首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sensing of extracellular glucose is necessary for cells to adapt to glucose variation in their environment. In the respiratory yeast Kluyveromyces lactis, extracellular glucose controls the expression of major glucose permease gene RAG1 through a cascade similar to the Saccharomyces cerevisiae Snf3/Rgt2/Rgt1 glucose signaling pathway. This regulation depends also on intracellular glucose metabolism since we previously showed that glucose induction of the RAG1 gene is abolished in glycolytic mutants. Here we show that glycolysis regulates RAG1 expression through the K. lactis Rgt1 (KlRgt1) glucose signaling pathway by targeting the localization and probably the stability of Rag4, the single Snf3/Rgt2-type glucose sensor of K. lactis. Additionally, the control exerted by glycolysis on glucose signaling seems to be conserved in S. cerevisiae. This retrocontrol might prevent yeasts from unnecessary glucose transport and intracellular glucose accumulation.  相似文献   

2.
The mammalian SWI/SNF chromatin remodeling complex is a key player in multiple chromatin transactions. Core subunits of this complex, including the ATPase, Brg-1, and various Brg-1-associated factors (BAFs), work in concert to maintain a functional remodeling complex. This intra-complex regulation is supervised by protein-protein interactions, as stoichiometric levels of BAF proteins are maintained by proteasomal degradation. We show that the mechanism of BAF155-mediated stabilization of BAF57 involves blocking its ubiquitination by preventing interaction with TRIP12, an E3 ubiquitin ligase. Consequently, as opposed to complexed BAF57, whose principal lysines are unavailable for ubiquitination, uncomplexed BAF57 can be freely ubiquitinated and degraded by the proteasome. Additionally, a BAF57 mutant, which contains no lysine residues, was found to retain its ability to be stabilized by interaction with BAF155, suggesting that in addition to the ubiquitin-dependent mechanism of BAF57 degradation, there exists a ubiquitin-independent mechanism that may involve the direct interaction of BAF57 with the proteasome. We propose that this regulatory mechanism exists to ensure functional fidelity of the complex and prevent the accumulation of uncomplexed proteins, which may disrupt the normal activity of the complex.  相似文献   

3.
Chromatin-remodeling complexes are assembled around a catalytic subunit that contains a central ATPase domain and flanking sequences that recruit auxiliary subunits. The catalytic subunits of SWI/SNF remodelers recruit Arp7/9 through a helicase/SANT-associated (HSA) domain N-terminal to the ATPase domain. Arp7/9-containing remodelers also carry the auxiliary subunit Rtt102, but the role of this subunit is poorly understood. Here, we show that Rtt102 binds with nanomolar affinity to the Arp7/9 heterodimer and modulates its conformation and interactions with the ATPase subunit and nucleotide. When bound to Rtt102, Arp7/9 interacts with a shorter segment of the HSA domain. Structural analysis by small-angle x-ray scattering further shows that when bound to Rtt102, the complex of Arp7/9 with the catalytic subunit assumes a more stable compact conformation. We also found that Arp7, Arp9, and Arp7/9 interact very weakly with ATP, but Rtt102 promotes high-affinity ATP binding to a single site in the heterodimer. Collectively, the results establish a function for subunit Rtt102 as a stabilizing factor for the Arp7/9 heterodimer, enhancing its interaction with nucleotide and controlling the conformation of SWI/SNF remodelers in an Arp7/9-dependent manner.  相似文献   

4.
We previously identified a gene signature predicted to regulate the epithelial-mesenchymal transition (EMT) in both epithelial tissue stem cells and breast cancer cells. A phenotypic RNA interference (RNAi) screen identified the genes within this 140-gene signature that promoted the conversion of mesenchymal epithelial cell adhesion molecule-negative (EpCAM) breast cancer cells to an epithelial EpCAM+/high phenotype. The screen identified 10 of the 140 genes whose individual knockdown was sufficient to promote EpCAM and E-cadherin expression. Among these 10 genes, RNAi silencing of the SWI/SNF chromatin-remodeling factor Smarcd3/Baf60c in EpCAM breast cancer cells gave the most robust transition from the mesenchymal to epithelial phenotype. Conversely, expression of Smarcd3/Baf60c in immortalized human mammary epithelial cells induced an EMT. The mesenchymal-like phenotype promoted by Smarcd3/Baf60c expression resulted in gene expression changes in human mammary epithelial cells similar to that of claudin-low triple-negative breast cancer cells. These mammary epithelial cells expressing Smarcd3/Baf60c had upregulated Wnt5a expression. Inhibition of Wnt5a by either RNAi knockdown or blocking antibody reversed Smarcd3/Baf60c-induced EMT. Thus, Smarcd3/Baf60c epigenetically regulates EMT by activating WNT signaling pathways.  相似文献   

5.
SWI/SNF complexes mediate ATP-dependent chromatin remodeling to regulate gene expression. Many components of these complexes are evolutionarily conserved, and several subunits of Arabidopsis thaliana SWI/SNF complexes are involved in the control of flowering, a process that depends on the floral repressor FLOWERING LOCUS C (FLC). BAF60 is a SWI/SNF subunit, and in this work, we show that BAF60, via a direct targeting of the floral repressor FLC, induces a change at the high-order chromatin level and represses the photoperiod flowering pathway in Arabidopsis. BAF60 accumulates in the nucleus and controls the formation of the FLC gene loop by modulation of histone density, composition, and posttranslational modification. Physiological analysis of BAF60 RNA interference mutant lines allowed us to propose that this chromatin-remodeling protein creates a repressive chromatin configuration at the FLC locus.  相似文献   

6.
7.
An ATP-dependent DNA translocase domain consisting of seven conserved motifs is a general feature of all ATP-dependent chromatin remodelers. While motifs on the ATPase domains of the yeast SWI/SNF and ISWI families of remodelers are highly conserved, the ATPase domains of these complexes appear not to be functionally interchangeable. We found one reason that may account for this is the ATPase domains interact differently with nucleosomes even though both associate with nucleosomal DNA 17–18 bp from the dyad axis. The cleft formed between the two lobes of the ISW2 ATPase domain is bound to nucleosomal DNA and Isw2 associates with the side of nucleosomal DNA away from the histone octamer. The ATPase domain of SWI/SNF binds to the same region of nucleosomal DNA, but is bound outside of the cleft region. The catalytic subunit of SWI/SNF also appears to intercalate between the DNA gyre and histone octamer. The altered interactions of SWI/SNF with DNA are specific to nucleosomes and do not occur with free DNA. These differences are likely mediated through interactions with the histone surface. The placement of SWI/SNF between the octamer and DNA could make it easier to disrupt histone–DNA interactions.  相似文献   

8.
9.
SWI2/SNF2 chromatin-remodeling proteins mediate the mobilization of nucleosomes and other DNA-associated proteins. SWI2/SNF2 proteins contain sequence motifs characteristic of SF2 helicases but do not have helicase activity. Instead, they couple ATP hydrolysis with the generation of superhelical torsion in DNA. The structure of the nucleosome-remodeling domain of zebrafish Rad54, a protein involved in Rad51-mediated homologous recombination, reveals that the core of the SWI2/SNF2 enzymes consist of two alpha/beta-lobes similar to SF2 helicases. The Rad54 helicase lobes contain insertions that form two helical domains, one within each lobe. These insertions contain SWI2/SNF2-specific sequence motifs likely to be central to SWI2/SNF2 function. A broad cleft formed by the two lobes and flanked by the helical insertions contains residues conserved in SWI2/SNF2 proteins and motifs implicated in DNA-binding by SF2 helicases. The Rad54 structure suggests that SWI2/SNF2 proteins use a mechanism analogous to helicases to translocate on dsDNA.  相似文献   

10.
11.
12.
13.
Myogenic terminal differentiation is a well-orchestrated process starting with permanent cell cycle exit followed by muscle-specific genetic program activation. Individual SWI/SNF components have been involved in muscle differentiation. Here, we show that the master myogenic differentiation factor MyoD interacts with more than one SWI/SNF subunit, including the catalytic subunit BRG1, BAF53a and the tumor suppressor BAF47/INI1. Downregulation of each of these SWI/SNF subunits inhibits skeletal muscle terminal differentiation but, interestingly, at different differentiation steps and extents. BAF53a downregulation inhibits myotube formation but not the expression of early muscle-specific genes. BRG1 or BAF47 downregulation disrupt both proliferation and differentiation genetic programs expression. Interestingly, BRG1 and BAF47 are part of the SWI/SNF remodeling complex as well as the N-CoR-1 repressor complex in proliferating myoblasts. However, our data show that, upon myogenic differentiation, BAF47 shifts in favor of N-CoR-1 complex. Finally, BRG1 and BAF47 are well-known tumor suppressors but, strikingly, only BAF47 seems essential in the myoblasts irreversible cell cycle exit. Together, our data unravel differential roles for SWI/SNF subunits in muscle differentiation, with BAF47 playing a dual role both in the permanent cell cycle exit and in the regulation of muscle-specific genes.  相似文献   

14.
By regulating the structure of chromatin, ATP-dependent chromatin remodeling complexes (remodelers) perform critical functions in the maintenance, transmission and expression of the eukaryotic genome. Although all known chromatin-remodeling complexes contain an ATPase as a central motor subunit, a number of distinct classes have been recognized. Recent studies have emphasized a more extensive functional diversification among closely related chromatin remodeling complexes than previously anticipated. Here, we discuss recent insights in the functional differences between two evolutionary conserved subclasses of SWI/SNF-related chromatin remodeling factors. One subfamily comprises yeast SWI/SNF, fly BAP and mammalian BAF, whereas the other subfamily includes yeast RSC, fly PBAP and mammalian PBAF. We review the subunit composition, conserved protein modules and biological functions of each of these subclasses of SWI/SNF remodelers. In particular, we will focus on the roles of specific subunits in developmental gene control and human diseases. Recent findings suggest that functional diversification among SWI/SNF complexes allows the eukaryotic cell to fine-tune and integrate the execution of diverse biological programs involving the expression, maintenance and duplication of its genome.  相似文献   

15.
Cancer development is a complex process involving both genetic and epigenetic changes. The SWI/SNF (switch/sucrose non-fermentable) chromatin remodelling complex, one of the most studied ATP-dependent complexes, plays an important role in coordinating chromatin structural stability, gene expression and post-translational modifications. The SWI/SNF complex can be classified into BAF, PBAF and GBAF according to their constituent subunits. Cancer genome sequencing studies have shown a high incidence of mutations in genes encoding subunits of the SWI/SNF chromatin remodelling complex, with abnormalities in one or more of these genes present in nearly 25% of all cancers, which indicating that stabilizing normal expression of genes encoding subunits in the SWI/SNF complex may prevent tumorigenesis. In this paper, we will review the relationship between the SWI/SNF complex and some clinical tumours and its mechanism of action. The aim is to provide a theoretical basis to guide the diagnosis and treatment of tumours caused by mutations or inactivation of one or more genes encoding subunits of the SWI/SNF complex in the clinical setting.  相似文献   

16.
染色质重塑是真核生物表观遗传调控的重要方式.通过对染色质物理结构的调节,染色质重塑在高等动植物干细胞的自我更新及分化、器官和个体发育以及肿瘤发生等多种生物学过程中发挥重要作用.近年来,高等动植物染色质重塑方面的研究已经成为表观遗传学研究领域的热点.本综述总结近年来有关高等动植物染色质重塑的重要研究报道,介绍了染色质重塑的结构机制、分析比较了高等动植物染色质重塑复合体的组成及其生物学功能的多样性,并着重综述了高等植物SWI/SNF染色质重塑复合体各组分在调控植物发育与逆境生长等方面的功能,以期为今后植物中染色质重塑的研究提供启示.  相似文献   

17.
The structure of the SWI/SNF-remodeled nucleosome was characterized with single base-pair resolution by mapping the contacts of specific histone fold residues with nucleosomal DNA. We demonstrate that SWI/SNF peels up to 50 bp of DNA from the edge of the nucleosome, translocates the histone octamer beyond the DNA ends via a DNA bulge propagation mechanism, and promotes the formation of an intramolecular DNA loop between the nucleosomal entry and exit sites. This stable altered nucleosome conformation also exhibits alterations in the distance between contacts of specific histone residues with DNA and higher electrophoretic and sedimentation mobility, consistent with a more compact molecular shape. SWI/SNF converts a nucleosome to the altered state in less than 1 s, hydrolyzing fewer than 10 ATPs per event.  相似文献   

18.
19.
20.
Chromatin-remodeling complexes regulate access to nucleosomal DNA by mobilizing nucleosomes in an ATP-dependent manner. In this study, we find that chromatin remodeling by SWI/SNF and ISW2 involves DNA translocation inside nucleosomes two helical turns from the dyad axis at superhelical location-2. DNA translocation at this internal position does not require the propagation of a DNA twist from the site of translocation to the entry/exit sites for nucleosome movement. Nucleosomes are moved in 9- to 11- or approximately 50-base-pair increments by ISW2 or SWI/SNF, respectively, presumably through the formation of DNA loops on the nucleosome surface. Remodeling by ISW2 but not SWI/SNF requires DNA torsional strain near the site of translocation, which may work in conjunction with conformational changes of ISW2 to promote nucleosome movement on DNA. The difference in step size of nucleosome movement by SWI/SNF and ISW2 demonstrates how SWI/SNF may be more disruptive to nucleosome structure than ISW2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号