首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, frequency response (dynamic compression and recovery) is suggested as a new physical marker to differentiate between breast cancer cells (MCF7) and normal cells (MCF10A). A single cell is placed on the laminated piezoelectric actuator and a piezoresistive microcantilever is placed on the upper surface of the cell at a specified preload displacement (or an equivalent force). The piezoelectric actuator excites the single cell in a sinusoidal fashion and its dynamic deformation is then evaluated from the displacement converted by measuring the voltage output through a piezoresistor in the microcantilever. The microcantilever has a flat contact surface with no sharp tip, making it possible to measure the overall properties of the cell rather than the local properties. These results indicate that the MCF7 cells are more deformable in quasi-static conditions compared with MCF10A cells, consistent with known characteristics. Under conditions of high frequency of over 50 Hz at a 1 μm preload displacement, 1 Hz at a 2 μm preload displacement, and all frequency ranges tested at a 3 μm preload displacement, MCF7 cells showed smaller deformation than MCF10A cells. MCF7 cells have higher absorption than MCF10A cells such that MCF7 cells appear to have higher deformability according to increasing frequency. Moreover, larger preload and higher frequencies are shown to enhance the differences in cell deformability between the MCF7 cells and MCF10A cells, which can be used as a physical marker for differentiating between MCF10A cells and MCF7 cells, even for high-speed screening devices.  相似文献   

2.
CAPNS1 is essential for the stability and function of ubiquitous CAPN1 and CAPN2. Calpain modulates by proteolytic cleavage many cellular substrates and its activity is often deregulated in cancer cells, therefore calpain inhibition has been proposed as a therapeutical strategy for a number of malignancies. Here we show that CAPNS1 depletion is coupled to impairment of MCF7 and MCF10AT cell lines growth on plate and defective architecture of mammary acini derived from MCF10A cells. In soft agar CAPNS1 depletion leads to cell growth increase in MCF7, and decrease in MCF10AT cells. In both MCF7 and MCF10AT, CAPNS1 depletion leads to the enlargement of the stem cell compartment, as demonstrated by mammosphere formation assays and evaluation of stem cell markers by means of FACS and western blot analysis. Accordingly, activation of calpain by thapsigargin treatment leads to a decrease in the stem cell reservoir. The expansion of the cancer stem cell population in CAPNS1 depleted cells is coupled to a defective shift from symmetric to asymmetric division during mammosphere growth coupled to a decrease in NUMB protein level.  相似文献   

3.
Plants are an invaluable source of potential new anti-cancer drugs. Here, we investigated the cytotoxic activity of the acetonic extract of Buxus sempervirens on five breast cancer cell lines, MCF7, MCF10CA1a and T47D, three aggressive triple positive breast cancer cell lines, and BT-20 and MDA-MB-435, which are triple negative breast cancer cell lines. As a control, MCF10A, a spontaneously immortalized but non-tumoral cell line has been used. The acetonic extract of Buxus sempervirens showed cytotoxic activity towards all the five studied breast cancer cell lines with an IC(50) ranging from 7.74 μg/ml to 12.5 μg/ml. Most importantly, the plant extract was less toxic towards MCF10A with an IC(50) of 19.24 μg/ml. Fluorescence-activated cell sorting (FACS) analysis showed that the plant extract induced cell death and cell cycle arrest in G0/G1 phase in MCF7, T47D, MCF10CA1a and BT-20 cell lines, concomitant to cyclin D1 downregulation. Application of MCF7 and MCF10CA1a respective IC(50) did not show such effects on the control cell line MCF10A. Propidium iodide/Annexin V double staining revealed a pre-apoptotic cell population with extract-treated MCF10CA1a, T47D and BT-20 cells. Transmission electron microscopy analyses indicated the occurrence of autophagy in MCF7 and MCF10CA1a cell lines. Immunofluorescence and Western blot assays confirmed the processing of microtubule-associated protein LC3 in the treated cancer cells. Moreover, we have demonstrated the upregulation of Beclin-1 in these cell lines and downregulation of Survivin and p21. Also, Caspase-3 detection in treated BT-20 and T47D confirmed the occurrence of apoptosis in these cells. Our findings indicate that Buxus sempervirens extract exhibit promising anti-cancer activity by triggering both autophagic cell death and apoptosis, suggesting that this plant may contain potential anti-cancer agents for single or combinatory cancer therapy against breast cancer.  相似文献   

4.
Several studies indicate that progesterone exerts relevant effects in breast tissue. However, the exact role of this steroid in breast cancer development and progression has not been elucidated. Here, we show that platelet-derived growth factor (PDGF)-A is one of the progesterone target genes on breast cancer MCF7 and T47D cells. A paracrine role for PDGF-A was investigated, since its receptor expression was down-regulated from breast cancer cells. Progesterone increased PDGF-A protein release as evaluated by Western blotting and ELISA. Medium from Progesterone-treated MCF7 cells resulted in phosphorylation of smooth muscle cells PDGF receptor alpha. This effect was not observed after treatment with PDGF inhibitor. MCF7 cells-secreted PDGF-A was able to increase smooth muscle cell viability and proliferation and decrease apoptosis, effects that were prevented by the use of a PDGF-A neutralizing antibody. Notably, cell invasion was not influenced by PDGF-A secreted by MCF7 cells. Our results elucidated for the first time the cross talk between progesterone and PDGF signaling pathway. The fact that MCF7-secreted PDGF elicited crucial roles in vascular wall smooth muscle cells, suggested a paracrine pathway for progesterone. Targeting these progesterone-induced processes may provide novel therapeutic strategies for hormone-dependent human breast cancer.  相似文献   

5.
Liu XX  Li XJ  Zhang B  Liang YJ  Zhou CX  Cao DX  He M  Chen GQ  He JR  Zhao Q 《FEBS letters》2011,585(9):1363-1367
MicroRNAs are widely dysregulated in various cancers and integrated into tumorigenic programs as either oncogenes or tumor suppressor genes. Here, we show that miR-26b, which is down-regulated in human breast cancer specimens and cell lines, impairs viability and triggers apoptosis of human breast cancer MCF7 cells. SLC7A11 is identified as a direct target of miR-26b and its expression is remarkably increased in both breast cancer cell lines and clinical samples. Furthermore, SLC7A11 silence mimics miR-26b-aroused viability impairment and apoptosis in MCF7 cells. Our studies reveal a protective role of miR-26b in the molecular etiology of human breast cancer by promoting apoptosis.  相似文献   

6.
In this study, we address whether TGFbeta signaling mediates vitamin D3 analog-induced growth inhibition in nonmalignant and malignant breast cells. Normal mammary epithelial cells (184), immortalized nonmalignant mammary epithelial cells (184A1 and MCF10A), and breast cancer cells (early passage MCF7: MCF7E) were sensitive to the inhibitory effects of vitamin D3 analogs (EB1089 and MC1288) while late passage MCF7 breast cancer (MCF7L) cells were relatively resistant. A similar pattern of sensitivity to TGFbeta was observed with these cells. Thus, the sensitivity to the vitamin D3 analogs correlated with the sensitivity to TGFbeta. MCF7L TGFbetaRII-transfected cells, which have autocrine TGFbeta activity, were more sensitive to EB1089 than MCF7L cells. TGFbeta neutralizing antibody was found to block the inhibitory effects of these analogs. These results are consistent with the idea that autocrine TGFbeta signaling mediates the anti-proliferative effects of the vitamin D3 analogs in these cells. The expression of TGFbeta isoforms and/or TGFbeta receptors was induced by the analogs in the vitamin D3 and TGFbeta sensitive cells. Vitamin D3 analogs did not induce TGFbeta or TGFbeta receptor expression in the resistant MCF7L cells. Therefore, EB1089 induces autocrine TGFbeta activity through increasing expression of TGFbeta isoforms and/or TGFbeta receptors. In addition, EB1089 induced nuclear VDR protein levels in the sensitive 184A1 cells but not in the resistant MCF7L cells. 184A1 cells were more sensitive to EB1089-induced VDR-dependent transactivation than MCF7L cells as measured by a luciferase reporter construct containing the VDRE, indicating a defect of VDR signaling in MCF7L cells. Smad3, a TGFbeta signaling mediator, coactivated VDR-dependent transactivation in 184A1 cells but not in MCF7L cells. These results indicate that Smad3 coactivates VDR to further enhance TGFbeta signaling and vitamin D3 signaling in the sensitive 184A1 cells. The results also indicate that Smad3 is not of itself sufficient to coactivate VDR in TGFbeta/vitamin D3 resistant MCF7L cells and other factors are required. We found that the PI 3-kinase pathway inhibitor LY29004 inhibited the synergy of TGFbeta and EB1089 on VDR-dependent transactivation activity. This indicates that the crosstalk between TGFbeta and vitamin D signaling is also PI 3-kinase pathway dependent.  相似文献   

7.
TRIM16 exhibits tumour suppressor functions by interacting with cytoplasmic vimentin and nuclear E2F1 proteins in neuroblastoma and squamous cell carcinoma cells, reducing cell migration and replication. Reduced TRIM16 expression in a range of human primary malignant tissues correlates with increased malignant potential. TRIM16 also induces apoptosis in breast and lung cancer cells, by unknown mechanisms. Here we show that overexpression of TRIM16 induces apoptosis in human breast cancer (MCF7) and neuroblastoma (BE(2)-C) cells, but not in non-malignant HEK293 cells. TRIM16 increased procaspase-2 protein levels in MCF7 and induced caspase-2 activity in both MCF7 and BE(2)-C cells. We show that TRIM16 and caspase-2 proteins directly interact in both MCF7 and BE(2)-C cells and co-localise in MCF7 cells. Most importantly, the induction of caspase-2 activity is required for TRIM16 to initiate apoptosis. Our data suggest a novel mechanism by which TRIM16 can promote apoptosis by directly modulating caspase-2 activity.  相似文献   

8.
The effect of anticancer drugs on the expression of p53 protein in tumor cells was studied using the Western Blot analysis. Human lung carcinoma cell line A549 and human breast carcinoma cell line MCF7 sensitive (WT) and resistant (DOX/R) to doxorubicin were used. An increase in p53 protein expression was found in A549 and MCF7 (WT) cells treated with cisplatin, methotrexate, and doxorubicin, whereas the level of p53 was not statistically significantly changed in the MCF7 DOX/R cells. In the untreated MCF7 DOX/R cells the level of p53 protein was markedly higher than in the untreated WT MCF7 cells. A potential role of p53 protein in the development of doxorubicin-resistance in carcinoma cells is discussed.  相似文献   

9.
Sangivamycin has shown a potent antiproliferative activity against a variety of human cancers. However, little is known about the mechanism of action underlying its antitumor activity. Here we demonstrate that sangivamycin has differential antitumor effects in drug-sensitive MCF7/wild type (WT) cells, causing growth arrest, and in multidrug-resistant MCF7/adriamycin-resistant (ADR) human breast carcinoma cells, causing massive apoptotic cell death. Comparisons between the effects of sangivamycin on these two cell lines allowed us to identify the mechanism underlying the apoptotic antitumor effect. Fluorescence-activated cell sorter analysis indicated that sangivamycin induced cell cycle arrest in the G(2)/M phase in MCF7/ADR cells. A marked induction of c-Jun expression as well as phosphorylation of c-Jun and JNK was observed after sangivamycin treatment of MCF7/ADR cells but not MCF7/WT cells. Sangivamycin also induced cleavage of lamin A and poly(ADP-ribose) polymerase (PARP) in MCF7/ADR cells, probably via activation of caspase-6, -7, and -9. Pretreatment with a caspase-9-specific inhibitor or pan-caspase inhibitor abolished sangivamycin-induced cleavage of lamin A and PARP but not sangivamycin induction of c-Jun expression and phosphorylation. Pretreatment of MCF7/ADR cells with SP600125, a specific inhibitor of JNK, or with rottlerin, a specific inhibitor of protein kinase Cdelta (PKCdelta), significantly reduced the sangivamycin-induced apoptosis and almost completely abolished sangivamycin-induced phosphorylation of c-Jun and cleavage of lamin A and PARP. Transfection of MCF7/ADR cells with PKCdelta small interfering RNAs or PKCdelta antibody or rottlerin pretreatment significantly suppressed the phosphorylation of JNK. Taken together, our data suggest that sangivamycin induces mitochondria-mediated apoptotic cell death of MCF7/ADR cells via activation of JNK in a protein kinase Cdelta-dependent manner.  相似文献   

10.
We explored the crosstalk between protein degradation and synthesis in cancer cells. The tumorigenic cell line, MCF7, showed enhanced proteasome activity compared to the nontumorigenic line, MCF10A. Although there was no difference in the sensitivity of MCF7 and MCF10A cells to proteasome inhibition in complete growth medium, combining proteasome inhibition with amino acid deprivation led to reduced protein synthesis and survival of MCF7 cells, with a lesser effect on MCF10A cells. Additional cancer cell lines (including CAG and A431) could be strongly sensitized to proteasome inhibition by concomitant amino acid deprivation, whereas others were completely resistant to proteasome inhibition. We hypothesize that protein catabolism contributes to the pool of free amino acids available for protein synthesis, leading to a crucial role of the proteasome in cell survival during amino acid depletion, in some tumor cell lines.  相似文献   

11.
DNA damage activated by Adriamycin (ADR) promotes ubiquitin–proteasome system-mediated proteolysis by stimulating both the activity of ubiquitylating enzymes and the proteasome. In ADR-resistant breast cancer MCF7 (MCF7ADR) cells, protein ubiquitylation is significantly reduced compared to the parental MCF7 cells. Here, we used tandem ubiquitin-binding entities (TUBEs) to analyze the ubiquitylation pattern observed in MCF7 or MCF7ADR cells. While in MCF7, the level of total ubiquitylation increased up to six-fold in response to ADR, in MCF7ADR cells only a two-fold response was found. To further explore these differences, we looked for cellular factors presenting ubiquitylation defects in MCF7ADR cells. Among them, we found the tumor suppressor p53 and its ubiquitin ligase, Mdm2. We also observed a drastic decrease of proteins known to integrate the TUBE-associated ubiquitin proteome after ADR treatment of MCF7 cells, like histone H2AX, HMGB1 or β-tubulin. Only the proteasome inhibitor MG132, but not the autophagy inhibitor chloroquine partially recovers the levels of total protein ubiquitylation in MCF7ADR cells. p53 ubiquitylation is markedly increased in MCF7ADR cells after proteasome inhibition or a short treatment with the isopeptidase inhibitor PR619, suggesting an active role of these enzymes in the regulation of this tumor suppressor. Notably, MG132 alone increases apoptosis of MCF7ADR and multidrug resistant ovarian cancer A2780DR1 and A2780DR2 cells. Altogether, our results highlight the use of ubiquitylation defects to predict resistance to ADR and underline the potential of proteasome inhibitors to treat these chemoresistant cells.  相似文献   

12.
Triple negative breast cancer is an aggressive type of cancer that does not respond to hormonal therapy and current therapeutic strategies are accompanied by side effects due to cytotoxic actions on normal tissues. Therefore, there is a need for the identification of anti-cancer compounds with negligible effects on non-tumoral cells. Here we show that (−)‑oleocanthal (OLCT), a phenolic compound isolated from olive oil, selectively impairs MDA-MB-231 cell proliferation and viability without affecting the ability of non-tumoral MCF10A cells to proliferate or their viability. Similarly, OLCT selectively impairs the ability of MDA-MB-231 cells to migrate while the ability of MCF10A to migrate was unaffected. The effect of OLCT was not exclusive for triple negative breast cancer cells as we found that OLCT also attenuate cell viability and proliferation of MCF7 cells. Our results indicate that OLCT is unable to induce Ca2+ mobilization in non-tumoral cells. By contrast, OLCT induces Ca2+ entry in MCF7 and MDA-MB-231 cells, which is impaired by TRPC6 expression silencing. We have found that MDA-MB-231 and MCF7 cells overexpress the channel TRPC6 as compared to non-tumoral MCF10A and treatment with OLCT for 24–72 h downregulates TRPC6 expression in MDA-MB-231 cells. These findings indicate that OLCT impairs the ability of breast cancer cells to proliferate and migrate via downregulation of TRPC6 channel expression while having no effect on the biology of non-tumoral breast cells.  相似文献   

13.
Gene transfection is frequently used to explore the molecular and phenotypic consequences of introduced genes. Breast cancer cell lines transfected with genes for growth factor receptors, intracellular signaling molecules or genes that generate luminescent signals are widely used in basic science and preclinical studies. Typically, a target gene of interest is co-transfected with selectable markers that are generally assumed to be innocuous. Perturbations of the cellular genome by transfected sequences may induce subtle and/or unexpected modulations in protein expression, only some of which may be attributable to the target gene of interest. In this study, we show that neomycin resistant MCF7 cells (MCF7 Neo(r)) proliferate twice as rapidly in nude mice as do the untransfected parent cells, but show similar growth rates in vitro. MCF7 transfected with the ErbB2 gene shows minimal alteration in growth rate in vitro, and approximately a threefold increased growth rate in vivo. MCF7 cells that express luciferase and yellow fluorescent protein proliferate slowly in vitro and show essentially no growth in vivo suggesting that overexpression of these tracking proteins adversely affects cellular proliferative capacity. The molecular basis for alterations in proliferative capacity of the transfected sub-lines is poorly understood. We performed two-dimensional gel electrophoresis (2-DE) to compare relative protein expression among the cell lines. Relative to the parental MCF7, transfected cell lines displayed numerous differentially expressed proteins (69 to 149), relative to parental MCF7. Twenty-one of these differentially expressed proteins were identified by mass spectrometry, and included metabolic, structural, and signaling proteins. Possible roles of differentially expressed proteins in altering cellular proliferation are discussed.  相似文献   

14.
Although hereditary breast cancers have defects in the DNA damage response that result in genomic instability, DNA repair abnormalities in sporadic breast cancers have not been extensively characterized. Recently, we showed that, relative to nontumorigenic breast epithelial MCF10A cells, estrogen receptor-positive (ER+) MCF7 breast cancer cells and progesterone receptor-positive (PR+) MCF7 breast cancer cells have reduced steady-state levels of DNA ligase IV, a component of the major DNA-protein kinase (PK)-dependent nonhomologous end joining (NHEJ) pathway, whereas the steady-state level of DNA ligase IIIα, a component of the highly error-prone alternative NHEJ (ALT NHEJ) pathway, is increased. Here, we show that tamoxifen- and aromatase-resistant derivatives of MCF7 cells and ER(-)/PR(-) cells have even higher steady-state levels of DNA ligase IIIα and increased levels of PARP1, another ALT NHEJ component. This results in increased dependence upon microhomology-mediated ALT NHEJ to repair DNA double-strand breaks (DSB) and the accumulation of chromosomal deletions. Notably, therapy-resistant derivatives of MCF7 cells and ER(-)/PR(-) cells exhibited significantly increased sensitivity to a combination of PARP and DNA ligase III inhibitors that increased the number of DSBs. Biopsies from ER(-)/PR(-) tumors had elevated levels of ALT NHEJ and reduced levels of DNA-PK-dependent NHEJ factors. Thus, our results show that ALT NHEJ is a novel therapeutic target in breast cancers that are resistant to frontline therapies and suggest that changes in NHEJ protein levels may serve as biomarkers to identify tumors that are candidates for this therapeutic approach.  相似文献   

15.
 为了进一步探讨端粒酶RNA(hTR)的反义cDNA对乳腺癌MCF 7细胞凋亡可诱导性的影响 ,构建了能将外源基因整合至细胞基因组的整合型腺病毒载体vAd AAV ,并将hTR全长cDNA反向连接至此载体上 ,获得反义重组腺病毒vAdT AAV .vAd AAV和vAdT AAV分别感染MCF 7细胞后 ,获得两个细胞株MCF 7 vAd AAV和MCF 7 vAdT AAV ,其中MCF 7 vAdT AAV细胞基因组内整合有hTR反义cDNA并能稳定表达 .利用生存曲线、细胞形态学观察、DNA片段分析和流式细胞分析来测定NaBu和无血清DMEM诱导后细胞凋亡的反应性 .通过生存曲线 ,发现NaBu诱导的MCF 7 vAdT AAV细胞比对照组MCF 7和MCF 7 vAd AAV细胞更早出现凋亡 .电镜下 ,NaBu或去血清诱导的MCF 7 vAdT AAV细胞更早出现凋亡形态学指标 .流式细胞分析和DNA片段凝胶电泳实验均显示MCF 7 vAdT AAV细胞对凋亡的抵抗力下降 .研究结果表明 ,端粒酶RNA的反义cDNA使乳腺癌MCF 7细胞的凋亡可诱导性增强  相似文献   

16.
Microalgae have been investigated for their ability to produce metabolites that exhibit antibacterial activity. However, as research on antibacterial activity progresses, the effect of microalgal extracts on mammalian cells needs to be also assessed. The in vitro effect of microalgal extracts with demonstrated antibacterial activity against the human opportunistic pathogen Staphylococcus aureus was examined on the viability of non‐malignant (MCF10A and 184B5 cells) and malignant human cell lines (A2780 and MCF7). Direct cell counts indicated that the MTT (3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) proliferation assay was found to under/overestimate cell viability when specific microalgal extracts and/or concentrations were tested. From direct cell counts, the viability of non‐malignant cells was not reduced after exposure to the extracts, whereas the viability of malignant cells was affected by specific microalgal extracts and concentrations. The results suggest that green microalgae are worthy of further investigation as potential sources of antibiotics, since they did not show a negative effect on the non‐malignant cell lines, MCF10A and 184B5. Additional studies should evaluate the compounds responsible for the anti‐proliferative activity of specific microalgal extracts observed on the malignant cells A2780 and MCF7.  相似文献   

17.
A human breast cancer cell line, MCF 7, is shown to possess a specific calcitonin receptor and calcitonin responsive adenylate cyclase, and calcitonin treatment results in activation of cyclic AMP-dependent protein kinase. Studies with several analogues of calcitonin show that the receptor and adenylate cyclase response preserve the ability to discriminate among the structure-function relationships of the calcitonin molecule. The same cell line has been shown recently to possess a receptor for the steroid hormone, 1,25(OH)2-vitamin D. Coexistence in MCF 7 cells of receptors for two calcium-regulating hormones may be related to the osteoclast-like properties of these cells.  相似文献   

18.
We have investigated the molecular mechanisms involved in 17 beta-estradiol-induced angiogenic pathway. We show here that 17 beta-estradiol promoted a 6-fold increase in Jagged1 expression and an 8-fold increase in Notch1 expression by cDNA arrays in breast cancer MCF7 cells. Interestingly, Jagged1 was abrogated by incubation with the estrogen antagonist, ICI182,780. A similar up-regulation of both Notch1 receptor and Jagged1 ligand was found in endothelial cells. Additionally, imperfect estrogen-responsive elements were found in the 5' untranslated region of Notch1 and Jagged1 genes. Treatment with 17 beta-estradiol also led to an activation of Notch signaling in MCF7 cells expressing Notch1 reporter gene or by promoting Jagged1-induced Notch signaling in coculture assays. Inoculation of MCF7 cells in 17 beta-estradiol-treated nude mice resulted in up-regulation of Notch1 expression as well as increased number of tumor microvessels in comparison to placebo-treated mice. Notch1-expressing endothelial cell cultures formed cord-like structures on Matrigel in contrast to cells expressing a dominant-negative form of Notch1, emphasizing the relevance of Notch1 pathway in vessel assembly. Finally, Notch1-expressing MCF7 cells up-regulated hypoxia-inducible factor 1 alpha gene, a well-known angiogenic factor that clustered with Notch1 gene. This study implicates Notch signaling in the cross talk between 17 beta-estradiol and angiogenesis.  相似文献   

19.
To investigate the phenomenon of active dissociation of the vital dye, Hoechst 33342 (Ho342), from DNA (DNA clearing), a new MCF7HoeR-7 human breast carcinoma cell line was isolated from parent MCF7 cells by step-wise selection with increasing concentrations of Ho342. This cell line possesses an enhanced ability for DNA clearing. The MCF7HoeR-7 line is characterised in detail and compared with the parental MCF7 line and a typical P-glycoprotein-mediated multidrug resistant (MDR) cell line, MCF7/Adr. MCF7HoeR-7 cells have an increased population growth rate, a lower DNA content and a reduced number of chromosomes. Enhanced DNA clearing in MCF7HoeR-7 cells is associated with the high resistance of the cells to the toxic effects of Ho342 and cross-resistance to etoposide, a topoisomerase II inhibitor in clinical use. The MCF7HoeR-7 and parent MCF7 cell lines have similar expression levels of transport proteins. The results obtained confirm that DNA clearing is an atypical MDR mechanism in tumour cells.  相似文献   

20.
Breast cancer (BC) is the leading cancer in the world in terms of incidence and mortality in women. However, the mechanism by which BC develops remains largely unknown. The increase in cytosolic free Ca2+ can result in different physiological changes including cell growth and death. Orai isoforms are highly Ca2+ selective channels. In the present study, we analyzed Orai3 expression in normal and cancerous breast tissue samples, and its role in MCF‐7 BC and normal MCF‐10A mammary epithelial cell lines. We found that the expression of Orai3 mRNAs was higher in BC tissues and MCF‐7 cells than in normal tissues and MCF‐10A cells. Down‐regulation of Orai3 by siRNA inhibited MCF‐7 cell proliferation and arrested cell cycle at G1 phase. This phenomenon is associated with a reduction in CDKs 4/2 (cyclin‐dependent kinases) and cyclins E and D1 expression and an accumulation of p21Waf1/Cip1 (a cyclin‐dependent kinase inhibitor) and p53 (a tumor‐suppressing protein). Orai3 was also involved in MCF‐7 cell survival. Furthermore, Orai3 mediated Ca2+ entry and contributed to intracellular calcium concentration ([Ca2+]i). In MCF‐10A cells, silencing Orai3 failed to modify [Ca2+]i, cell proliferation, cell‐cycle progression, cyclins (D1, E), CDKs (4, 2), and p21Waf1/Cip1 expression. Our results provide strong evidence for a significant effect of Orai3 on BC cell growth in vitro and show that this effect is associated with the induction of cell cycle and apoptosis resistance. Our study highlights a possible role of Orai3 as therapeutic target in BC therapy. J. Cell. Physiol. 226: 542–551, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号