首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The precise mechanisms by which the activation of interferon (IFN) receptors (IFNRs) ultimately controls mRNA translation of specific target genes to induce IFN-dependent biological responses remain ill defined. We provide evidence that IFN-α induces phosphorylation of programmed cell death 4 (PDCD4) protein on Ser67. This IFN-α-dependent phosphorylation is mediated by either the p70 S6 kinase (S6K) or the p90 ribosomal protein S6K (RSK) in a cell-type-specific manner. IFN-dependent phosphorylation of PDCD4 results in downregulation of PDCD4 protein levels as the phosphorylated form of PDCD4 interacts with the ubiquitin ligase β-TRCP (β-transducin repeat-containing protein) and undergoes degradation. This process facilitates IFN-induced eukaryotic translation initiation factor 4A (eIF4A) activity and binding to translation initiation factor eIF4G to promote mRNA translation. Our data establish that PDCD4 degradation ultimately facilitates expression of several ISG protein products that play important roles in the generation of IFN responses, including IFN-stimulated gene 15 (ISG15), p21(WAF1/CIP1), and Schlafen 5 (SLFN5). Moreover, engagement of the RSK/PDCD4 pathway by the type I IFNR is required for the suppressive effects of IFN-α on normal CD34(+) hematopoietic precursors and for antileukemic effects in vitro. Altogether, these findings provide evidence for a unique function of PDCD4 in the type I IFN system and indicate a key regulatory role for this protein in mRNA translation of ISGs and control of IFN responses.  相似文献   

2.
Virus replication induces the expression of antiviral type I (IFN-alphabeta) and type III (IFN-lambda1-3 or IL-28A/B and IL-29) IFN genes via TLR-dependent and -independent pathways. Although type III IFNs differ genetically from type I IFNs, their similar biological antiviral functions suggest that their expression is regulated in a similar fashion. Structural and functional characterization of the IFN-lambda1 and IFN-lambda3 gene promoters revealed them to be similar to IFN-beta and IFN-alpha genes, respectively. Both of these promoters had functional IFN-stimulated response element and NF-kappaB binding sites. The binding of IFN regulatory factors (IRF) to type III IFN promoter IFN-stimulated response element sites was the most important event regulating the expression of these genes. Ectopic expression of the components of TLR7 (MyD88 plus IRF1/IRF7), TLR3 (Toll/IL-1R domain-containing adapter-inducing factor), or retinoic acid-inducible gene I (RIG-I) signal transduction pathways induced the activation of IFN-lambda1 promoter, whereas the IFN-lambda3 promoter was efficiently activated only by overexpression of MyD88 and IRF7. The ectopic expression of Pin1, a recently identified suppressor for IRF3-dependent antiviral response, decreased the IFN promoter activation induced by any of these three signal transduction pathways, including the MyD88-dependent one. To conclude, the data suggest that the IFN-lambda1 gene is regulated by virus-activated IRF3 and IRF7, thus resembling that of the IFN-beta gene, whereas IFN-lambda2/3 gene expression is mainly controlled by IRF7, thus resembling those of IFN-alpha genes.  相似文献   

3.
4.
5.
6.
7.
Antiserum to human gamma interferon (IFN gamma) was produced in rabbits immunized with partially purified (10(4.8) to 10(6.2) antiviral U/mg protein) staphylococcal enterotoxin A-induced IFN gamma. Staphylococcal enterotoxins, phytohemagglutinin M, concanavalin A, and pokeweed mitogen-induced antiviral activity in human leukocyte cultures was neutralized to undetectable levels by the antiserum. However, human leukocyte interferon (IFN alpha), human fibroblast interferon (IFN beta), and mouse interferons were not neutralized by the antiserum. After determining the antiserum was specific for IFN gamma and did not neutralize other known types of interferon, it was used with antibody to human IFN alpha to demonstrate the type(s) of interferon stimulated by some new inducers and antigens. Galactose oxidase- and calcium ionophore-induced interferons were neutralized to undetectable levels by the antiserum to IFN gamma. Interferon produced in leukocyte cultures from tuberculin-negative individuals stimulated with tuberculin-purified protein derivative or old tuberculin was IFN alpha, whereas interferon from tuberculin-positive individuals was a combination of alpha and gamma IFN. In addition, the antiserum neutralized the anticellular and natural killer cell enhancement activities of IFN gamma preparations. The specificity of this antiserum for IFN gamma indicates that it is an additional, powerful tool for identifying and classifying known and new interferons produced in vitro or in vivo and for investigating the role(s) of IFN gamma during the course of infectious, neoplastic, and autoimmune diseases.  相似文献   

8.
Evolution to AIDS is characterized by a progressive cellular immune suppression. Although there is substantial evidence for several mechanisms involved in disrupting the immune response by induction of apoptosis in responder cells by contact with infected cells, we propose that humoral factors also play a role, and that one such factor is the extracellular form of the human immunodeficiency virus (HIV)-1 Tat protein and another is IFN(alpha). Both Tat and interferon-alpha (IFN(alpha)) inhibit antigen-stimulate T-cell proliferation, and specific anti-Tat and/or anti-IFN(alpha) Abs prevent generation of HIV-1-induced suppressor cells. We propose that high titer anti-Tat and/or anti-IFN(alpha) Abs, neutralizing extracellular Tat, and/or IFN(alpha), induced by vaccines described here, antagonize HIV-1-induced immunosuppression. Innocuous vaccines were prepared by using inactivated but immunogenic Tat (Toxoid) and inactivated and immunogenic IFN(alpha) (kinoid) derivatives. Both Tat Toxoid and IFN(alpha) kinoid were well tolerated and elicited specific neutralizing antibodies (Abs) in mice, monkeys, and seronegative and HIV-1-infected individuals.  相似文献   

9.
10.
11.
Three efficient mouse interferon gamma (MoIFN gamma) inhibitors were constructed, which consist of the MoIFN gamma receptor (MoIFN gamma R) extracellular portion and constant domains of immunoglobulin (Ig) molecules. These are: 1) the constant domain of the mouse kappa chain, 2) the hinge region and the constant domains 2 and 3 of the mouse gamma 2a chain, and 3) the hinge region and the constant domains 2 and 3 of the human gamma 3 chain. The hybrid molecules were expressed in the mouse myeloma cell line J558L and recovered from the supernatants of cell cultures in one purification step. The proteins MoIFN gamma R-M gamma 2a and MoIFN gamma R-H gamma 3 form homodimers, whereas MoIFN gamma R-M kappa is a monomer. All three constructs inhibit the binding of radiolabeled MoIFN gamma to its receptor on L1210 cells. They are biologically active in vitro, neutralizing the action of MoIFN gamma in an antiviral activity assay. The fusions of Ig regions to the soluble MoIFN gamma R do not decrease the affinity of the binding site for the ligand. MoIFN gamma R-M kappa has about the same affinity as the soluble MoIFN gamma R and the cell surface receptor of L1210 cells in situ, which are also monomers, whereas the dimers MoIFN gamma R-M gamma 2a and MoIFN gamma R-H gamma 3 display a 5-10-fold higher affinity for MoIFN gamma than the monomeric molecules. This is best documented in the efficacy of the inhibitors to antagonize the antiviral activity of MoIFN gamma, as the dimeric constructs are about 10 times more active than MoIFN gamma R-M kappa and the soluble MoIFN gamma R. The hybrid constructs can be used as high efficiency MoIFN gamma inhibitors in mouse models of several pathological states in humans, where IFN gamma is thought to play a disease-promoting role.  相似文献   

12.
Shin HH  Lee EA  Kim SJ  Kwon BS  Choi HS 《FEBS letters》2006,580(6):1601-1606
We tested whether any intracellular signals are transmitted through 4-1BB/CD137 ligand (4-1BBL), using a 4-1BB-Fc fusion protein and 4-1BB-deficient mice. Immobilized 4-1BB-Fc fusion protein strongly inhibited osteoclastogenesis induced by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kappaB ligand (RANKL) derived from bone marrow macrophages (BMM). Incubation of BMM with M-CSF increased 4-1BBL mRNA and surface expression of 4-1BBL protein. Cross-linking 4-1BBL with immobilized 4-1BB-Fc also dramatically reduced the number of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNC) derived from the BMM from 4-1BB-deficient mice, suggesting that the inhibitory effect of immobilized 4-1BB on osteoclastogenesis is due to a signal through 4-1BBL. Reverse signaling by 4-1BB-Fc increased the level of interferon (IFN)-beta in BMM and neutralization of IFN-beta reversed the inhibitory effect of immobilized 4-1BB-Fc. Inhibition of osteoclastogenesis by immobilized 4-1BB-Fc is, therefore, at least in part, due to elevation of the level of the negative regulator, IFN-beta in BMM.  相似文献   

13.
Dendritic cell-specific ICAM-3 grabbing nonintegrin (DC-SIGN) is a monocyte-derived dendritic cell (MDDC)-specific lectin which participates in dendritic cell (DC) migration and DC-T lymphocyte interactions at the initiation of immune responses and enhances trans-infection of T cells through its HIV gp120-binding ability. The generation of a DC-SIGN-specific mAb has allowed us to determine that the acquisition of DC-SIGN expression during the monocyte-DC differentiation pathway is primarily induced by IL-4, and that GM-CSF cooperates with IL-4 to generate a high level of DC-SIGN mRNA and cell surface expression on immature MDDC. IL-4 was capable of inducing DC-SIGN expression on monocytes without affecting the expression of other MDDC differentiation markers. By contrast, IFN-alpha, IFN-gamma, and TGF-beta were identified as negative regulators of DC-SIGN expression, as they prevented the IL-4-dependent induction of DC-SIGN mRNA on monocytes, and a similar inhibitory effect was exerted by dexamethasone, an inhibitor of the monocyte-MDDC differentiation pathway. The relevance of the inhibitory action of dexamethasone, IFN, and TGF-beta on DC-SIGN expression was emphasized by their ability to inhibit the DC-SIGN-dependent HIV-1 binding to differentiating MDDC. These results demonstrate that DC-SIGN, considered as a MDDC differentiation marker, is a molecule specifically expressed on IL-4-treated monocytes, and whose expression is subjected to a tight regulation by numerous cytokines and growth factors. This feature might help in the development of strategies to modulate the DC-SIGN-dependent cell surface attachment of HIV for therapeutic purposes.  相似文献   

14.
IRF7 is known as the master regulator in virus-triggered induction of type I IFNs (IFN-I). In this study, we identify GBP4 virus-induced protein interacting with IRF7 as a negative regulator for IFN-I response. Overexpression of GBP4 inhibits virus-triggered activation of IRF7-dependent signaling, but has no effect on NF-κB signaling, whereas the knockdown of GBP4 has opposite effects. Furthermore, the supernatant from Sendai virus-infected cells in which GBP4 have been silenced inhibits the replication of vesicular stomatitis virus more efficiently. Competitive coimmunoprecipitation experiments indicate that overexpression of GBP4 disrupts the interactions between TRAF6 and IRF7, resulting in impaired TRAF6-mediated IRF7 ubiquitination. Our results suggest that GBP4 is a negative regulator of virus-triggered IFN-I production, and it is identified as a novel protein targeting IRF7 and inhibiting its function.  相似文献   

15.
16.
17.
We devised a sensitive, radioimmunoprecipitation assay (RIPA) for anti-interferon (IFN)-beta-binding antibody (BAB) detection. Our RIPA showed good agreement with a reference RIPA (mean difference, -3.2 +/- 10.6 AU), and detected BAB to both IFN-beta-1a and IFN-beta-1b. Neutralizing antibodies to IFN-b (NAB) were also determined with a standard method. BAB and NAB were measured in 393 serum samples from 77 multiple sclerosis (MS) patients treated with IFN-beta-1a or -1b, who were studied over two years, and subsequently classified as responders and non-responders. BAB were found at higher concentrations, and more frequently detected, in IFN-beta-1b- than in IFN-beta-1a-treated patients, and, at highest titres, preferentially in patients who were positive for NAB. However, in our series of MS patients, both titres and frequency of detection of BAB or NAB did not differ between IFN-b responders and non-responders.  相似文献   

18.
The levels of a (2'-5')An-dependent endonuclease (RNase L) were determined in extracts prepared from murine L cells and Ehrlich ascites tumor (EAT) cells by measuring specific binding of protein to a labeled derivative of (2'-5')An, (2'-5')A3[32P]pCp. RNase L levels were found to depend both on interferon (IFN) treatment and on cell growth conditions. Treatment of murine L cells and EAT cells with 100-2,000 IRU IFN beta or IFN gamma resulted in a similar 2-4-fold increase in the levels of RNase L when cells were present at low density. The levels of RNase L were also shown to increase 2-3-fold as cells approached saturation density. Serum-starved cells also displayed relatively high levels of RNase L. RNase L levels in cells maintained at high cell density did not change appreciably following treatment with IFN beta or IFN gamma. Regulation of RNase L levels by cell growth conditions as well as by IFN beta or IFN gamma treatment suggests that RNase L may play an important role in regulating the levels of cellular mRNAs as well as acting to degrade viral RNAs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号