首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytoplasmic stress granules (SGs) are specialized regulatory sites of mRNA translation that form under different stress conditions known to inhibit translation initiation. The formation of SG occurs via two pathways; the eukaryotic initiation factor (eIF) 2α phosphorylation-dependent pathway mediated by stress and the eIF2α phosphorylation-independent pathway mediated by inactivation of the translation initiation factors eIF4A and eIF4G. In this study, we investigated the effects of targeting different translation initiation factors and steps in SG formation in HeLa cells. By depleting eIF2α, we demonstrate that reduced levels of the eIF2.GTP.Met-tRNAiMet ternary translation initiation complexes is sufficient to induce SGs. Likewise, reduced levels of eIF4B, eIF4H, or polyA-binding protein, also trigger SG formation. In contrast, depletion of the cap-binding protein eIF4E or preventing its assembly into eIF4F results in modest SG formation. Intriguingly, interfering with the last step of translation initiation by blocking the recruitment of 60S ribosome either with 2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamideis or through depletion of the large ribosomal subunits protein L28 does not induce SG assembly. Our study identifies translation initiation steps and factors involved in SG formation as well as those that can be targeted without induction of SGs.  相似文献   

2.
Cytoplasmic aggregates known as stress granules (SGs) arise as a consequence of cellular stress and contain stalled translation preinitiation complexes. These foci are thought to serve as sites of mRNA storage or triage during the cell stress response. SG formation has been shown to require induction of eukaryotic initiation factor (eIF)2α phosphorylation. Herein, we investigate the potential role of other initiation factors in this process and demonstrate that interfering with eIF4A activity, an RNA helicase required for the ribosome recruitment phase of translation initiation, induces SG formation and that this event is not dependent on eIF2α phosphorylation. We also show that inhibition of eIF4A activity does not impair the ability of eIF2α to be phosphorylated under stress conditions. Furthermore, we observed SG assembly upon inhibition of cap-dependent translation after poliovirus infection. We propose that SG modeling can occur via both eIF2α phosphorylation-dependent and -independent pathways that target translation initiation.  相似文献   

3.
In cells exposed to environmental stress, inhibition of translation initiation conserves energy for the repair of cellular damage. Untranslated mRNAs that accumulate in these cells move to discrete cytoplasmic foci known as stress granules (SGs). The assembly of SGs helps cells to survive under adverse environmental conditions. We have analyzed the mechanism by which hydrogen peroxide (H(2)O(2))-induced oxidative stress inhibits translation initiation and induces SG assembly in mammalian cells. Our data indicate that H(2)O(2) inhibits translation and induces the assembly of SGs. The assembly of H(2)O(2)-induced SGs is independent of the phosphorylation of eIF2α, a major trigger of SG assembly, but requires remodeling of the cap-binding eIF4F complex. Moreover, H(2)O(2)-induced SGs are compositionally distinct from canonical SGs, and targeted knockdown of eIF4E, a protein required for canonical translation initiation, inhibits H(2)O(2)-induced SG assembly. Our data reveal new aspects of translational regulation induced by oxidative insults.  相似文献   

4.
5.
Alphavirus infection results in the shutoff of host protein synthesis in favor of viral translation. Here, we show that during Semliki Forest virus (SFV) infection, the translation inhibition is largely due to the activation of the cellular stress response via phosphorylation of eukaryotic translation initiation factor 2alpha subunit (eIF2alpha). Infection of mouse embryo fibroblasts (MEFs) expressing a nonphosphorylatable mutant of eIF2alpha does not result in efficient shutoff, despite efficient viral protein production. Furthermore, we show that the SFV translation enhancer element counteracts the translation inhibition imposed by eIF2alpha phosphorylation. In wild-type MEFs, viral infection induces the transient formation of stress granules (SGs) containing the cellular TIA-1/R proteins. These SGs are disassembled in the vicinity of viral RNA replication, synchronously with the switch from cellular to viral gene expression. We propose that phosphorylation of eIF2alpha and the consequent SG assembly is important for shutoff to occur and that the localized SG disassembly and the presence of the enhancer aid the SFV mRNAs to elude general translational arrest.  相似文献   

6.
In response to mammalian orthoreovirus (MRV) infection, cells initiate a stress response that includes eIF2α phosphorylation and protein synthesis inhibition. We have previously shown that early in infection, MRV activation of eIF2α phosphorylation results in the formation of cellular stress granules (SGs). In this work, we show that as infection proceeds, MRV disrupts SGs despite sustained levels of phosphorylated eIF2α and, further, interferes with the induction of SGs by other stress inducers. MRV interference with SG formation occurs downstream of eIF2α phosphorylation, suggesting the virus uncouples the cellular stress signaling machinery from SG formation. We additionally examined mRNA translation in the presence of SGs induced by eIF2α phosphorylation-dependent and -independent mechanisms. We found that irrespective of eIF2α phosphorylation status, the presence of SGs in cells correlated with inhibition of viral and cellular translation. In contrast, MRV disruption of SGs correlated with the release of viral mRNAs from translational inhibition, even in the presence of phosphorylated eIF2α. Viral mRNAs were also translated in the presence of phosphorylated eIF2α in PKR(-/-) cells. These results suggest that MRV escape from host cell translational shutoff correlates with virus-induced SG disruption and occurs in the presence of phosphorylated eIF2α in a PKR-independent manner.  相似文献   

7.
8.
Virus infection-induced global protein synthesis suppression is linked to assembly of stress granules (SGs), cytosolic aggregates of stalled translation preinitiation complexes. To study long-term stress responses, we developed an imaging approach for extended observation and analysis of SG dynamics during persistent hepatitis C virus (HCV) infection. In combination with type 1 interferon, HCV infection induces highly dynamic assembly/disassembly of cytoplasmic SGs, concomitant with phases of active and stalled translation, delayed cell division, and prolonged cell survival. Double-stranded RNA (dsRNA), independent of viral replication, is sufficient to trigger these oscillations. Translation initiation factor eIF2α phosphorylation by protein kinase R mediates SG formation and translation arrest. This is antagonized by the upregulation of GADD34, the regulatory subunit of protein phosphatase 1 dephosphorylating eIF2α. Stress response oscillation is a general mechanism to prevent long-lasting translation repression and a conserved host cell reaction to multiple RNA viruses, which HCV may exploit to establish persistence.  相似文献   

9.
Stress granules (SGs) are large cytoplasmic ribonucleoprotein complexes that are assembled when cells are exposed to stress. SGs promote the survival of stressed cells by contributing to the reprogramming of protein expression as well as by blocking pro-apoptotic signaling cascades. These cytoprotective effects implicated SGs in the resistance of cancer cells to radiation and chemotherapy. We have found that sodium selenite, a selenium compound with chemotherapeutic potential, is a potent inducer of SG assembly. Selenite-induced SGs differ from canonical mammalian SGs in their morphology, composition and mechanism of assembly. Their assembly is induced primarily by eIF4E-binding protein1 (4EBP1)-mediated inhibition of translation initiation, which is reinforced by concurrent phosphorylation of eIF2α. Selenite-induced SGs lack several classical SG components, including proteins that contribute to pro-survival functions of canonical SGs. Our results reveal a new mechanism of mammalian SG assembly and provide insights into how selenite cytotoxicity may be exploited as an anti-neoplastic therapy.  相似文献   

10.
The regulation of protein synthesis is essential for maintaining cellular homeostasis, especially during stress responses, and its dysregulation could underlie the development of human diseases. The critical step during translation regulation is the phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α). Here we report the identification of a direct kinase of eIF2α, microtubule affinity-regulating kinase 2 (MARK2), which phosphorylates eIF2α in response to proteotoxic stress. The activity of MARK2 was confirmed in the cells lacking the 4 previously known eIF2α kinases. MARK2 itself was found to be a substrate of protein kinase C delta (PKCδ), which serves as a sensor for protein misfolding stress through a dynamic interaction with heat shock protein 90 (HSP90). Both MARK2 and PKCδ are activated via phosphorylation in proteotoxicity-associated neurodegenerative mouse models and in human patients with amyotrophic lateral sclerosis (ALS). These results reveal a PKCδ-MARK2-eIF2α cascade that may play a critical role in cellular proteotoxic stress responses and human diseases.

The regulation of protein translation is vital for cellular stress responses and human diseases. This study identifies a new pathway that regulates the key step of translation initiation, with MARK2 directly phosphorylating eIF2α and acting downstream of PKCδ. This pathway is activated in conditions of cellular stress and in proteotoxicity-associated neurodegeneration.  相似文献   

11.
TIA-1 is an RNA binding protein that promotes the assembly of stress granules (SGs), discrete cytoplasmic inclusions into which stalled translation initiation complexes are dynamically recruited in cells subjected to environmental stress. The RNA recognition motifs of TIA-1 are linked to a glutamine-rich prion-related domain (PRD). Truncation mutants lacking the PRD domain do not induce spontaneous SGs and are not recruited to arsenite-induced SGs, whereas the PRD forms aggregates that are recruited to SGs in low-level-expressing cells but prevent SG assembly in high-level-expressing cells. The PRD of TIA-1 exhibits many characteristics of prions: concentration-dependent aggregation that is inhibited by the molecular chaperone heat shock protein (HSP)70; resistance to protease digestion; sequestration of HSP27, HSP40, and HSP70; and induction of HSP70, a feedback regulator of PRD disaggregation. Substitution of the PRD with the aggregation domain of a yeast prion, SUP35-NM, reconstitutes SG assembly, confirming that a prion domain can mediate the assembly of SGs. Mouse embryomic fibroblasts (MEFs) lacking TIA-1 exhibit impaired ability to form SGs, although they exhibit normal phosphorylation of eukaryotic initiation factor (eIF)2alpha in response to arsenite. Our results reveal that prion-like aggregation of TIA-1 regulates SG formation downstream of eIF2alpha phosphorylation in response to stress.  相似文献   

12.
AMP-activated protein kinase (AMPK) is viewed as an energy sensor that acts to modulate glucose uptake and fatty acid oxidation in skeletal muscle. Given that protein synthesis is a high energy-consuming process, it may be transiently depressed during cellular energy stress. Thus, the intent of this investigation was to examine whether AMPK activation modulates the translational control of protein synthesis in skeletal muscle. Injections of 5-aminoimidazole-4-carboxamide 1-beta-d-ribonucleoside (AICAR) were used to activate AMPK in male rats. The activity of alpha1 AMPK remained unchanged in gastrocnemius muscle from AICAR-treated animals compared with controls, whereas alpha2 AMPK activity was significantly increased (51%). AICAR treatment resulted in a reduction in protein synthesis to 45% of the control value. This depression was associated with decreased activation of protein kinases in the mammalian target of rapamycin (mTOR) signal transduction pathway as evidenced by reduced phosphorylation of protein kinase B on Ser(473), mTOR on Ser(2448), ribosomal protein S6 kinase on Thr(389), and eukaryotic initiation factor eIF4E-binding protein on Thr(37). A reduction in eIF4E associated with eIF4G to 10% of the control value was also noted. In contrast, eIF2B activity remained unchanged in response to AICAR treatment and therefore would not appear to contribute to the depression in protein synthesis. This is the first investigation to demonstrate changes in translation initiation and skeletal muscle protein synthesis in response to AMPK activation.  相似文献   

13.
Polyamines regulate multiple signaling pathways and are implicated in many aspects of cellular functions, but the exact molecular processes governed by polyamines remain largely unknown. In response to environmental stress, repression of translation is associated with the assembly of stress granules (SGs) that contain a fraction of arrested mRNAs and are thought to function as mRNA storage. Here we show that polyamines modulate the assembly of SGs in normal intestinal epithelial cells (IECs) and that induced SGs following polyamine depletion are implicated in the protection of IECs against apoptosis. Increasing the levels of cellular polyamines by ectopic overexpression of the ornithine decarboxylase gene decreased cytoplasmic levels of SG-signature constituent proteins eukaryotic initiation factor 3b and T-cell intracellular antigen-1 (TIA-1)-related protein and repressed the assembly of SGs induced by exposure to arsenite-induced oxidative stress. In contrast, depletion of cellular polyamines by inhibiting ornithine decarboxylase with α-difluoromethylornithine increased cytoplasmic eukaryotic initiation factor 3b and TIA-1 related protein abundance and enhanced arsenite-induced SG assembly. Polyamine-deficient cells also exhibited an increase in resistance to tumor necrosis factor-α/cycloheximide-induced apoptosis, which was prevented by inhibiting SG formation with silencing SG resident proteins Sort1 and TIA-1. These results indicate that the elevation of cellular polyamines represses the assembly of SGs in normal IECs and that increased SGs in polyamine-deficient cells are crucial for increased resistance to apoptosis.  相似文献   

14.
In response to severe environmental stresses eukaryotic cells shut down translation and accumulate components of the translational machinery in stress granules (SGs). Since they contain mainly mRNA, translation initiation factors and 40S ribosomal subunits, they have been referred to as dominant accumulations of stalled translation preinitiation complexes. Here we present evidence that the robust heat shock-induced SGs of S. cerevisiae also contain translation elongation factors eEF3 (Yef3p) and eEF1Bγ2 (Tef4p) as well as translation termination factors eRF1 (Sup45p) and eRF3 (Sup35p). Despite the presence of the yeast prion protein Sup35 in heat shock-induced SGs, we found out that its prion-like domain is not involved in the SGs assembly. Factors eEF3, eEF1Bγ2 and eRF1 were accumulated and co-localized with Dcp2 foci even upon a milder heat shock at 42°C independently of P-bodies scaffolding proteins. We also show that eEF3 accumulations at 42°C determine sites of the genuine SGs assembly at 46°C. We suggest that identification of translation elongation and termination factors in SGs might help to understand the mechanism of the eIF2α factor phosphorylation-independent repression of translation and SGs assembly.  相似文献   

15.
It is unclear how stress granule (SG) formation and cellular apoptosis are coordinately regulated. MCPIP1 (monocyte chemotactic protein-induced protein 1), also known as Zc3h12a, is a critical regulator of the inflammatory response and immune homeostasis. However, the role of MCPIP1 in stress response remains unknown. Here, we report that overexpression of MCPIP1 inhibited the assembly of SGs in response to various stresses. Conversely, MCPIP1-deficient splenocytes developed more SGs even without stress. On the other hand, overexpression of MCPIP1 sensitized RAW 264.7 cells to apoptosis under stress, whereas MCPIP1-deficient cells were resistant to stress-induced apoptosis. Mutagenesis study showed that the ability of MCPIP1 to repress SG formation is dependent on its deubiquitinating activity. Consistently, MCPIP1 negatively regulated stress-induced phosphorylation of eIF2α and thus released stress-induced inhibition of protein translation. However, MCPIP1 also inhibited 15-deoxy-Δ(12,14)-prostaglandin J(2)-induced SG formation, which was reported to be independent of eIF2α phosphorylation. Taken together, these results suggest that MCPIP1 coordinates SG formation and apoptosis during cellular stress and may play a critical role in immune homeostasis and resolution of macrophage inflammation.  相似文献   

16.
Stress granules (SGs) are cytoplasmic bodies wherein translationally silenced mRNAs are recruited for triage in response to environmental stress. We report that Drosophila cells form SGs in response to arsenite and heat shock. Drosophila SGs, like mammalian SGs, are distinct from but adjacent to processing bodies (PBs, sites of mRNA silencing and decay), require polysome disassembly, and are in dynamic equilibrium with polysomes. We further examine the role of the two Drosophila eIF2α kinases, PEK and GCN2, in regulating SG formation in response to heat and arsenite stress. While arsenite-induced SGs are dependent upon eIF2α phosphorylation, primarily via PEK, heat-induced SGs are phospho-eIF2α-independent. In contrast, heat-induced SGs require eIF2α phosphorylation in mammalian cells, as non-phosphorylatable eIF2α Ser51Ala mutant murine embryonic fibroblasts do not form SGs even after severe heat shock. These results suggest that mammals evolved alternative mechanisms for dealing with thermal stress.  相似文献   

17.
Stress granules (SGs) are nonmembranous organelles that are dynamically assembled and disassembled in response to various stressors. Under stressed conditions, polyadenylated mRNAs and translation factors are sequestrated in SGs to promote global repression of protein synthesis. It has been previously demonstrated that SG formation enhances cell survival and stress resistance. However, the physiological role of SGs in organismal aging and longevity regulation remains unclear. In this study, we used TIAR‐1::GFP and GTBP‐1::GFP as markers to monitor the formation of SGs in Caenorhabditis elegans. We found that, in addition to acute heat stress, SG formation could also be triggered by dietary changes, such as starvation and dietary restriction (DR). We found that HSF‐1 is required for the SG formation in response to acute heat shock and starvation but not DR, whereas the AMPK‐eEF2K signaling is required for starvation and DR‐induced SG formation but not heat shock. Moreover, our data suggest that this AMPK‐eEF2K pathway‐mediated SG formation is required for lifespan extension by DR, but dispensable for the longevity by reduced insulin/IGF‐1 signaling. Collectively, our findings unveil a novel role of SG formation in DR‐induced longevity.  相似文献   

18.
Hydrogen sulfide, a signaling gas, affects several cell functions. We hypothesized that hydrogen sulfide modulates high glucose (30 mm) stimulation of matrix protein synthesis in glomerular epithelial cells. High glucose stimulation of global protein synthesis, cellular hypertrophy, and matrix laminin and type IV collagen content was inhibited by sodium hydrosulfide (NaHS), an H(2)S donor. High glucose activation of mammalian target of rapamycin (mTOR) complex 1 (mTORC1), shown by phosphorylation of p70S6 kinase and 4E-BP1, was inhibited by NaHS. High glucose stimulated mTORC1 to promote key events in the initiation and elongation phases of mRNA translation: binding of eIF4A to eIF4G, reduction in PDCD4 expression and inhibition of its binding to eIF4A, eEF2 kinase phosphorylation, and dephosphorylation of eEF2; these events were inhibited by NaHS. The role of AMP-activated protein kinase (AMPK), an inhibitor of protein synthesis, was examined. NaHS dose-dependently stimulated AMPK phosphorylation and restored AMPK phosphorylation reduced by high glucose. Compound C, an AMPK inhibitor, abolished NaHS modulation of high glucose effect on events in mRNA translation as well as global and matrix protein synthesis. NaHS induction of AMPK phosphorylation was inhibited by siRNA for calmodulin kinase kinase β, but not LKB1, upstream kinases for AMPK; STO-609, a calmodulin kinase kinase β inhibitor, had the same effect. Renal cortical content of cystathionine β-synthase and cystathionine γ-lyase, hydrogen sulfide-generating enzymes, was significantly reduced in mice with type 1 diabetes or type 2 diabetes, coinciding with renal hypertrophy and matrix accumulation. Hydrogen sulfide is a newly identified modulator of protein synthesis in the kidney, and reduction in its generation may contribute to kidney injury in diabetes.  相似文献   

19.
The role of the AMP-activated kinase (AMPK) as a metabolic sensor in skeletal muscle has been far better characterized for glucose and fat metabolism than for protein metabolism. Therefore, the studies presented here were designed to examine the effects of 5-aminoimidazole-4-carboxamide-1-beta-d-ribonucleoside (AICAR)-induced AMPK signaling on effector mechanisms of mRNA translation and protein synthesis in cultures of C(2)C(12) myotubes. The findings show that, following AICAR (2 mM) treatment, AMPK phosphorylation was increased within 15 min and remained elevated throughout a 60-min time course. In association with the increase in AMPK phosphorylation, global rates of protein synthesis declined to 90, 70, and 63% of the control values at the 15-, 30-, and 60-min time points, respectively. By 60 min, polysomes disaggregated into free ribosomal subunits, suggesting an inhibition of initiation of mRNA translation. However, phosphorylation of eukaryotic elongation factor 2 was increased at 15 and 30 min but then declined to control values by 60 min, suggesting a transient inhibition of translation elongation. The decline in protein synthesis and changes in mRNA translation were associated with a repression of the mammalian target of rapamycin (mTOR) signaling pathway, as indicated by increased association of Hamartin with Tuberin, increased association of regulatory associated protein of mTOR with mTOR, and dephosphorylation of the downstream targets ribosomal protein S6 kinase-1 and eukaryotic initiation factor 4E-binding protein-1. They were also associated with activation of the MAPK signaling pathway, as indicated by increased phosphorylation of MEK1/2 and ERK1/2 and the downstream target eIF4E. Overall, the data support the conclusion that AICAR-induced AMPK activation suppresses protein synthesis through concurrent repression of mTOR signaling and activation of MAPK signaling, the combination of which modulates transient changes in the initiation and elongation phases of mRNA translation.  相似文献   

20.
Early during the infection process, rotavirus causes the shutoff of cell protein synthesis, with the nonstructural viral protein NSP3 playing a vital role in the phenomenon. In this work, we have found that the translation initiation factor 2α (eIF2α) in infected cells becomes phosphorylated early after virus infection and remains in this state throughout the virus replication cycle, leading to a further inhibition of cell protein synthesis. Under these restrictive conditions, however, the viral proteins and some cellular proteins are efficiently translated. The phosphorylation of eIF2α was shown to depend on the synthesis of three viral proteins, VP2, NSP2, and NSP5, since in cells in which the expression of any of these three proteins was knocked down by RNA interference, the translation factor was not phosphorylated. The modification of this factor is, however, not needed for the replication of the virus, since mutant cells that produce a nonphosphorylatable eIF2α sustained virus replication as efficiently as wild-type cells. In uninfected cells, the phosphorylation of eIF2α induces the formation of stress granules, aggregates of stalled translation complexes that prevent the translation of mRNAs. In rotavirus-infected cells, even though eIF2α is phosphorylated these granules are not formed, suggesting that the virus prevents the assembly of these structures to allow the translation of its mRNAs. Under these conditions, some of the cellular proteins that form part of these structures were found to change their intracellular localization, with some of them having dramatic changes, like the poly(A) binding protein, which relocates from the cytoplasm to the nucleus in infected cells, a relocation that depends on the viral protein NSP3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号