首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A series of novel and potent 3,4-diamino-2,5-thiadiazole-1-oxides were prepared and found to show excellent binding affinities for CXCR2 and CXCR1 receptors and excellent inhibitory activity of Gro-alpha and IL-8 mediated in vitro hPMN MPO release of CXCR2 and CXCR1 expressing cell lines. On the other hand, a closely related 3,4-diamino-2,5-thiadiazole-dioxide did not show functional activity despite its excellent binding affinities for CXCR2 and CXCR1 in membrane binding assays. A detailed SAR has been discussed in these two closely related structures.  相似文献   

2.
Small-molecule ligands for the CXCR3 chemokine receptor receive considerable attention as a means to interrogate the roles of CXCR3 in vitro and in vivo and/or to potentially treat various conditions such as inflammatory diseases and cancer. We have synthesized and explored a novel class of small-molecule antagonists for CXCR3. A medium-throughput screen revealed an adamantane-guanidine as a hit. The guanidine unit was replaced by a small quaternary ammonium group, leading to ca. 5-fold increase in affinity. Substitution of the adamantane group by a myrtenyl moiety further increased affinity, while the benzyl group was decorated with an additional (substituted) aryl ring. This led to the identification of several bisaryl-based ligands with CXCR3 affinities of around 100 nM and with the ability to antagonize the functional activity of CXCL10.  相似文献   

3.
Large DNA viruses, such as herpesvirus and poxvirus, encode proteins that target and exploit the chemokine system of their host. UL146 and UL147 in the cytomegalovirus (CMV) genome encode the two CXC chemokines vCXCL1 and vCXCL2. In this study, vCXCL1 was probed against a panel of the 18 classified human chemokine receptors. In calcium mobilization assays vCXCL1 acted as an agonist on both CXCR1 and CXCR2 but did not activate or block any of the other 16 chemokine receptors. vCXCL1 was characterized and compared with CXCL1/GROα, CXCL2/GROβ, CXCL3/GROγ, CXCL5/ENA-78, CXCL6/GCP-2, CXCL7/NAP-2 and CXCL8/IL-8 in competition binding, calcium mobilization, inositol triphosphate turnover, and chemotaxis assays using CXCR1- and CXCR2-expressing Chinese hamster ovary, 300.19, COS7, and L1.2 cells. The affinities of vCXCL1 for the CXCR1 and CXCR2 receptors were 44 and 5.6 nm, respectively, as determined in competition binding against radioactively labeled CXCL8. In calcium mobilization, phosphatidylinositol turnover, and chemotaxis assays, vCXCL1 acted as a highly efficacious activator of both receptors, with a rather low potency for the CXCR1 receptor but comparable with CXCL5 and CXCL7. It is suggested that CMV uses the UL146 gene product expressed in infected endothelial cells to attract neutrophils by activating their CXCR1 and CXCR2 receptors, whereby neutrophils can act as carriers of the virus to uninfected endothelial cells. In that way a lasting pool of CMV-infected endothelial cells could be maintained.  相似文献   

4.
5.
The chemokine receptor CXCR3 can exhibit weak coreceptor function for several human immunodeficiency virus type 1 (HIV-1) and HIV-2 strains and clinical isolates. These viruses produced microscopically visible cytopathicity in U87.CD4.CXCR3 cell cultures, whereas untransfected (CXCR3-negative) U87.CD4 cells remained uninfected. Depending on the particular virus, the coreceptor efficiency of CXCR3 was 100- to >10,000-fold lower compared to that of CXCR4. A CXCR3 variant carrying the CXCR4 binding pocket was constructed by simultaneous lysine-to-alanine and serine-to-glutamate substitutions at positions 300 and 304 of the CXCR3 receptor. This mutant receptor (CXCR3[K300A, S304E]) showed markedly enhanced HIV coreceptor function compared to the wild-type receptor (CXCR3[WT]). Moreover, the CXCR4 antagonist AMD3100 exhibited antagonistic and anti-HIV activities in U87.CD4.CXCR3[K300A, S304E] cells but not in U87.CD4.CXCR3[WT] cells.  相似文献   

6.
A novel series of cyclobutenedione centered C(4)-alkyl substituted furanyl analogs was developed as potent CXCR2 and CXCR1 antagonists. Compound 16 exhibits potent inhibitory activities against IL-8 binding to the receptors (CXCR2 Ki=1 nM, IC(50)=1.3 nM; CXCR1 Ki=3 nM, IC(50)=7.3 nM), and demonstrates potent inhibition against both Gro-alpha and IL-8 induced hPMN migration (chemotaxis: CXCR2 IC(50)=0.5 nM, CXCR1 IC(50)=37 nM). In addition, 16 has shown good oral pharmacokinetic profiles in rat, mouse, monkey, and dog.  相似文献   

7.
The chemokine CXCL12 regulates multiple cell functions through its receptor, CXCR4. However, recent studies have shown that CXCL12 also binds a second receptor, CXCR7, to potentiate signal transduction and cell activity. In contrast to CXCL12/CXCR4, few studies have focused on the role of CXCR7 in vascular biology and its role in human brain microvascular endothelial cells (HBMECs) remains unclear. In this report, we used complementary methods, including immunocytofluorescence, Western blot, and flow cytometry analyses, to demonstrate that CXCR7 was expressed on HBMECs. We then employed short hairpin RNA (shRNA) technology to knockdown CXCR7 in HBMECs. Knockdown of CXCR7 in HBMECs resulted in significantly reduced HBMEC proliferation, tube formation, and migration, as well as adhesion to matrigel and tumor cells. Blocking CXCR7 with a specific antibody or small molecule antagonist similarly disrupted HBMEC binding to matrigel or tumor cells. We found that tumor necrosis factor (TNF)-α induced CXCR7 in a time and dose-response manner and that this increase preceded an increase in vascular cell adhesion molecule-1 (VCAM-1). Knockdown of CXCR7 resulted in suppression of VCAM-1, suggesting that the reduced binding of CXCR7-knockdown HBMECs may result from suppression of VCAM-1. Collectively, CXCR7 acted as a functional receptor for CXCL12 in brain endothelial cells. Targeting CXCR7 in tumor vasculature may provide novel opportunities for improving brain tumor therapy.  相似文献   

8.
Choi WT  Tian S  Dong CZ  Kumar S  Liu D  Madani N  An J  Sodroski JG  Huang Z 《Journal of virology》2005,79(24):15398-15404
The chemokine receptor CXCR4 plays an important role as the receptor for the normal physiological function of stromal cell-derived factor 1alpha (SDF-1alpha) and the coreceptor for the entry of human immunodeficiency virus type 1 (HIV-1) into the cell. In a recent work (S. Tian et al., J. Virol. 79:12667-12673, 2005), we found that many residues throughout CXCR4 transmembrane (TM) and extracellular loop 2 domains are specifically involved in interaction with HIV-1 gp120, as most of these sites did not play a role in either SDF-1alpha binding or signaling. These results provided direct experimental evidence for the distinct functional sites on CXCR4 for HIV-1 and the normal ligand SDF-1alpha. To further understand the CXCR4-ligand interaction and to develop new CXCR4 inhibitors to block HIV-1 entry, we have recently generated a new family of unnatural chemokines, termed synthetically and modularly modified (SMM) chemokines, derived from the native sequence of SDF-1alpha or viral macrophage inflammatory protein II (vMIP-II). These SMM chemokines contain various de novo-designed sequence replacements and substitutions by d-amino acids and display more enhanced CXCR4 selectivity, binding affinities, and/or anti-HIV activities than natural chemokines. Using these novel CXCR4-targeting SMM chemokines as receptor probes, we conducted ligand binding site mapping experiments on a panel of site-directed mutants of CXCR4. Here, we provide the first experimental evidence demonstrating that SMM chemokines interact with many residues on CXCR4 TM and extracellular domains that are important for HIV-1 entry, but not SDF-1alpha binding or signaling. The preferential overlapping in the CXCR4 binding residues of SMM chemokines with HIV-1 over SDF-1alpha illustrates a mechanism for the potent HIV-1 inhibition by these SMM chemokines. The discovery of distinct functional sites or conformational states influenced by these receptor sites mediating different functions of the natural ligand versus the viral or synthetic ligands has important implications for drug discovery, since the sites shared by SMM chemokines and HIV-1 but not by SDF-1alpha can be targeted for the development of selective HIV-1 inhibitors devoid of interference with normal SDF-1alpha function.  相似文献   

9.
All chemokines share a common structural scaffold that mediate a remarkable variety of functions from immune surveillance to organogenesis. Chemokines are classified as CXC or CC on the basis of conserved cysteines, and the two subclasses bind distinct sets of GPCR class of receptors and also have markedly different quaternary structures, suggesting that the CXC/CC motif plays a prominent role in both structure and function. For both classes, receptor activation involves interactions between chemokine N-loop and receptor N-domain residues (Site-I), and between chemokine N-terminal and receptor extracellular/transmembrane residues (Site-II). We engineered a CC variant (labeled as CC-CXCL8) of the chemokine CXCL8 by deleting residue X (CXC → CC), and found its structure is essentially similar to WT. In stark contrast, CC-CXCL8 bound poorly to its cognate receptors CXCR1 and CXCR2 (Ki > 1 μm). Further, CC-CXCL8 failed to mobilize Ca2+ in CXCR2-expressing HL-60 cells or recruit neutrophils in a mouse lung model. However, most interestingly, CC-CXCL8 mobilizes Ca2+ in neutrophils and in CXCR1-expressing HL-60 cells. Compared with the WT, CC-CXCL8 binds CXCR1 N-domain with only ∼5-fold lower affinity indicating that the weak binding to intact CXCR1 must be due to its weak binding at Site-II. Nevertheless, this level of binding is sufficient for receptor activation indicating that affinity and activity are separable functions. We propose that the CXC motif functions as a conformational switch that couples Site-I and Site-II interactions for both receptors, and that this coupling is critical for high affinity binding but differentially regulates activation.  相似文献   

10.
The functional role of neutrophils during acute inflammatory responses is regulated by two high affinity interleukin-8 receptors (CXCR1 and CXCR2) that are rapidly desensitized and internalized upon binding their cognate chemokine ligands. The efficient re-expression of CXCR1 on the surface of neutrophils following agonist-induced internalization suggests that CXCR1 surface receptor turnover may involve regulatory pathways and intracellular factors similar to those regulating beta2-adrenergic receptor internalization and re-expression. To examine the internalization pathway utilized by ligand-activated CXCR1, a CXCR1-GFP construct was transiently expressed in two different cell lines, HEK 293 and RBL-2H3 cells. While interleukin-8 stimulation promoted CXCR1 sequestration in RBL-2H3 cells, receptor internalization in HEK 293 cells required co-expression of G protein-coupled receptor kinase 2 and beta-arrestin proteins. The importance of beta-arrestins in CXCR1 internalization was confirmed by the ability of a dominant negative beta-arrestin 1-V53D mutant to block internalization of CXCR1 in RBL-2H3 cells. A role for dynamin was also demonstrated by the lack of CXCR1 internalization in dynamin I-K44A dominant negative mutant-transfected RBL-2H3 cells. Agonist-promoted co-localization of transferrin and CXCR1-GFP in endosomes of RBL-2H3 cells confirmed that receptor internalization occurs via clathrin-coated vesicles. Our data provides a direct link between agonist-induced internalization of CXCR1 and a requirement for G protein-coupled receptor kinase 2, beta-arrestins, and dynamin during this process.  相似文献   

11.
Because of its involvement in HIV entry, the chemokine receptor CXCR4 is an attractive target for antiretroviral drugs. Despite the large number of CXCR4 inhibitors studied, the 3D pharmacophore for binding to CXCR4 remains elusive, mainly as a result of conformational flexibility inherent in the identified ligands. In the present study, an exhaustive systematic exploration of the conformational space for a series of analogs of FC131, a cyclopentapeptide CXCR4 antagonist, has been performed. By comparing the resulting low-energy conformations using different sets of atoms, specific conformational features common only to the high/medium affinity compounds were identified. These features included the spatial arrangement of three pharmacophoric side chains as well as the orientation of a specific backbone amide bond. Together these features represent a minimalistic 3D pharmacophore model for binding of the cyclopentapeptide antagonists to CXCR4. The model enables rationalization of the experimental affinity data for this class of compounds as well as for the peptidomimetic KRH-1636.  相似文献   

12.
A series of potent and selective 3,4-diamino-1,2,5-thiadiazoles were prepared and found to show excellent binding affinities towards CXCR2 receptor.  相似文献   

13.
To investigate the regulation of the CCR1 chemokine receptor, a rat basophilic leukemia (RBL-2H3) cell line was modified to stably express epitope-tagged receptor. These cells responded to RANTES (regulated upon activation normal T expressed and secreted), macrophage inflammatory protein-1alpha, and monocyte chemotactic protein-2 to mediate phospholipase C activation, intracellular Ca(2+) mobilization and exocytosis. Upon activation, CCR1 underwent phosphorylation and desensitization as measured by diminished GTPase stimulation and Ca(2+) mobilization. Alanine substitution of specific serine and threonine residues (S2 and S3) or truncation of the cytoplasmic tail (DeltaCCR1) of CCR1 abolished receptor phosphorylation and desensitization of G protein activation but did not abolish desensitization of Ca(2+) mobilization. S2, S3, and DeltaCCR1 were also resistant to internalization, mediated greater phosphatidylinositol hydrolysis and sustained Ca(2+) mobilization, and were only partially desensitized by RANTES, relative to S1 and CCR1. To study CCR1 cross-regulation, RBL cells co-expressing CCR1 and receptors for interleukin-8 (CXCR1, CXCR2, or a phosphorylation-deficient mutant of CXCR2, 331T) were produced. Interleukin-8 stimulation of CXCR1 or CXCR2 cross-phosphorylated CCR1 and cross-desensitized its ability to stimulate GTPase activity and Ca(2+) mobilization. Interestingly, CCR1 cross-phosphorylated and cross-desensitized CXCR2, but not CXCR1. Ca(2+) mobilization by S3 and DeltaCCR1 were also cross-desensitized by CXCR1 and CXCR2 despite lack of receptor phosphorylation. In contrast to wild type CCR1, S3 and DeltaCCR1, which produced sustained signals, cross-phosphorylated and cross-desensitized responses to CXCR1 as well as CXCR2. Taken together, these results indicate that CCR1-mediated responses are regulated at several steps in the signaling pathway, by receptor phosphorylation at the level of receptor/G protein coupling and by an unknown mechanism at the level of phospholipase C activation. Moreover selective cross-regulation among chemokine receptors is, in part, a consequence of the strength of signaling (i.e. greater phosphatidylinositol hydrolysis and sustained Ca(2+) mobilization) which is inversely correlated with the receptor's susceptibility to phosphorylation. Since many chemokines activate multiple chemokine receptors, selective cross-regulation among such receptors may play a role in their immunomodulation.  相似文献   

14.
CXCR4 function requires membrane cholesterol: implications for HIV infection   总被引:15,自引:0,他引:15  
HIV requires cholesterol and lipid rafts on target cell membranes for infection. To elucidate a possible mechanism, we determined that cholesterol extraction by hydroxypropyl-beta-cyclodextrin (BCD) inhibits stromal cell-derived factor 1alpha (SDF-1alpha) binding to CXCR4 on T cell lines and PBMCs. Intracellular calcium responses to SDF-1alpha, as well as receptor internalization, were impaired in treated T cells. Loss in ligand binding is likely due to conformational changes in CXCR4 and not increased sensitivity to internalization. SDF-1alpha binding and calcium responses were effectively restored by reloading cholesterol. Immunofluorescence microscopy revealed that SDF-1alpha binding occurred in lipid raft microdomains that contained GM1. CXCR4 surface expression, on the other hand, only partially colocalized with GM1. HIV-1(IIIB) infection assays confirmed the functional loss of CXCR4 in the cell lines tested, Sup-T1 and CEM-NKR-CCR5. These data suggest that cholesterol is essential for CXCR4 conformation and function and that lipid rafts may play a regulatory role in SDF-1alpha signaling.  相似文献   

15.
The structure-human CXCR3 binding affinity relationship of a series of pyridyl-piperazinyl-piperidine derivatives was explored. The optimization campaign highlighted the pronounced effect of 2′-piperazine substitution on CXCR3 receptor affinity. Analog 18j, harboring a 2′(S)-ethylpiperazine moiety, exhibited a human CXCR3 IC50 of 0.2 nM.  相似文献   

16.
Huang X  Shen J  Cui M  Shen L  Luo X  Ling K  Pei G  Jiang H  Chen K 《Biophysical journal》2003,84(1):171-184
Insights into the interacting mode of CXCR4 with SDF-1alpha are crucial in understanding the structural and functional characteristics of CXCR4 receptor. In this paper a computational pipeline, integrating protein structure prediction, molecular dynamics simulations, automated molecular docking, and Brownian dynamics simulations were employed to investigate the dynamic and energetic aspects of CXCR4 associating with SDF-1alpha. The entire simulation revealed the surface distribution feature of electrostatic potentials and conformational "open-close" process of the receptor. The possible binding conformation of CXCR4 was identified, and the CXCR4-SDF-1alpha binding complex was generated. Arg188-Glu277 salt bridge plays an important role for both the extracellular domain conformational change and SDF-1alpha binding. Two binding sites were mapped at the extracellular domain (Site 1) and inside the transmembrane domain (Site 2), which are composed of conserved residues. Sites 1 and 2 contribute approximately 60% and 40% to the binding affinity with SDF-1alpha, respectively. The binding model is in agreement with most of the experimental data. Transmembrane VI has more significant motion in the harmonious conformational transition of CXCR4 during SDF-1alpha binding, which may be possibly associated with signal transduction. Based on the modeling and simulation, a binding mechanism hypothesis between CXCR4 and SDF-1alpha and its relationship to the signal transduction has been proposed.  相似文献   

17.
Homo- and hetero-oligomerization have been reported for several G protein-coupled receptors (GPCRs). The CXCR2 is a GPCR that is activated, among the others, by the chemokines CXCL8 (interleukin-8) and CXCL2 (growth-related gene product beta) to induce cell chemotaxis. We have investigated the oligomerization of CXCR2 receptors expressed in human embryonic kidney cells and generated a series of truncated mutants to determine whether they could negatively regulate the wild-type (wt) receptor functions. CXCR2 receptor oligomerization was also studied by coimmunoprecipitation of green fluorescent protein- and V5-tagged CXCR2. Truncated CXCR2 receptors retained their ability to form oligomers only if the region between the amino acids Ala-106 and Lys-163 was present. In contrast, all of the deletion mutants analyzed were able to form heterodimers with the wt CXCR2 receptor, albeit with different efficiency, competing for wt/wt dimer formation. The truncated CXCR2 mutants were not functional and, when coexpressed with wt CXCR2, interfered with receptor functions, impairing cell signaling and chemotaxis. When CXCR2 was expressed with the AMPA-type glutamate receptor GluR1, CXCR2 dimerization was again impaired in a dose-dependent way, and receptor functions were prejudiced. In contrast, CXCR1, a chemokine receptor that shares many similarities with CXCR2, did not dimerize alone or with CXCR2 and when coexpressed with CXCR2 did not impair receptor signaling and chemotaxis. The formation of CXCR2 dimers was also confirmed in cerebellar neuron cells. Taken together, we conclude from these studies that CXCR2 functions as a dimer and that truncated receptors negatively modulate receptor activities competing for the formation of wt/wt dimers.  相似文献   

18.
CXCR4 (fusin) is a chemokine receptor which is involved as a coreceptor in gp120 binding to the cell surface. In this study we provide evidence that binding of gp120 triggers CXCR4 recruitment to glycosphingolipid-enriched microdomains. Scanning confocal microscopy showed a nearly complete localization of CXCR4 within GM3-enriched plasma membrane domains of SupT1 cells and coimmunoprecipitation experiments revealed that CXCR4 was immunoprecipitated by IgG anti-GM3 after gp120 pretreatment. These findings reveal that gp120 binding induces a strict association between CXCR4 and ganglioside GM3, supporting the view that GM3 and CXCR4 are components of a functional multimolecular complex critical for HIV-1 entry.  相似文献   

19.
I-TAC, IP10, and Mig are interferon-gamma inducible CXC chemokines that share the same G-protein-coupled receptor CXCR3, which is preferentially expressed on Th1 lymphocytes. We have explored the structure-function relationship of the CXCR3 ligands, in particular of I-TAC, which has highest affinity for CXCR3 and is the most potent agonist. A potent antagonist for CXCR3 was obtained by NH(2)-terminal truncation of I-TAC. I-TAC (4-73), which lacks the first three residues, has no agonistic activity but competes for the binding of I-TAC to CXCR3-bearing cells and inhibits migration and Ca(2+) changes in such cells in response to stimulation with I-TAC, IP10, and Mig. It does also not induce internalization of CXCR3, which is in support of the lack of agonistic effects. Hybrid chemokines between I-TAC and IP10 were used to identify regions responsible for the higher activity of I-TAC. I-TAC-like IP10 analogs are obtained by substituting the NH(2) terminus (residues 1-8) or N-loop region (residues 12-17) of IP10 with those of I-TAC, suggesting that the differences in function of the CXCR3 ligands can be assigned to distinct regions and that these regions are interchangeable. Structure-activity studies with Mig showed that the extended basic COOH-terminal region, which is not present in I-TAC and IP10, is important for binding and activity.  相似文献   

20.
Although chemokines are well established to function in immunity and endothelial cell activation and proliferation, a rapidly growing literature suggests that CXC Chemokine receptors CXCR3, CXCR4 and CXCR7 are critical in the development and progression of solid tumors. The effect of these chemokine receptors in tumorigenesis is mediated via interactions with shared ligands I-TAC (CXCL11) and SDF-1 (CXCL12). Over the last decade, CXCR4 has been extensively reported to be overexpressed in most human solid tumors and has earned considerable attention toward elucidating its role in cancer metastasis. To enrich the existing armamentarium of anti-cancerous agents, many inhibitors of CXCL12–CXCR4 axis have emerged as additional or alternative agents for neo-adjuvant treatments and even many of them are in preclinical and clinical stages of their development. However, the discovery of CXCR7 as another receptor for CXCL12 with rather high binding affinity and recent reports about its involvement in cancer progression, has questioned the potential of “selective blockade” of CXCR4 as cancer chemotherapeutics. Interestingly, CXCR7 can also bind another chemokine CXCL11, which is an established ligand for CXCR3. Recent reports have documented that CXCR3 and their ligands are overexpressed in different solid tumors and regulate tumor growth and metastasis. Therefore, it is important to consider the interactions and crosstalk between these three chemokine receptors and their ligand mediated signaling cascades for the development of effective anti-cancer therapies. Emerging evidence also indicates that these receptors are differentially expressed in tumor endothelial cells as well as in cancer stem cells, suggesting their direct role in regulating tumor angiogenesis and metastasis. In this review, we will focus on the signals mediated by this receptor trio via their shared ligands and their role in tumor growth and progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号