首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A network of chaperones and ubiquitin ligases sustain intracellular proteostasis and is integral in preventing aggregation of misfolded proteins associated with various neurodegenerative diseases. Using cell-based studies of polyglutamine (polyQ) diseases, spinocerebellar ataxia type 3 (SCA3) and Huntington’s disease (HD), we aimed to identify crucial ubiquitin ligases that protect against polyQ aggregation. We report here that Praja1 (PJA1), a Ring-H2 ubiquitin ligase abundantly expressed in the brain, is diminished when polyQ repeat proteins (ataxin-3/huntingtin) are expressed in cells. PJA1 interacts with polyQ proteins and enhances their degradation, resulting in reduced aggregate formation. Down-regulation of PJA1 in neuronal cells increases polyQ protein levels vis-a-vis their aggregates, rendering the cells vulnerable to cytotoxic stress. Finally, PJA1 suppresses polyQ toxicity in yeast and rescues eye degeneration in a transgenic Drosophila model of SCA3. Thus, our findings establish PJA1 as a robust ubiquitin ligase of polyQ proteins and induction of which might serve as an alternative therapeutic strategy in handling cytotoxic polyQ aggregates.  相似文献   

2.
The accurate replication of genetic information is critical to maintaining chromosomal integrity. Cdc6 functions in the assembly of pre-replicative complexes and is specifically required to load the Mcm2-7 replicative helicase complex at replication origins. Cdc6 is targeted for protein degradation by multiple mechanisms in Saccharomyces cerevisiae, although only a single pathway and E3 ubiquitin ligase for Cdc6 has been identified, the SCFCdc4 (Skp1/Cdc53/F-box protein) complex. Notably, Cdc6 is unstable during the G1 phase of the cell cycle, but the ubiquitination pathway has not been previously identified. Using a genetic approach, we identified two additional E3 ubiquitin ligase components required for Cdc6 degradation, the F-box protein Dia2 and the Hect domain E3 Tom1. Both Dia2 and Tom1 control Cdc6 turnover during G1 phase of the cell cycle and act separately from SCFCdc4. Ubiquitination of Cdc6 is significantly reduced in dia2Δ and tom1Δ cells. Tom1 and Dia2 each independently immunoprecipitate Cdc6, binding to a C-terminal region of the protein. Tom1 and Dia2 cannot compensate for each other in Cdc6 degradation. Cdc6 and Mcm4 chromatin association is aberrant in tom1Δ and dia2Δ cells in G1 phase. Together, these results present evidence for a novel degradation pathway that controls Cdc6 turnover in G1 that may regulate pre-replicative complex assembly.  相似文献   

3.
4.
5.
Comment on: Kawabe H, Neeb A, Dimova K, Young SM Jr, Takeda M, Katsurabayashi S, et al. Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls neurite development. Neuron 2010; 65:358-72.  相似文献   

6.
7.
Integrin activation is required to facilitate multiple adhesion-dependent functions of neutrophils, such as chemotaxis, which is critical for inflammatory responses to injury and pathogens. However, little is known about the mechanisms that mediate integrin activation in neutrophils. We show that Radil, a novel Rap1 effector, regulates β1- and β2-integrin activation and controls neutrophil chemotaxis. On activation and chemotactic migration of neutrophils, Radil quickly translocates from the cytoplasm to the plasma membrane in a Rap1a-GTP–dependent manner. Cells overexpressing Radil show a substantial increase in cell adhesion, as well as in integrin/focal adhesion kinase (FAK) activation, and exhibit an elongated morphology, with severe tail retraction defects. This phenotype is effectively rescued by treatment with either β2-integrin inhibitory antibodies or FAK inhibitors. Conversely, knockdown of Radil causes severe inhibition of cell adhesion, β2-integrin activation, and chemotaxis. Furthermore, we found that inhibition of Rap activity by RapGAP coexpression inhibits Radil-mediated integrin and FAK activation, decreases cell adhesion, and abrogates the long-tail phenotype of Radil cells. Overall, these studies establish that Radil regulates neutrophil adhesion and motility by linking Rap1 to β2-integrin activation.  相似文献   

8.
Zhou Y  Li L  Liu Q  Xing G  Kuai X  Sun J  Yin X  Wang J  Zhang L  He F 《Cellular signalling》2008,20(5):942-948
Tribbles 3 homolog (TRB3) is recently identified as a scaffold-like regulator of various signal transducers and has been implicated in several processes including insulin signaling, NF-kappaB signaling, lipid metabolism and BMP signaling. To further understand cellular mechanisms of TRB3 regulation, we performed a yeast two-hybrid screen to identify novel TRB3 interacting proteins and totally obtained ten in-frame fused preys. Candidate interactions were validated by co-immunoprecipitation assays in mammalian cells. We further characterized the identified proteins sorted by Gene Ontology Annotation. Its interaction with the E3 ubiquitin ligase SIAH1 was further investigated. SIAH1 could interact with TRB3 both in vitro and in vivo. Importantly, SIAH1 targeted TRB3 for proteasome-dependent degradation. Cotransfection of SIAH1 could withdraw up-regulation of TGF-beta signaling by TRB3, suggesting SIAH1-induced degradation of TRB3 represents a potential regulatory mechanism for TGF-beta signaling.  相似文献   

9.
Xu  Hongli  Liang  Shengnan  Hu  Junjie  Liu  Wentong  Dong  Zhiqiang  Wei  Shaozhong 《Molecular biology reports》2022,49(3):1661-1668
Molecular Biology Reports - The mortality rate of colorectal cancer (CRC) remains high in developing countries. Interventions that can inhibit the proliferation of tumor cells represent promising...  相似文献   

10.
TRAC-1 (T cell RING (really interesting new gene) protein identified in activation screen) is a novel E3 ubiquitin ligase identified from a retroviral vector-based T cell surface activation marker screen. The C-terminal truncated TRAC-1 specifically inhibited anti-TCR-mediated CD69 up-regulation in Jurkat cells, a human T leukemic cell line. In this study, we show that TRAC-1 is a RING finger ubiquitin E3 ligase with highest expression in lymphoid tissues. Point mutations that disrupt the Zn(2+)-chelating ability of its amino-terminal RING finger domain abolished TRAC-1's ligase activity and the dominant inhibitory effect of C-terminal truncated TRAC-1 on TCR stimulation. The results of in vitro biochemical studies indicate that TRAC-1 can stimulate the formation of both K48- and K63-linked polyubiquitin chains and therefore could potentially activate both degradative and regulatory ubiquitin-dependent pathways. Antisense oligonucleotides to TRAC-1 specifically reduced TRAC-1 mRNA levels in Jurkat and primary T cells and inhibited their activation in response to TCR cross-linking. Collectively, these results indicate that the E3 ubiquitin ligase TRAC-1 functions as a positive regulator of T cell activation.  相似文献   

11.
12.
13.
Cytoplasmic β- and γ-actin proteins are 99% identical but support unique organismal functions. The cytoplasmic actin nucleotide sequences Actb and Actg1, respectively, are more divergent but still 89% similar. Actb–/– mice are embryonic lethal and Actb–/– cells fail to proliferate, but editing the Actb gene to express γ-actin (Actbc–g) resulted in none of the overt phenotypes of the knockout revealing protein-independent functions for Actb. To determine if Actg1 has a protein-independent function, we crossed Actbc–g and Actg1–/– mice to generate the bG/0 line, where the only cytoplasmic actin expressed is γ-actin from Actbc–g. The bG/0 mice were viable but showed a survival defect despite expressing γ-actin protein at levels no different from bG/gG with normal survival. A unique myopathy phenotype was also observed in bG/0 mice. We conclude that impaired survival and myopathy in bG/0 mice are due to loss of Actg1 nucleotide-dependent function(s). On the other hand, the bG/0 genotype rescued functions impaired by Actg1–/–, including cell proliferation and auditory function, suggesting a role for γ-actin protein in both fibroblasts and hearing. Together, these results identify nucleotide-dependent functions for Actg1 while implicating γ-actin protein in more cell-/tissue-specific functions.  相似文献   

14.
Caveolae are abundant surface organelles implicated in a range of cellular processes. Two classes of proteins work together to generate caveolae: integral membrane proteins termed caveolins and cytoplasmic coat proteins called cavins. Caveolae respond to membrane stress by releasing cavins into the cytosol. A crucial aspect of this model is tight regulation of cytosolic pools of cavin under resting conditions. We now show that a recently identified region of cavin1 that can bind phosphoinositide (PI) lipids is also a major site of ubiquitylation. Ubiquitylation of lysines within this site leads to rapid proteasomal degradation. In cells that lack caveolins and caveolae, cavin1 is cytosolic and rapidly degraded as compared with cells in which cavin1 is associated with caveolae. Membrane stretching causes caveolar disassembly, release of cavin complexes into the cytosol, and increased proteasomal degradation of wild-type cavin1 but not mutant cavin1 lacking the major ubiquitylation site. Release of cavin1 from caveolae thus leads to exposure of key lysine residues in the PI-binding region, acting as a trigger for cavin1 ubiquitylation and down-regulation. This mutually exclusive PI-binding/ubiquitylation mechanism may help maintain low levels of cytosolic cavin1 in resting cells, a prerequisite for cavins acting as signaling modules following release from caveolae.  相似文献   

15.
The Slx5/Slx8 heterodimer constitutes a SUMO-targeted ubiquitin ligase (STUbL) with an important role in SUMO-targeted degradation and SUMO-dependent signaling. This STUbL relies on SUMO-interacting motifs in Slx5 to aid in substrate targeting and carboxy-terminal RING domains in both Slx5 and Slx8 for substrate ubiquitylation. In budding yeast cells, Slx5 resides in the nucleus, forms distinct foci, and can associate with double-stranded DNA breaks. However, it remains unclear how STUbLs interact with other proteins and their substrates. To examine the targeting and functions of the Slx5/Slx8 STUbL, we constructed and analyzed truncations of the Slx5 protein. Our structure–function analysis reveals a domain of Slx5 involved in nuclear localization and in the interaction with Slx5, SUMO, Slx8, and a novel interactor, the SUMO E3 ligase Siz1. We further analyzed the functional interaction of Slx5 and Siz1 in vitro and in vivo. We found that a recombinant Siz1 fragment is an in vitro ubiquitylation target of the Slx5/Slx8 STUbL. Furthermore, slx5∆ cells accumulate phosphorylated and sumoylated adducts of Siz1 in vivo. Specifically, we show that Siz1 can be ubiquitylated in vivo and is degraded in an Slx5-dependent manner when its nuclear egress is prevented in mitosis. In conclusion, our data provide a first look into the STUbL-mediated regulation of a SUMO E3 ligase.  相似文献   

16.
The molecular mechanisms that regulate cell cycle progression in a developmental context are poorly understood. Here, we show that the leucine-rich repeat protein LRR-1 promotes cell cycle progression during C. elegans development, both in the germ line and in the early embryo. Our results indicate that LRR-1 acts as a nuclear substrate-recognition subunit of a Cullin 2-RING E3 ligase complex (CRL2(LRR-1)), which ensures DNA replication integrity. LRR-1 contains a typical BC/Cul-2 box and binds CRL2 components in vitro and in vivo in a BC/Cul-2 box-dependent manner. Loss of lrr-1 function causes cell cycle arrest in the mitotic region of the germ line, resulting in sterility due to the depletion of germ cells. Inactivation of the DNA replication checkpoint signaling components ATL-1 and CHK-1 suppresses this cell cycle arrest and, remarkably, restores lrr-1 mutant fertility. Likewise, in the early embryo, loss of lrr-1 function induces CHK-1 phosphorylation and a severe cell cycle delay in P lineage division, causing embryonic lethality. Checkpoint activation is not constitutive in lrr-1 mutants but is induced by DNA damage, which may arise due to re-replication of some regions of the genome as evidenced by the accumulation of single-stranded DNA-replication protein A (ssDNA-RPA-1) nuclear foci and the increase in germ cell ploidy in lrr-1 and lrr-1; atl-1 double mutants, respectively. Collectively, these observations highlight a crucial function of the CRL2(LRR-1) complex in genome stability via maintenance of DNA replication integrity during C. elegans development.  相似文献   

17.
We have identified a family of RING finger proteins that are orthologous to Drosophila Goliath (G1, Gol). One of the members, GREUL1 (Goliath Related E3 Ubiquitin Ligase 1), can convert Xenopus ectoderm into XAG-1- and Otx2-expressing cells in the absence of both neural tissue and muscle. This activity, combined with the finding that XGREUL1 is expressed within the cement gland, suggests a role for GREUL1 in the generation of anterior ectoderm. Although GREUL1 is not a direct inducer of neural tissue, it can activate the formation of ectopic neural cells within the epidermis of intact embryos. This suggests that GREUL1 can sensitize ectoderm to neuralizing signals. In this paper, we provide evidence that GREUL1 is an E3 ubiquitin ligase. Using a biochemical assay, we show that GREUL1 catalyzes the addition of polyubiquitin chains. These events are mediated by the RING domain since a mutation in two of the cysteines abolishes ligase activity. Mutation of these cysteines also compromises GREUL1's ability to induce cement gland. Thus, GREUL1's RING domain is necessary for both the ubiquitination of substrates and for the conversion of ectoderm to an anterior fate.  相似文献   

18.
Desmosomal cadherins mediate intercellular adhesion and control epithelial homeostasis. Recent studies show that proteinases play an important role in the pathobiology of cancer by targeting epithelial intercellular junction proteins such as cadherins. Here we describe the proinflammatory cytokine-induced activation of matrix metalloproteinase 9 and a disintegrin and metalloproteinase domain–containing protein 10, which promote the shedding of desmosomal cadherin desmoglein-2 (Dsg2) ectodomains in intestinal epithelial cells. Epithelial exposure to Dsg2 ectodomains compromises intercellular adhesion by promoting the relocalization of endogenous Dsg2 and E-cadherin from the plasma membrane while also promoting proliferation by activation of human epidermal growth factor receptor 2/3 signaling. Cadherin ectodomains were detected in the inflamed intestinal mucosa of mice with colitis and patients with ulcerative colitis. Taken together, our findings reveal a novel response pathway in which inflammation-induced modification of columnar epithelial cell cadherins decreases intercellular adhesion while enhancing cellular proliferation, which may serve as a compensatory mechanism to promote repair.  相似文献   

19.
Centrins are a family of small, calcium-binding proteins with diverse cellular functions that play an important role in centrosome biology. We previously identified centrin 2 and centrin 3 (Cetn2 and Cetn3) as substrates of the protein kinase Mps1. However, although Mps1 phosphorylation sites control the function of Cetn2 in centriole assembly and promote centriole overproduction, Cetn2 and Cetn3 are not functionally interchangeable, and we show here that Cetn3 is both a biochemical inhibitor of Mps1 catalytic activity and a biological inhibitor of centrosome duplication. In vitro, Cetn3 inhibits Mps1 autophosphorylation at Thr-676, a known site of T-loop autoactivation, and interferes with Mps1-dependent phosphorylation of Cetn2. The cellular overexpression of Cetn3 attenuates the incorporation of Cetn2 into centrioles and centrosome reduplication, whereas depletion of Cetn3 generates extra centrioles. Finally, overexpression of Cetn3 reduces Mps1 Thr-676 phosphorylation at centrosomes, and mimicking Mps1-dependent phosphorylation of Cetn2 bypasses the inhibitory effect of Cetn3, suggesting that the biological effects of Cetn3 are due to the inhibition of Mps1 function at centrosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号