubunit and one intrasubunit pathways that differ in allosteric coupling strength between cAMP-binding sites or toward the CL. These predictions agree with results from electrophysiological and patch-clamp fluorometry experiments. Our results map out distinct routes within the CL-CNBD that modulate different cAMP-binding responses in HCN2 channels. They signify that functionally relevant submodules may exist within and across structurally discernable subunits in HCN channels.  相似文献   

18.
Hyperpolarization-activated cAMP-regulated (HCN) channels play important physiological roles in both cardiovascular and central nervous systems. Among the four HCN isoforms, HCN2 and HCN4 show high expression levels in the human heart, with HCN4 being the major cardiac isoform. The previously published crystal structure of the mouse HCN2 (mHCN2) C-terminal fragment, including the C-linker and the cyclic-nucleotide binding domain (CNBD), has provided many insights into cAMP-dependent gating in HCN channels. However, structures of other mammalian HCN channel isoforms have been lacking. Here we used a combination of approaches including structural biology, biochemistry, and electrophysiology to study cAMP-dependent gating in HCN4 channel. First we solved the crystal structure of the C-terminal fragment of human HCN4 (hHCN4) channel at 2.4 Å. Overall we observed a high similarity between mHCN2 and hHCN4 crystal structures. Functional comparison between two isoforms revealed that compared with mHCN2, the hHCN4 protein exhibited marked different contributions to channel function, such as a ∼3-fold reduction in the response to cAMP. Guided by structural differences in the loop region between β4 and β5 strands, we identified residues that could partially account for the differences in response to cAMP between mHCN2 and hHCN4 proteins. Moreover, upon cAMP binding, the hHCN4 C-terminal protein exerts a much prolonged effect in channel deactivation that could have significant physiological contributions.  相似文献   

19.
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels and cyclic nucleotide-gated (CNG) channels are activated by the direct binding of cyclic nucleotides. The intracellular COOH-terminal regions exhibit high sequence similarity in all HCN and CNG channels. This region contains the cyclic nucleotide-binding domain (CNBD) and the C-linker region, which connects the CNBD to the pore. Recently, the structure of the HCN2 COOH-terminal region was solved and shown to contain intersubunit interactions between C-linker regions. To explore the role of these intersubunit interactions in intact channels, we studied two salt bridges in the C-linker region: an intersubunit interaction between C-linkers of neighboring subunits, and an intrasubunit interaction between the C-linker and its CNBD. We show that breaking these salt bridges in both HCN2 and CNGA1 channels through mutation causes an increase in the favorability of channel opening. The wild-type behavior of both HCN2 and CNGA1 channels is rescued by switching the position of the positive and negative residues, thus restoring the salt bridges. These results suggest that the salt bridges seen in the HCN2 COOH-terminal crystal structure are also present in the intact HCN2 channel. Furthermore, the similar effects of the mutations on HCN2 and CNGA1 channels suggest that these salt bridge interactions are also present in the intact CNGA1 channel. As disrupting the interactions leads to channels with more favorable opening transitions, the salt bridges appear to stabilize a closed conformation in both the HCN2 and CNGA1 channels. These results suggest that the HCN2 COOH-terminal crystal structure contains the C-linker regions in the resting configuration even though the CNBD is ligand bound, and channel opening involves a rearrangement of the C-linkers and, thus, disruption of the salt bridges. Discovering that one portion of the COOH terminus, the CNBD, can be in the activated configuration while the other portion, the C-linker, is not activated has lead us to suggest a novel modular gating scheme for HCN and CNG channels.  相似文献   

20.
Ion channel trafficking and gating are often influenced by interactions with auxiliary subunits. Tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) is an auxiliary subunit for neuronal hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. TRIP8b interacts directly with two distinct sites of HCN channel pore-forming subunits to control channel trafficking and gating. Here we use mutagenesis combined with electrophysiological studies to define and distinguish the functional importance of the HCN/TRIP8b interaction sites. Interaction with the last three amino acids of the HCN1 C terminus governed the effect of TRIP8b on channel trafficking, whereas TRIP8b interaction with the HCN1 cyclic nucleotide binding domain (CNBD) affected trafficking and gating. Biochemical studies revealed that direct interaction between TRIP8b and the HCN1 CNBD was disrupted by cAMP and that TRIP8b binding to the CNBD required an arginine residue also necessary for cAMP binding. In accord, increasing cAMP levels in cells antagonized the up-regulation of HCN1 channels mediated by a TRIP8b construct binding the CNBD exclusively. These data illustrate the distinct roles of the two TRIP8b-HCN interaction domains and suggest that TRIP8b and cAMP may directly compete for binding the HCN CNBD to control HCN channel gating, kinetics, and trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号