首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 499 毫秒
1.
Bipolar disorder (BD) is a severe neuropsychiatric disorder with poorly understood pathophysiology and typically treated with the mood stabilizer, lithium carbonate. Animal studies as well as human genetic studies indicate that lithium affects molecular targets that are involved in neuronal growth, survival and maturation, and notably molecules involved in Wnt signaling. Given the ethical challenge to obtaining brain biopsies for investigating dynamic molecular changes associated with lithium-response in the central nervous system (CNS), one may consider the use of neurons obtained from olfactory tissues to achieve this goal.The olfactory epithelium contains olfactory receptor neurons at different stages of development and glial-like supporting cells. This provides a unique opportunity to study dynamic changes in the CNS of patients with neuropsychiatric diseases, using olfactory tissue safely obtained from nasal biopsies. To overcome the drawback posed by substantial contamination of biopsied olfactory tissue with non-neuronal cells, a novel approach to obtain enriched neuronal cell populations was developed by combining nasal biopsies with laser-capture microdissection. In this study, a system for investigating treatment-associated dynamic molecular changes in neuronal tissue was developed and validated, using a small pilot sample of BD patients recruited for the study of the molecular mechanisms of lithium treatment response.  相似文献   

2.
Single cell genomics has made increasingly significant contributions to our understanding of the role that somatic genome variations play in human neuronal diversity and brain diseases. Studying intercellular genome and epigenome variations has provided new clues to the delineation of molecular mechanisms that regulate development, function and plasticity of the human central nervous system (CNS). It has been shown that changes of genomic content and epigenetic profiling at single cell level are involved in the pathogenesis of neuropsychiatric diseases (schizophrenia, mental retardation (intellectual/leaning disability), autism, Alzheimer’s disease etc.). Additionally, several brain diseases were found to be associated with genome and chromosome instability (copy number variations, aneuploidy) variably affecting cell populations of the human CNS. The present review focuses on the latest advances of single cell genomics, which have led to a better understanding of molecular mechanisms of neuronal diversity and neuropsychiatric diseases, in the light of dynamically developing fields of systems biology and “omics”.  相似文献   

3.
The development of the central nervous system can be divided into a number of phases, each of which can be subject of genetic or epigenetic alterations that may originate particular developmental disorders. In recent years, much progress has been made in elucidating the molecular and cellular mechanisms by which the vertebrate forebrain develops. Therefore, our understanding of major developmental brain disorders such as cortical malformations and neuronal migration disorders has significantly increased. In this review, we will describe the major stages in forebrain morphogenesis and regionalization, with special emphasis on developmental molecular mechanisms derailing telencephalic development with subsequent damage to cortical function. Because animal models, mainly mouse, have been fundamental for this progress, we will also describe some characteristic mouse models that have been capital to explore these molecular mechanisms of malformative diseases of the human brain. Although most of the genes involved in the regulation of basic developmental processes are conserved among vertebrates, the extrapolation of mouse data to corresponding gene expression and function in humans needs careful individual analysis in each functional system.  相似文献   

4.
The development of the central nervous system can be divided into a number of phases, each of which can be subject of genetic or epigenetic alterations that may originate particular developmental disorders. In recent years, much progress has been made in elucidating the molecular and cellular mechanisms by which the vertebrate forebrain develops. Therefore, our understanding of major developmental brain disorders such as cortical malformations and neuronal migration disorders has significantly increased. In this review, we will describe the major stages in forebrain morphogenesis and regionalization, with special emphasis on developmental molecular mechanisms derailing telencephalic development with subsequent damage to cortical function. Because animal models, mainly mouse, have been fundamental for this progress, we will also describe some characteristic mouse models that have been capital to explore these molecular mechanisms of malformative diseases of the human brain. Although most of the genes involved in the regulation of basic developmental processes are conserved among vertebrates, the extrapolation of mouse data to corresponding gene expression and function in humans needs careful individual analysis in each functional system.  相似文献   

5.
6.
Chronic infection with the intracellular protozoan parasite Toxoplasma gondii leads to tissue remodelling in the brain and a continuous requirement for peripheral leucocyte migration within the CNS (central nervous system). In the present study, we investigate the role of MMPs (matrix metalloproteinases) and their inhibitors in T-cell migration into the infected brain. Increased expression of two key molecules, MMP-8 and MMP-10, along with their inhibitor, TIMP-1 (tissue inhibitor of metalloproteinases-1), was observed in the CNS following infection. Analysis of infiltrating lymphocytes demonstrated MMP-8 and -10 production by CD4+ and CD8+ T-cells. In addition, infiltrating T-cells and CNS resident astrocytes increased their expression of TIMP-1 following infection. TIMP-1-deficient mice had a decrease in perivascular accumulation of lymphocyte populations, yet an increase in the proportion of CD4+ T-cells that had trafficked into the CNS. This was accompanied by a reduction in parasite burden in the brain. Taken together, these findings demonstrate a role for MMPs and TIMP-1 in the trafficking of lymphocytes into the CNS during chronic infection in the brain.  相似文献   

7.
Synaptic function is critical for proper cognition, and synaptopathologies have been implicated in diverse neuropsychiatric disorders. STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-enriched tyrosine phosphatase that normally opposes synaptic strengthening by dephosphorylating key neuronal signaling molecules. STEP targets include N-methyl D-aspartate receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), as well as extracellular signal-regulated kinase (ERK) and the tyrosine kinase Fyn. STEP-mediated dephosphorylation promotes the internalization of NMDARs and AMPARs and the inactivation of ERK and Fyn.Regulation of STEP is complex, and recent work has implicated STEP dysregulation in the pathophysiology of several neuropsychiatric disorders. Both high levels and low levels of STEP are found in a diverse group of illnesses. This review focuses on the role of STEP in three disorders in which STEP levels are elevated: Alzheimer’s disease, fragile X syndrome, and schizophrenia. The presence of elevated STEP in all three of these disorders raises the intriguing possibility that cognitive deficits resulting from diverse etiologies may share a common molecular pathway.  相似文献   

8.
Examining molecular mechanisms involved in neuropathological conditions, such as ischemic stroke, can be difficult when using whole animal systems. As such, primary or ''neuronal-like'' cell culture systems are commonly utilized. While these systems are relatively easy to work with, and are useful model systems in which various functional outcomes (such as cell death) can be readily quantified, the examined outcomes and pathways in cultured immature neurons (such as excitotoxicity-mediated cell death pathways) are not necessarily the same as those observed in mature brain, or in intact tissue. Therefore, there is the need to develop models in which cellular mechanisms in mature neural tissue can be examined. We have developed an in vitro technique that can be used to investigate a variety of molecular pathways in intact nervous tissue. The technique described herein utilizes rat cortical tissue, but this technique can be adapted to use tissue from a variety of species (such as mouse, rabbit, guinea pig, and chicken) or brain regions (for example, hippocampus, striatum, etc.). Additionally, a variety of stimulations/treatments can be used (for example, excitotoxic, administration of inhibitors, etc.). In conclusion, the brain slice model described herein can be used to examine a variety of molecular mechanisms involved in excitotoxicity-mediated brain injury.  相似文献   

9.
10.
The tolerant brain which is a consequence of adaptation to repeated nonlethal insults is accompanied by the upregulation of protective mechanisms and the downregulation of prodegenerative pathways. During the past 20 years, evidence has accumulated to suggest that protective mechanisms include increased production of chaperones, trophic factors, and other antiapoptotic proteins. In contrast, preconditioning can cause substantial dampening of the organism’s metabolic state and decreased expression of proapoptotic proteins. Recent microarray analyses have also helped to document a role of several molecular pathways in the induction of the brain refractory state. The present review highlights some of these findings and suggests that a better understanding of these mechanisms will inform treatment of a number of neuropsychiatric disorders.  相似文献   

11.
Embryonic stem cells (ESCs) are endowed with the ability to generate multiple cell lineages and carry great therapeutic potentials in regenerative medicine. Future application of ESCs in human health and diseases will embark on the delineation of molecular mechanisms that define the biology of ESCs. Here, we discuss how the finite ESC components mediate the intriguing task of brain development and exhibit biomedical potentials to cure diverse neurological disorders. Birth Defects Research (Part C) 87:182–191, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Considerable evidence supports the idea that cytokines are important mediators of pathophysiologic processes within the central nervous system (CNS). Numerous studies have documented the increased production of various cytokines in the human CNS in a variety of neurological and neuropsychiatric disorders. Deciphering cytokine actions in the intact CNS has important implications for our understanding of the pathogenesis and treatment of these disorders. One approach to address this problem that has been used widely employs transgenic mice with CNS-targeted production of different cytokines. Transgenic production of cytokines in the CNS of mice allows not only for the investigation of complex cellular responses at a localized level in the intact brain but also more closely recapitulates the expression of these mediators as found in disease states. As discussed in this review, the findings show that these transgenic animals exhibit wide-ranging structural and functional deficits that are linked to the development of distinct neuroinflammatory responses which are relatively specific for each cytokine. These cytokine-induced alterations often recapitulate those found in various human neurological disorders not only underscoring the relevance of these models but also reinforcing the clinicopathogenetic significance of cytokines in diseases of the CNS.  相似文献   

13.
14.
Deciphering the expression pattern of K+ channel encoding genes during development can help in the understanding of the establishment of cellular excitability and unravel the molecular mechanisms of neuromuscular diseases. We focused our attention on genes belonging to the erg family, which is deeply involved in the control of neuromuscular excitability in Drosophila flies and possibly other organisms. Both in situ hybridisation and RNase Protection Assay experiments were used to study the expression pattern of mouse (m)erg1, m-erg2 and m-erg3 genes during mouse embryo development, to allow the pattern to be compared with their expression in the adult. M-erg1 is first expressed in the heart and in the central nervous system (CNS) of embryonic day 9.5 (E9.5) embryos; the gene appears in ganglia of the peripheral nervous system (PNS) (dorsal root (DRG) and sympathetic (SCG) ganglia, mioenteric plexus), in the neural layer of retina, skeletal muscles, gonads and gut at E13.5. In the adult m-erg1 is expressed in the heart, various structures of the CNS, DRG and retina. M-erg2 is first expressed at E9.5 in the CNS, thereafter (E13.5) in the neural layer of retina, DRG, SCG, and in the atrium. In the adult the gene is present in some restricted areas of the CNS, retina and DRG. M-erg3 displayed an expression pattern partially overlapping that of m-erg1, with a transitory expression in the developing heart as well. A detailed study of the mouse adult brain showed a peculiar expression pattern of the three genes, sometimes overlapping in different encephalic areas.  相似文献   

15.
In the central nervous system (CNS), neurons need synaptic neurotransmitter release and cellular response for various cellular stress or environmental stimuli. To achieve these highly orchestrated cellular processes, neurons should drive the molecular mechanisms that govern and integrate complex signaling pathways. The signal transduction ATPases with numerous domains (STAND) family of proteins has been shown to play essential roles in diverse signal transduction mechanisms, including apoptosis and innate immunity. However, a comprehensive understanding of STAND genes remains lacking. Previously, we identified the NACHT and WD repeat domain-containing protein 1 (NWD1), a member of STAND family, in the regulation of the assembly of a giant multi-enzyme complex that enables efficient de novo purine biosynthesis during brain development. Here we identified the mouse Nwd2 gene, which is a paralog of Nwd1. A molecular phylogenetic analysis suggested that Nwd1 emerged during the early evolution of the animal kingdom, and that Nwd2 diverged in the process of Nwd1 duplication. RT-PCR and in situ hybridization analyses revealed the unique expression profile of Nwd2 in the developing and adult CNS. Unlike Nwd1, Nwd2 expression was primarily confined to neurons in the medial habenular nucleus, an essential modulating center for diverse psychological states, such as fear, anxiety, and drug addiction. In the adult brain, Nwd2 expression, albeit at a lower level, was also observed in some neuronal populations in the piriform cortex, hippocampus, and substantia nigra pars compacta. NWD2 might play a unique role in the signal transduction required for specific neuronal circuits, especially for cholinergic neurons in the habenula.  相似文献   

16.
Brain regeneration from pluripotent stem cells in planarian   总被引:3,自引:0,他引:3  
How can planarians regenerate their brain? Recently we have identified many genes critical for this process. Brain regeneration can be divided into five steps: (1) anterior blastema formation, (2) brain rudiment formation, (3) pattern formation, (4) neural network formation, and (5) functional recovery. Here we will describe the structure and process of regeneration of the planarian brain in the first part, and then introduce genes involved in brain regeneration in the second part. Especially, we will speculate about molecular events during the early steps of brain regeneration in this review. The finding providing the greatest insight thus far is the discovery of the nou-darake (ndk; ‘brains everywhere’ in Japanese) gene, since brain neurons are formed throughout the entire body as a result of loss of function of the ndk gene. This finding provides a clue for elucidating the molecular and cellular mechanisms underlying brain regeneration. Here we describe the molecular action of the nou-darake gene and propose a new model to explain brain regeneration and restriction in the head region of the planarians.  相似文献   

17.
In this review we will provide a concise summary of the evidence implicating a role for vitamin D in the developing brain. Vitamin D is known to affect a diverse array of cellular functions. Over the past 10 years data has emerged implicating numerous ways in which this vitamin could also affect the developing brain including its effects on cell differentiation, neurotrophic factor expression, cytokine regulation, neurotransmitter synthesis, intracellular calcium signaling, anti-oxidant activity, and the expression of genes/proteins involved in neuronal differentiation, structure and metabolism. Dysfunction in any of these processes could adversely affect development. Although there are many ways to study the effects of vitamin D on the developing CNS in vivo, we will concentrate on one experimental model that has examined the impact of the dietary absence of vitamin D in utero. Finally, we discuss the epidemiological data that suggests that vitamin D deficiency either in utero or in early life may have adverse neuropsychiatric implications.  相似文献   

18.
19.
As functional magnetic resonance imaging (fMRI) studies have yielded increasing amounts of information about the brain’s spontaneous activity, they have revealed fMRI’s potential to locate changes in brain hemodynamics that are associated with neuropsychiatric disorders. In this paper, we review studies that support the notion that changes in brain spontaneous activity observed by fMRI can be used as potential biomarkers for diagnosis and treatment evaluation in neuropsychiatric disorders. We first review the methods used to study spontaneous activity from the perspectives of (1) the properties of local spontaneous activity, (2) the spatial pattern of spontaneous activity, and (3) the topological properties of brain networks. We also summarize the major findings associated with major neuropsychiatric disorders obtained using these methods. Then we review the pilot studies that have used spontaneous activity to discriminate patients from normal controls. Finally, we discuss current challenges and potential research directions to further elucidate the clinical use of spontaneous brain activity in neuropsychiatric disorders.  相似文献   

20.
16p13.11 genomic copy number variants are implicated in several neuropsychiatric disorders, such as schizophrenia, autism, mental retardation, ADHD and epilepsy. The mechanisms leading to the diverse clinical manifestations of deletions and duplications at this locus are unknown. Most studies favour NDE1 as the leading disease-causing candidate gene at 16p13.11. In epilepsy at least, the deletion does not appear to unmask recessive-acting mutations in NDE1, with haploinsufficiency and genetic modifiers being prime candidate disease mechanisms. NDE1 encodes a protein critical to cell positioning during cortical development. As a first step, it is important to determine whether 16p13.11 copy number change translates to detectable brain structural alteration. We undertook detailed neuropathology on surgically resected brain tissue of two patients with intractable mesial temporal lobe epilepsy (MTLE), who had the same heterozygous NDE1-containing 800 kb 16p13.11 deletion, using routine histological stains and immunohistochemical markers against a range of layer-specific, white matter, neural precursor and migratory cell proteins, and NDE1 itself. Surgical temporal lobectomy samples from a MTLE case known not to have a deletion in NDE1 and three non-epilepsy cases were included as disease controls. We found that apart from a 3 mm hamartia in the temporal cortex of one MTLE case with NDE1 deletion and known hippocampal sclerosis in the other case, cortical lamination and cytoarchitecture were normal, with no differences between cases with deletion and disease controls. How 16p13.11 copy changes lead to a variety of brain diseases remains unclear, but at least in epilepsy, it would not seem to be through structural abnormality or dyslamination as judged by microscopy or immunohistochemistry. The need to integrate additional data with genetic findings to determine their significance will become more pressing as genetic technologies generate increasingly rich datasets. Detailed examination of brain tissue, where available, will be an important part of this process in neurogenetic disease specifically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号