首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the X chromosome of Drosophila melanogaster there is a single tandem array of 240 ribosomal RNA genes. The majority of these contain an insertion, known as type I, in the 28 S coding region. Previous genetic and electron microscopic studies indicated that genes bearing the type I insertion (ins+) are interspersed at random with those lacking it (ins?). In contrast, Renkawitz-Pohl et al. (1981) have analyzed the restriction pattern of X chromosomal ribosomal DNA in Drosophila hydei and demonstrated that in this case ins+ genes are segregated from ins?. This suggests either that the rDNA is organized differently in these two species or that the restriction enzyme technique reveals significant clustering not detected by previous methods. By using an appropriate restriction enzyme, we demonstrate that ins+ and ins? genes are intermingled at random in D. melanogaster. These experiments also indicate that genes containing the short form of the insertion are flanked by a larger spacer upstream than downstream.  相似文献   

2.
Plasmids which contained wild-type or mutated Rhizobium meliloti nodulation (nod) genes were introduced into NodR. trifolii mutants ANU453 and ANU851 and tested for their ability to nodulate clover. Cloned wild-type and mutated R. meliloti nod gene segments restored ANU851 to Nod+, with the exception of nodD mutants. Similarly, wild-type and mutant R. meliloti nod genes complemented ANU453 to Nod+, except for nodCII mutants. Thus, ANU851 identifies the equivalent of the R. meliloti nodD genes, and ANU453 specifies the equivalent of the R. meliloti nodCII genes. In addition, cloned wild-type R. trifolii nod genes were introduced into seven R. meliloti Nod mutants. All seven mutants were restored to Nod+ on alfalfa. Our results indicate that these genes represent common nodulation functions and argue for an allelic relationship between nod genes in R. meliloti and R. trifolii.  相似文献   

3.
4.
The structural gene for elongation factor EF-TS (tsf) and that for ribosomal protein S2 (rpsB) have been identified in E. coli. Both genes are carried by λ transducing phages that have been isolated as dapD?polC+ transducing phages. Synthesis of both S2 and EF-Ts was demonstrated in ultraviolet light-irradiated E. coli cells infected with these phages. Experiments were also done using other transducing phages that carry dapD+ but not polC+. The data indicate that both the tsf and rpsB genes map near dapD at about 4 min on the E. coli genetic map. This location is different from the two chromosomal locations, the str-spc region and the rif region, where many ribosomal protein genes, the genes for RNA polymerase components, as well as other elongation factor genes (fus, tufA, and tufB) are located.  相似文献   

5.
6.
7.
8.
K H Antman  D M Livingston 《Cell》1980,19(3):627-635
We present the nucleotide sequences of the Gγ- and Aγ-globin genes from one chromosome (A) and of most of the Aγ gene from the other chromosome (B) of the same individual. All three genes have a small, highly conserved intervening sequence (IVS1) of 122 bp located between codons 30 and 31 and a large intervening sequence (IVS2) of variable length (866–904 bp) between codons 104 and 105. A stretch of simple sequence DNA occurs in IVS2 which appears to be a hot spot for recombination. On the 5′ side of this simple sequence, the allelic Aγ genes differ considerably in IVS2 whereas the nonallelic Gγ- and Aγ genes from chromosome A differ only slightly. Yet on the 3′ side of the simple sequence, the allelic genes differ only slightly whereas the nonallelic genes differ considerably. We hypothesize that the 5′ two thirds of the Aγ gene on chromosome A has been “converted” by an intergenic exchange to become more like the Gγ gene on its own chromosome A than it is like the allelic Aγ gene on the other chromosome B. Our sequence data suggest that intergenic conversions occur in the germ line. The DNA sequence differences between two chromosomes from a single individual strongly suggest that DNA sequence polymorphisms for localized deletions, additions and base substitutions are very common in human populations.  相似文献   

9.
Rhodopirellula baltica SH1T is a marine planctomycete with 7,325 genes in its genome. Ten strains of the genus Rhodopirellula were studied in whole genome microarray experiments to assess the extent of their genetic relatedness to R. baltica SH1T. DNA of strains which were previously affiliated with the species R. baltica (OTU A) hybridized with 3,645–5,728 genes of the type strain on the microarray. Strains SH398 and 6C (OTU B), representing a closely related species with an average nucleotide identity of 88 %, showed less hybridization signals: 1,816 and 3,302 genes gave a hybridization signal, respectively. Comparative genomics of eight permanent draft genomes revealed the presence of over 4,000 proteins common in R. baltica SH1T and strains of OTU A or B. The genus Rhodopirellula is characterized by large genomes, with over 7,000 genes per genome and a core genome of around 3000 genes. Individual Rhodopirellula strains have a large portion of strain-specific genes.  相似文献   

10.
Odontamblyopus rubicundus is a species of gobiid fishes, inhabits muddy-bottomed coastal waters. In this paper, the first complete mitochondrial genome sequence of O. rubicundus is reported. The complete mitochondrial genome sequence is 17119 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes, a control region and an L-strand origin as in other teleosts. Most mitochondrial genes are encoded on H-strand except for ND6 and seven tRNA genes. Some overlaps occur in protein-coding genes and tRNAs ranging from 1 to 7 bp. The possibly nonfunctional L-strand origin folded into a typical stem-loop secondary structure and a conserved motif (5-GCCGG-3) was found at the base of the stem within the tRNA Cys gene. The TAS, CSB-2 and CSB-3 could be detected in the control region. However, in contrast to most of other fishes, the central conserved sequence block domain and the CSB-1 could not be recognized in O. rubicundus, which is consistent with Acanthogobius hasta (Gobiidae). In addition, phylogenetic analyses based on different sequences of species of Gobiidae and different methods showed that the classification of O. rubicundus into Odontamblyopus due to morphology is debatable.  相似文献   

11.
Hepatic lipid metabolism is controlled by integrated metabolic pathways. Excess accumulation of hepatic TG is a hallmark of nonalcoholic fatty liver disease, which is associated with obesity and insulin resistance. Here, we show that KH-type splicing regulatory protein (KSRP) ablation reduces hepatic TG levels and diet-induced hepatosteatosis. Expression of period 2 (Per2) is increased during the dark period, and circadian oscillations of several core clock genes are altered with a delayed phase in Ksrp−/− livers. Diurnal expression of some lipid metabolism genes is also disturbed with reduced expression of genes involved in de novo lipogenesis. Using primary hepatocytes, we demonstrate that KSRP promotes decay of Per2 mRNA through an RNA-protein interaction and show that increased Per2 expression is responsible for the phase delay in cycling of several clock genes in the absence of KSRP. Similar to Ksrp−/− livers, both expression of lipogenic genes and intracellular TG levels are also reduced in Ksrp−/− hepatocytes due to increased Per2 expression. Using heterologous mRNA reporters, we show that the AU-rich element-containing 3′ untranslated region of Per2 is responsible for KSRP-dependent mRNA decay. These findings implicate that KSRP is an important regulator of circadian expression of lipid metabolism genes in the liver likely through controlling Per2 mRNA stability.  相似文献   

12.
13.
14.
15.
16.
To study the physiological roles of polyamines, we carried out a global microarray analysis on the effect of adding polyamines to an Escherichia coli mutant that lacks polyamines because of deletions in the genes in the polyamine biosynthetic pathway. Previously, we have reported that the earliest response to polyamine addition is the increased expression of the genes for the glutamate-dependent acid resistance system (GDAR). We also presented preliminary evidence for the involvement of rpoS and gadE regulators. In the current study, further confirmation of the regulatory roles of rpoS and gadE is shown by a comparison of genome-wide expression profiling data from a series of microarrays comparing the genes induced by polyamine addition to polyamine-free rpoS+/gadE+ cells with genes induced by polyamine addition to polyamine-free ΔrpoS/gadE+ and rpoS+gadE cells. The results indicate that most of the genes in the E. coli GDAR system that are induced by polyamines require rpoS and gadE. Our data also show that gadE is the main regulator of GDAR and other acid fitness island genes. Both polyamines and rpoS are necessary for the expression of gadE gene from the three promoters of gadE (P1, P2, and P3). The most important effect of polyamine addition is the very rapid increase in the level of RpoS sigma factor. Our current hypothesis is that polyamines increase the level of RpoS protein and that this increased RpoS level is responsible for the stimulation of gadE expression, which in turn induces the GDAR system in E. coli.  相似文献   

17.
The complete mitochondrial (mt) genome of the snail Camaena cicatricosa (Müller, 1774) has been sequenced and annotated in this study. The entire circular genome is 13,843 bp in size and represents the first camaenid mt genome, with content of 31.9%A, 37.9%T, 13.5%C and 16.7%G. Gene content, codon usage and base organization show similarity to a great extent to the sequenced mt genome from Stylommatophora, whereas, gene order is different from them, especially the positions of tRNACys, tRNAPhe, COII, tRNAAsp, tRNAGly, tRNAHis and tRNATrp. All protein coding genes use standard initiation codons ATN except for COII with GTG as start signal. Conventional stop codons TAA and TAG have been assigned to all protein coding genes. All tRNA genes possess the typical clover leaf structure, but the TψC arm of tRNAAsp and dihydrouridine arm of tRNASer(AGN) only form a simple loop. Shorter intergenic spacers have been found in this mt genome. Phylogenetic study based on protein coding genes shows close relationship of Camaenidae and Bradybaenidae. The presented phylogeny is consistent with the monophyly of Stylommatophora.  相似文献   

18.
19.
Indigenous oil-degrading bacteria play an important role in efficient remediation of polluted marine environments. In this study, we investigated the diversity and abundance of indigenous oil-degrading bacteria and functional genes in crude oil-contaminated seawater of the Dalian coast. The gene copy number bacterial 16S rRNA in total were determined to be about 1010 copies L?1 in contaminated seawater and 109 copies L?1 in uncontaminated seawater. Bacteria of Alcanivorax, Marinobacter, Novosphingobium, Rhodococcus, and Pseudoalteromonas were found to be predominant oil-degrading bacteria in the polluted seawater in situ. In addition, bacteria belonging to Algoriphagus, Aestuariibacter, Celeribacter, Fabibacter, Zobellia, Tenacibaculum, Citreicella, Roseivirga, Winogradskyella, Thioclava, Polaribacter, and Pelagibaca were confirmed to be the first time as an oil-degrading bacterium. The indigenous functional enzymes, including AlkB or polycyclic aromatic hydrocarbons ring-hydroxylating dioxygenases α (PAH-RHDα) coding genes from Gram-positive (GP) and Gram-negative bacteria (GN), were revealed and quite diverse. About 1010 to 1011 copies L?1 for the expression of alkB genes were recovered and showed that the two-thirds of all the AlkB sequences were closely related to widely distributed Alcanivorax and Marinobacter isolates. About 109 copies L?1 seawater for the expression of RHDαGN genes in contaminated seawater and showed that almost all RHDαGN sequences were closely related to an uncultured bacterium; however, RHDαGP genes represented only about 105 copies L?1 seawater for the expression of genes in contaminated seawater, and the naphthalene dioxygenase sequences from Rhodococcus and Mycobacterium species were most abundant. Together, their data provide evidence that there exists an active aerobic microbial community indigenous to the coastal area of the Yellow sea that is capable of degrading petroleum hydrocarbons.  相似文献   

20.
《Anaerobe》2009,15(6):249-251
Bacteremia caused by Clostridium difficile is rare. In this report, we describe a case of C. difficile bacteremia caused by an unusual strain of C. difficile. The isolate contained neither toxin A nor B genes, however, binary toxin genes were present (tcdA, tcdB, cdtA+, cdtB+) and a 7.2-kb element unrelated to the PaLoc was found inserted within the PaLoc integration site. The clinical relevance of the isolate could not be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号