首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Processing bodies (P-bodies) are highly dynamic cytoplasmic granules conserved among eukaryotes. They are present under normal growth conditions and contain translationally repressed mRNAs together with proteins from the mRNA decay and microRNA (miRNA) machineries. We have previously shown that the core P-body components PatL1, LSm1, and DDX6 (Rck/p54) are required for hepatitis C virus (HCV) RNA replication; however, how HCV infection affects P-body granules and whether P-body granules per se influence the HCV life cycle remain unresolved issues. Here we show that HCV infection alters P-body composition by specifically changing the localization pattern of P-body components that are required for HCV replication. This effect was not related to an altered expression level of these components and could be reversed by inhibiting HCV replication with a polymerase inhibitor. Similar observations were obtained with a subgenomic replicon that supports only HCV translation and replication, indicating that these early steps of the HCV life cycle trigger the P-body alterations. Finally, P-body disruption by Rap55 depletion did not affect viral titers or HCV protein levels, demonstrating that the localization of PatL1, LSm1, and DDX6 in P-bodies is not required for their function on HCV. Thus, the HCV-induced changes on P-bodies are mechanistically linked to the function of specific P-body components in HCV RNA translation and replication; however, the formation of P-body granules is not required for HCV infection.  相似文献   

2.
Importin-β family members, which shuttle between the nucleus and the cytoplasm, are essential for nucleocytoplasmic transport of macromolecules. We attempted to explore whether importin-β family proteins change their cellular localization in response to environmental change. In this report, we show that transportin (TRN) was minimally detected in cytoplasmic processing bodies (P-bodies) under normal cell conditions but largely translocated to stress granules (SGs) in stressed cells. Fluorescence recovery after photobleaching analysis indicated that TRN moves rapidly in and out of cytoplasmic granules. Depletion of TRN greatly enhanced P-body formation but did not affect the number or size of SGs, suggesting that TRN or its cargo(es) participates in cellular function of P-bodies. Accordingly, TRN associated with tristetraprolin (TTP) and its AU-rich element (ARE)-containing mRNA substrates. Depletion of TRN increased the number of P-bodies and stabilized ARE-containing mRNAs, as observed with knockdown of the 5′–3′ exonuclease Xrn1. Moreover, depletion of TRN retained TTP in P-bodies and meanwhile reduced the fraction of mobile TTP to SGs. Therefore, our data together suggest that TRN plays a role in trafficking of TTP between the cytoplasmic granules and whereby modulates the stability of ARE-containing mRNAs.  相似文献   

3.
Ribonucleoprotein (RNP) granules are cytoplasmic, microscopically visible structures composed of RNA and protein with proposed functions in mRNA decay and storage. Trypanosomes have several types of RNP granules, but lack most of the granule core components identified in yeast and humans. The exception is SCD6/Rap55, which is essential for processing body (P-body) formation. In this study, we analyzed the role of trypanosome SCD6 in RNP granule formation. Upon overexpression, the majority of SCD6 aggregates to multiple granules enriched at the nuclear periphery that recruit both P-body and stress granule proteins, as well as mRNAs. Granule protein composition depends on granule distance to the nucleus. In contrast to findings in yeast and humans, granule formation does not correlate with translational repression and can also take place in the nucleus after nuclear targeting of SCD6. While the SCD6 Lsm domain alone is both necessary and sufficient for granule induction, the RGG motif determines granule type and number: the absence of an intact RGG motif results in the formation of fewer granules that resemble P-bodies. The differences in granule number remain after nuclear targeting, indicating translation-independent functions of the RGG domain. We propose that, in trypanosomes, a local increase in SCD6 concentration may be sufficient to induce granules by recruiting mRNA. Proteins that bind selectively to the RGG and/or Lsm domain of SCD6 could be responsible for regulating granule type and number.  相似文献   

4.
The stress response of eukaryotic cells often causes an attenuation of bulk translation activity and the accumulation of non-translating mRNAs into cytoplasmic mRNP (messenger ribonucleoprotein) granules termed cytoplasmic P-bodies (processing bodies) and SGs (stress granules). We examined effects of acidic stress on the formation of mRNP granules compared with other forms of stress such as glucose deprivation and a high Ca2+ level in Saccharomyces cerevisiae. Treatment with lactic acid clearly caused the formation of P-bodies, but not SGs, and also caused an attenuation of translation initiation, albeit to a lesser extent than glucose depletion. P-body formation was also induced by hydrochloric acid and sulfuric acid. However, lactic acid in SD (synthetic dextrose) medium with a pH greater than 3.0, propionic acid and acetic acid did not induce P-body formation. The results of the present study suggest that the assembly of yeast P-bodies can be induced by external conditions with a low pH and the threshold was around pH?2.5. The P-body formation upon acidic stress required Scd6 (suppressor of clathrin deficiency 6), a component of P-bodies, indicating that P-bodies induced by acidic stress have rules of assembly different from those induced by glucose deprivation or high Ca2+ levels.  相似文献   

5.
Processing bodies (P-bodies) are cytoplasmic foci implicated in the regulation of mRNA translation, storage, and degradation. Key effectors of microRNA (miRNA)-mediated RNA interference (RNAi), such as Argonaute-2 (Ago2), miRNAs, and their cognate mRNAs, are localized to these structures; however, the precise role that P-bodies and their component proteins play in small interfering RNA (siRNA)-mediated RNAi remains unclear. Here, we investigate the relationship between siRNA-mediated RNAi, RNAi machinery proteins, and P-bodies. We show that upon transfection into cells, siRNAs rapidly localize to P-bodies in their native double-stranded conformation, as indicated by fluorescence resonance energy transfer imaging and that Ago2 is at least in part responsible for this siRNA localization pattern, indicating RISC involvement. Furthermore, siRNA transfection induces up-regulated expression of both GW182, a key P-body component, and Ago2, indicating that P-body localization and interaction with GW182 and Ago2 are important in siRNA-mediated RNAi. By virtue of being centers where these proteins and siRNAs aggregate, we propose that the P-body microenvironment, whether as microscopically visible foci or submicroscopic protein complexes, facilitates siRNA processing and siRNA-mediated silencing through the action of its component proteins.  相似文献   

6.
Processing bodies (P-bodies) are cytoplasmic RNA granules that contain translationally repressed messenger ribonucleoproteins (mRNPs) and messenger RNA (mRNA) decay factors. The physical interactions that form the individual mRNPs within P-bodies and how those mRNPs assemble into larger P-bodies are unresolved. We identify direct protein interactions that could contribute to the formation of an mRNP complex that consists of core P-body components. Additionally, we demonstrate that the formation of P-bodies that are visible by light microscopy occurs either through Edc3p, which acts as a scaffold and cross-bridging protein, or via the "prionlike" domain in Lsm4p. Analysis of cells defective in P-body formation indicates that the concentration of translationally repressed mRNPs and decay factors into microscopically visible P-bodies is not necessary for basal control of translation repression and mRNA decay. These results suggest a stepwise model for P-body assembly with the initial formation of a core mRNA-protein complex that then aggregates through multiple specific mechanisms.  相似文献   

7.
Recent experiments have defined cytoplasmic foci, referred to as processing bodies (P-bodies), that contain untranslating mRNAs in conjunction with proteins involved in translation repression and mRNA decapping and degradation. However, the order of protein assembly into P-bodies and the interactions that promote P-body assembly are unknown. To gain insight into how yeast P-bodies assemble, we examined the P-body accumulation of Dcp1p, Dcp2p, Edc3p, Dhh1p, Pat1p, Lsm1p, Xrn1p, Ccr4p, and Pop2p in deletion mutants lacking one or more P-body component. These experiments revealed that Dcp2p and Pat1p are required for recruitment of Dcp1p and of the Lsm1-7p complex to P-bodies, respectively. We also demonstrate that P-body assembly is redundant and no single known component of P-bodies is required for P-body assembly, although both Dcp2p and Pat1p contribute to P-body assembly. In addition, our results indicate that Pat1p can be a nuclear-cytoplasmic shuttling protein and acts early in P-body assembly. In contrast, the Lsm1-7p complex appears to primarily function in a rate limiting step after P-body assembly in triggering decapping. Taken together, these results provide insight both into the function of individual proteins involved in mRNA degradation and the mechanisms by which yeast P-bodies assemble.  相似文献   

8.
Recent results suggest that cytoplasmic mRNAs can form translationally repressed messenger ribonucleoprotein particles (mRNPs) capable of decapping and degradation, or accumulation into cytoplasmic processing bodies (P-bodies), which can function as sites of mRNA storage. The proteins that function in transitions between the translationally repressed mRNPs that accumulate in P-bodies and mRNPs engaged in translation are largely unknown. Herein, we demonstrate that the yeast translation initiation factor Ded1p can localize to P-bodies. Moreover, depletion of Ded1p leads to defects in P-body formation. Overexpression of Ded1p results in increased size and number of P-bodies and inhibition of growth in a manner partially suppressed by loss of Pat1p, Dhh1p, or Lsm1p. Mutations that inactivate the ATPase activity of Ded1p increase the overexpression growth inhibition of Ded1p and prevent Ded1p from localizing in P-bodies. Combined with earlier work showing Ded1p can have a positive effect on translation, these results suggest that Ded1p is a bifunctional protein that can affect both translation initiation and P-body formation.  相似文献   

9.
The cellular factors involved in mRNA degradation and translation repression can aggregate into cytoplasmic domains known as GW bodies or mRNA processing bodies (P-bodies). However, current understanding of P-bodies, especially the regulatory aspect, remains relatively fragmentary. To provide a framework for studying the mechanisms and regulation of P-body formation, maintenance, and disassembly, we compiled a list of P-body proteins found in various species and further grouped both reported and predicted human P-body proteins according to their functions. By analyzing protein-protein interactions of human P-body components, we found that many P-body proteins form complex interaction networks with each other and with other cellular proteins that are not recognized as P-body components. The observation suggests that these other cellular proteins may play important roles in regulating P-body dynamics and functions. We further used siRNA-mediated gene knockdown and immunofluorescence microscopy to demonstrate the validity of our in silico analyses. Our combined approach identifies new P-body components and suggests that protein ubiquitination and protein phosphorylation involving 14-3-3 proteins may play critical roles for post-translational modifications of P-body components in regulating P-body dynamics. Our analyses provide not only a global view of human P-body components and their physical interactions but also a wealth of hypotheses to help guide future research on the regulation and function of human P-bodies.  相似文献   

10.
Recent advances in microscopic techniques have shed light on the roles of specific subcellular structures in the regulation of gene expression. One such structure is the stress granule (SG), which is engaged in stress-triggered translational arrest by sequestering pre-initiation complexes of translation. Recent studies revealed the spatial, compositional, and functional linkage of the SG to the processing body (P-body), another cytoplasmic structure that has been implicated in mRNA degradation and siRNA- or miRNA-mediated gene silencing. In this study, we report that PCBP2, a facilitator of IRES (Internal Ribosomal Entry Site)-mediated translation, is a novel constituent of the SG and P-body. Immunofluorescence studies revealed that while PCBP2 is diffusely distributed throughout the nucleoplasm and the cytoplasm, the protein is enriched in a subset of P-bodies under normal conditions. Upon exposure to heat and arsenic stress, PCBP2 became predominantly accumulated at the SG, but was still present in Dcp1a-positive P-bodies. Live-cell imaging revealed the dynamic association of PCBP2-enriched P-bodies and the SG, and FRAP experiments demonstrated that PCBP2 actively moves in and out of the SG and P-body. Taken together, these results suggest that PCBP2 shuttles between the cytoplasm and the two structures under stress. We propose that PCBP2 may be involved in stress-induced remodeling of mRNP complexes and that it may also play a role in the rapid transition of certain silenced mRNAs into a translationally active state. Additionally, given the property of PCBP2 as a nuclear-cytoplasmic shuttling protein, PCBP2 may play a role in directly targeting nascent mRNPs to specific P-bodies for storage.  相似文献   

11.
Protein components of the U6 snRNP (Prp24p and LSm2–8) are thought to act cooperatively in facilitating the annealing of U6 and U4 snRNAs during U4/U6 di-snRNP formation. To learn more about the spatial arrangement of these proteins in S. cerevisiae U6 snRNPs, we investigated the structure of this particle by electron microscopy. U6 snRNPs, purified by affinity chromatography and gradient centrifugation, and then immediately adsorbed to the carbon film support, revealed an open form in which the Prp24 protein and the ring formed by the LSm proteins were visible as two separate morphological domains, while particles stabilized by chemical cross-linking in solution under mild conditions before binding to the carbon film exhibited a compact form, with the two domains in close proximity to one another. In the open form, individual LSm proteins were located by a novel approach employing C-terminal genetic tagging of the LSm proteins with yECitrine. These studies show the Prp24 protein at defined distances from each subunit of the LSm ring, which in turn suggests that the LSm ring is positioned in a consistent manner on the U6 RNA. Furthermore, in agreement with the EM observations, UV cross-linking revealed U6 RNA in contact with the LSm2 protein at the interface between Prp24p and the LSm ring. Further, LSmp–Prp24p interactions may be restricted to the closed form, which appears to represent the solution structure of the U6 snRNP particle.  相似文献   

12.
Deadenylation is the major step triggering mammalian mRNA decay. One consequence of deadenylation is the formation of nontranslatable messenger RNA (mRNA) protein complexes (messenger ribonucleoproteins [mRNPs]). Nontranslatable mRNPs may accumulate in P-bodies, which contain factors involved in translation repression, decapping, and 5'-to-3' degradation. We demonstrate that deadenylation is required for mammalian P-body formation and mRNA decay. We identify Pan2, Pan3, and Caf1 deadenylases as new P-body components and show that Pan3 helps recruit Pan2, Ccr4, and Caf1 to P-bodies. Pan3 knockdown causes a reduction of P-bodies and has differential effects on mRNA decay. Knocking down Caf1 or overexpressing a Caf1 catalytically inactive mutant impairs deadenylation and mRNA decay. P-bodies are not detected when deadenylation is blocked and are restored when the blockage is released. When deadenylation is impaired, P-body formation is not restorable, even when mRNAs exit the translating pool. These results support a dynamic interplay among deadenylation, mRNP remodeling, and P-body formation in selective decay of mammalian mRNA.  相似文献   

13.
14.
15.
Microtubule disruption stimulates P-body formation   总被引:3,自引:0,他引:3  
Processing bodies (P-bodies) are subcellular ribonucleoprotein (RNP) granules that have been hypothesized to be sites of mRNA degradation, mRNA translational control, and/or mRNA storage. Importantly, P-bodies are conserved from yeast to mammals and contain a common set of evolutionarily conserved protein constituents. P-bodies are dynamic structures and their formation appears to fluctuate in correlation with alterations in mRNA metabolism. Despite these observations, little is understood about how P-body structures are formed within the cell. In this study, we demonstrate a relationship between P-bodies and microtubules in the budding yeast, Saccharomyces cerevisiae. First, we demonstrate that disruption of microtubules by treatment with the drug benomyl leads to aggregation of P-body components. Consistent with this finding, we also demonstrate that disruption of microtubules by a temperature-sensitive allele of the major alpha tubulin, TUB1 (tub1-724) stimulates P-body formation. Second, we find that the alpha-tubulin protein Tub1 colocalizes with P-bodies upon microtubule destabilization. Third, we determine that a putative tubulin tyrosine ligase, encoded by YBR094W, is a protein component of P-bodies, providing additional evidence for a physical connection between P-bodies and microtubules. Finally, we establish that P-bodies formed by microtubule destabilization fail to correlate with global changes in the stability of mRNA or in general mRNA translation. These findings demonstrate that the aggregation of P-body components is linked to the intracellular microtubule network, and, further, that P-bodies formed by disruption of microtubules aggregate independent of broad alterations in either mRNA decay or mRNA translation.  相似文献   

16.
Members of the (L)Sm (Sm and Sm-like) protein family are found across all kingdoms of life and play crucial roles in RNA metabolism. The P-body component EDC3 (enhancer of decapping 3) is a divergent member of this family that functions in mRNA decapping. EDC3 is composed of a N-terminal LSm domain, a central FDF domain, and a C-terminal YjeF-N domain. We show that this modular architecture enables EDC3 to interact with multiple components of the decapping machinery, including DCP1, DCP2, and Me31B. The LSm domain mediates DCP1 binding and P-body localization. We determined the three-dimensional structures of the LSm domains of Drosophila melanogaster and human EDC3 and show that the domain adopts a divergent Sm fold that lacks the characteristic N-terminal α-helix and has a disrupted β4-strand. This domain remains monomeric in solution and lacks several features that canonical (L)Sm domains require for binding RNA. The structures also revealed a conserved patch of surface residues that are required for the interaction with DCP1 but not for P-body localization. The conservation of surface and of critical structural residues indicates that LSm domains in EDC3 proteins adopt a similar fold that has separable novel functions that are absent in canonical (L)Sm proteins.  相似文献   

17.
Previously, we found that treatment of cells with the Hsp90 inhibitor geldanamycin (GA) leads to a substantial reduction in the number of processing bodies (P-bodies), and also alters the size and subcellular localization of stress granules. These findings imply that the chaperone activity of Hsp90 is involved in the formation of P-bodies and stress granules. To verify these observations, we examined whether another Hsp90 inhibitor radicicol (RA) affected P-bodies and stress granules. Treatment with RA reduced the level of the Hsp90 client protein Argonaute 2 and the number of P-bodies. Although stress granules still assembled in RA-treated cells upon heat shock, they were smaller and more dispersed in the cytoplasm than those in untreated cells. Furthermore eIF4E and eIF4E-transporter were dissociated selectively from stress granules in RA-treated cells. These observations were comparable to those obtained upon treatment with GA in our previous work. Thus, we conclude that abrogation of the chaperone activity of Hsp90 affects P-body formation and the integrity of stress granules.  相似文献   

18.
The nuclear LSm2-8 (like Sm) complex and the cytoplasmic LSm1-7 complex play a central role in mRNA splicing and degradation, respectively. The LSm proteins are related to the spliceosomal Sm proteins that form a heteroheptameric ring around small nuclear RNA. The assembly process of the heptameric Sm complex is well established and involves several smaller Sm assembly intermediates. The assembly of the LSm complex, however, is less well studied. Here, we solved the 2.5 Å-resolution structure of the LSm assembly intermediate that contains LSm5, LSm6, and LSm7. The three monomers display the canonical Sm fold and arrange into a hexameric LSm657-657 ring. We show that the order of the LSm proteins within the ring is consistent with the order of the related SmE, SmF, and SmG proteins in the heptameric Sm ring. Nonetheless, differences in RNA binding pockets prevent the prediction of the nucleotide binding preferences of the LSm complexes. Using high-resolution NMR spectroscopy, we confirm that LSm5, LSm6, and LSm7 also assemble into a  60-kDa hexameric ring in solution. With a combination of pull-down and NMR experiments, we show that the LSm657 complex can incorporate LSm23 in order to assemble further towards native LSm rings. Interestingly, we find that the NMR spectra of the LSm57, LSm657-657, and LSm23-657 complexes differ significantly, suggesting that the angles between the LSm building blocks change depending on the ring size of the complex. In summary, our results identify LSm657 as a plastic and functional building block on the assembly route towards the LSm1-7 and LSm2-8 complexes.  相似文献   

19.
20.
Cytoplasmic ribonucleoprotein granules, known as processing bodies (P-bodies), contain a common set of conserved RNA-processing enzymes, and mRNAs with AU-rich elements (AREs) are delivered to P-bodies for translational silencing. Although the dynamics of P-bodies is physically linked to cytoskeletal network, it is unclear how small GTPases are involved in the P-body regulation and the ARE-mRNA metabolism. We found here that glucose depletion activates RhoA GTPase and alters the P-body dynamics in HeLa cells. These glucose-depleted effects are reproduced by the overexpression of the RhoA-subfamily GTPases and conversely abolished by the inhibition of RhoA activation. Interestingly, both RhoA activation and glucose depletion inhibit the mRNA accumulation and degradation. These findings indicate that RhoA participates in the stress-induced rearrangement of P-bodies and the release of nucleated ARE-mRNAs for their stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号