首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and biological properties of a novel water-soluble echinocandin-like lipopeptide, FR131535, are described. This compound displayed potent in vitro and in vivo antifungal activities. The hemolytic activity of FR901379 was reduced by replacing the acyl side chain. This compound showed good water-solubility, comparable to the natural product FR901379.  相似文献   

2.
From natural products to clinically useful antifungals   总被引:5,自引:0,他引:5  
In our search for natural products with a broad spectrum of antifungal activity as lead compounds for novel treatments for mycoses, we have isolated echinocandin-type lipopeptide FR901379 and lipopeptidolactone FR901469, as novel water-soluble antifungal agents that inhibit the synthesis of 1,3-beta-glucan, a key component of the fungal cell wall. Since the cell wall is a feature unique to fungi and is not present in nonfungal eukaryotic cells, inhibitors of the synthesis of fungal cell wall components such as 1,3-beta-glucan have potential for selective toxicity to fungi and not to the host. In this short review, we describe efforts directed at synthetic modification of FR901469 and FR901379 with the ultimate goal of identifying new entities with suitable profiles as development candidate compounds. The main thrust of our work to date has been replacement of the highly flexible lipophilic side chains of the natural products with a view to reducing the hemolytic potential associated with these compounds, and to enhance chemical stability and/or in vivo antifungal efficacy. As a result of these efforts, we recently discovered a novel analog, FK463 (micafungin). Micafungin is currently in phase III clinical trials worldwide as a parenteral agent for various mycoses, and a new drug application (NDA) was recently filed in Japan.  相似文献   

3.
Further optimization of the potent antifungal activity of side chain analogs of the natural product FR901379 led to the discovery of compound 8 with an excellent, well-balanced profile. Potent compounds with reduced hemolytic potential were designed based upon a disruption of the linearity of the terphenyl lipophilic side chain. The optimized compound (8, FK463, micafungin) displayed the best balance and was selected as the clinical candidate.  相似文献   

4.
The antifungal activity of fourteen novel derivatives of oxindole with side chain was studied using representatives of toxinogenic, phytopathogenic and dermatophytic filamentous fungi. Derivatives with exocyclic C=C bond in position C-3 exhibited a higher antifungal activity compared with derivatives with an exocyclic C−C bond in the same position. The strongest antifungal effects were shown by 3-(-2-thienoylmethylidene)-indol-2(3H)-ones.  相似文献   

5.
An antifungal antibiotic, FR207944, was isolated from the culture broth of a fungal strain Chaetomium sp. no. 217. FR207944 is a triterpene glucoside with antifungal activity against Aspergillus fumigatus and Candida albicans. Specifically, FR207944 exhibits in vitro and in vivo antifungal activity against A. fumigatus. The effects of FR207944 on the morphology of A. fumigatus were shown to be similar to those of FR901379, a known 1,3-beta-glucan synthase inhibitor. The MECs of FR207944 against A. fumigatus FP1305 and C. albicans FP633 in micro-broth dilution test were 0.039 and 1.6 mug/ml respectively. FR207944 showed good potency by subcutaneous injection and oral administration against A. fumigatus in a murine systemic infection model, with ED(50)s of 5.7 and 17 mg/kg respectively.  相似文献   

6.
A series of 1-(substituted biaryloxy)-2-(2,4-difluorophenyl)-3-(1H-1,2,4-triazol-1-yl) propan-2-ol were synthesized and their antifungal activities were evaluated against eight human pathogenic fungi in vitro. Seventeen compounds showed activity 4- to 64-fold higher than voriconazole against Candida albicans. SAR clearly suggested that introduction of a biaryloxy side chain greatly enhanced the antifungal activity of triazole analogs against Candida species.  相似文献   

7.
The crystal structure of porcine pancreatic elastase (PPE) complexed with a potent peptidyl inhibitor, FR136706, was solved at 2.2A resolution. FR136706 fits snugly into the extended active site pocket. The benzene moiety of FR136706 induced dramatic movement of the side chain moiety of Arg217 and both moieties formed a pi-pi interaction, which has never been found previously in structures of PPE complexed with inhibitors. This novel interaction mode may lead to design of new types of inhibitors.  相似文献   

8.
A series of acylated analogues of the novel macrocyclic lipopeptidolactone FR901469 has been prepared and evaluated for antifungal and hemolytic activity. Several analogues displayed markedly reduced hemolytic potential and comparable protective effects to the natural product in a mouse model of candidiasis.  相似文献   

9.
A novel series of 2-(1,2,4-oxadiazol-5-yl)-1H-indole derivatives as nociceptin/orphanin FQ (N/OFQ) receptor antagonists was discovered. Systematic modification of our original lead by changing the pendant functional groups, linker, heterocyclic core, and basic side chain revealed the structure-activity requirements for this novel template and resulted in the identification of more potent analog with improved potency as compared to the parent compound.  相似文献   

10.
A systematic simplification methodology of a class of 6'-N-alkyl-5'-O-aminoribosyl-glycyluridine antibiotics was shown to produce potential antibacterial agents having a novel mechanism of action. Diketopiperazines and acyclic analogs of the caprazamycins (CPZs) and liposidomycins (LPMs) were efficiently synthesized, and their antibacterial activity was evaluated. The diketopiperazine analog 11a and the acyclic analogs 12a and 16a having a palmitoyl group as a lipophilic side chain exhibited moderate antibacterial activities with MICs of 12.5-50 microg/mL. This approach could provide ready access to a range of analogs for the development of potential antibacterial agents.  相似文献   

11.
Orally bioavailable inhibitors of β-(1,3)-d-glucan synthase have been pursued as new, broad-spectrum fungicidal therapies suitable for treatment in immunocompromised patients. Toward this end, a collaborative medicinal chemistry program was established based on semisynthetic derivatization of the triterpenoid glycoside natural product enfumafungin in order to optimize in vivo antifungal activity and oral absorption properties. In the course of these studies, it was hypothesized that the pharmacokinetic properties of the semisynthetic enfumafungin analog 3 could be improved by tethering the alkyl groups proximal to the basic nitrogen of the C3-aminoether side chain into an azacyclic system, so as to preclude oxidative N-demethylation. The results of this research effort are disclosed herein.  相似文献   

12.
4-thiatetradecanoic acid exhibited weak antifungal activities against Candida albicans (ATCC 60193), Cryptococcus neoformans (ATCC 66031), and Aspergillus niger (ATCC 16404) (MIC=4.8-12.7 mM). It has been demonstrated that alpha-methoxylation efficiently blocks beta-oxidation and significantly improve the antifungal activities of fatty acids. We examined whether antifungal activity of 4-thiatetradecanoic acid can be improved by alpha-substitution. The unprecedented (+/-)-2-hydroxy-4-thiatetradecanoic acid was synthesized in four steps (20% overall yield), while the (+/-)-2-methoxy-4-thiatetradecanoic acid was synthesized in five steps (14% overall yield) starting from 1-decanethiol. The key step in the synthesis was the hydrolysis of a trimethylsilyloxynitrile. In general, the novel (+/-)-2-methoxy-4-thiatetradecanoic acid displayed significantly higher antifungal activities against C. albicans (ATCC 60193), C. neoformans (ATCC 66031), and A. niger (ATCC 16404) (MIC=0.8-1.2 mM), when compared with 4-thiatetradecanoic acid. In the case of C. neoformans the (+/-)-2-hydroxy-4-thiatetradecanoic acid was more fungitoxic (MIC=0.17 mM) than the alpha-methoxylated analog, but not as effective against A. niger (MIC=5.5 mM). The enhanced fungitoxicity of the (+/-)-2-methoxy-4-thiatetradecanoic acid, as compared to decylthiopropionic acid, might be the result of a longer half-life in the cells due to a blocked beta-oxidation pathway which results in more time to exert its toxic effects. Thus, these novel fatty acids may have applications as probes to study fatty acid metabolic routes in human cells.  相似文献   

13.
Antifungal assessment of eighteen 5-, 6- and 8-(4-aminobutyloxy)quinolines revealed a significant susceptibility of the tested fungi and yeast strains (Candida albicans, Rhodotorula bogoriensis, Aspergillus flavus and Fusarium solani) toward different halo-substituted 8-(4-aminobutyloxy)quinolines. The six most potent compounds displayed antifungal activities similar to those of established antifungal agents such as Amphotericin B, Fluconazole and Itraconazole, and one representative also showed a promising broad-spectrum antifungal profile. The introduction of an aminoalkoxy side chain at the 8-position of a halo-substituted quinoline core might thus provide a new class of lead structures in the search for novel antifungal agents.  相似文献   

14.
Previously, the 9-mer analog peptides, 9Pbw2 and 9Pbw4, were designed based on a defensin-like peptide, protaetiamycine isolated from Protaetia brevitarsis. In this study, antifungal effects of the analog peptides were investigated. The antifungal susceptibility testing exhibited that 9Pbw4 contained more potent antifungal activities than 9Pbw2. A PI influx assay confirmed the effects of the analog peptides and demonstrated that the peptides exerted their activity by a membrane-active mechanism, in an energy-independent manner. As the noteworthy potency of 9Pbw4, the mechanism(s) of 9Pbw4 were further investigated. The membrane studies, using rhodamine-labeled giant unilamellar vesicle (GUV) and fluorescein isothiocyanate (FITC)-dextran loaded liposome, suggested that the membrane-active mechanism of 9Pbw4 could have originated from the poreforming action and the radii of pores was presumed to be anywhere from 1.8 nm to 3.3 nm. These results were confirmed by 3D-flow cytometric contour-plot analysis. The present study suggests a potential of 9Pbw4 as a novel antifungal peptide.  相似文献   

15.
We previously showed that classical 6-substituted pyrrolo[2,3-d]pyrimidine antifolates bind to folate receptor (FR) α and the target purine biosynthetic enzyme glycinamide ribonucleotide formyltransferase (GARFTase) with different cis and trans conformations. In this study, we designed novel analogs of this series with an amide moiety in the bridge region that can adopt both the cis and trans lowest energy conformations. This provides entropic benefit, by restricting the number of side-chain conformations of the unbound ligand to those most likely to promote binding to FRα and the target enzyme required for antitumor activity. NMR of the most active compound 7 showed both cis and trans amide bridge conformations in ~1:1 ratio. The bridge amide group in the best docked poses of 7 in the crystal structures of FRα and GARFTase adopted both cis and trans conformations, with the lowest energy conformations predicted by Maestro and evidenced by NMR within 1 kcal/mol. Compound 7 showed ~3-fold increased inhibition of FRα-expressing cells over its non-restricted parent analog 1 and was selectively internalized by FRα over the reduced folate carrier (RFC), resulting in significant in vitro antitumor activity toward FRα-expressing KB human tumor cells. Antitumor activity of 7 was abolished by treating cells with adenosine but was incompletely protected by 5-aminoimidazole-4-carboxamide (AICA) at higher drug concentrations, suggesting GARFTase and AICA ribonucleotide formyltransferase (AICARFTase) in de novo purine biosynthesis as the likely intracellular targets. GARFTase inhibition by compound 7 was confirmed by an in situ cell-based activity assay. Our results identify a “first-in-class” classical antifolate with a novel amide linkage between the scaffold and the side chain aryl L-glutamate that affords exclusive selectivity for transport via FRα over RFC and antitumor activity resulting from inhibition of GARFTase and likely AICARFTase. Compound 7 offers significant advantages over clinically used inhibitors of this class that are transported by the ubiquitous RFC, resulting in dose-limiting toxicities.  相似文献   

16.
Sordarin is a unique natural product antifungal agent that is an inhibitor of elongation factor 2. To improve biological activity, we synthesized various compounds by novel modification of the aglycone, sordaricin. As a result, we have discovered the novel sordarin derivative FR290581. This compound exhibited superior activity and a good pharmacokinetic profile, and also displayed good in vivo activity against Candida albicans.  相似文献   

17.
A series of tyrosine-modified derivatives of the macrocyclic lipopeptidolactone FR901469 have been prepared and evaluated for in vitro and in vivo antifungal activity and for hemolytic activity towards red blood cells. Compound 14 displayed significantly reduced hemolytic potential at 1mg/mL and a comparable protective effect to FR901469 in a mouse candidiasis model.  相似文献   

18.
A series of new benzopyrone compounds were designed and synthesized and their antifungal activities in vitro were evaluated. The results showed that the benzopyrone derivatives with short terminal alkyl chain exhibited potent antifungal activity, which represent a novel class of promising leads for the development of novel non-azole antifungal agents. Compound 5j is the most potent one with MIC(80) value 1.5 μg/mL against Trichophyton rubrum. Flexible molecular docking was used to analyze the structure-activity relationships (SARs) of the compounds. The designed compounds interact with CA-CYP51 through hydrophobic and van der Waals interactions.  相似文献   

19.
PMAP-23 is a 23-mer peptide derived from porcine myeloid. To develop novel antifungal peptides useful as therapeutic drugs, it would require a strong fungicidal activity against pathogenic fungal cells. To this goal, several analogs, with amino acid substitutions, were designed to increase the net hydrophobicity by Trp (W)-substitution at positions 10, 13, or 14 at the hydrophilic face of PMAP-23 without changing the hydrophobic helical face. The Trp (W)-substitution (P6) showed an enhanced fungicidal and antitumor activities, with the fungicidal activity inhibited by salts and the respiratory inhibitor, NaN(3). The results suggested that the increase of hydrophobicity of the peptides correlated with fungicidal activity. The fungicidal effects of analog peptides were further investigated using 1,6-diphenyl-1,3,5-hexatriene (DPH) as a membrane probe. In Candida albicans, the analog peptide (P6) exerted its fungicidal effect on the blastoconidia in 20% fetal bovine serum by disrupting the mycelial forms. Furthermore, P6 caused significant morphological changes, and these facts suggested that the fungicidal function of the novel analog peptide (P6) was by damaging the fungal cell membranes. Thus, this peptide may provide a useful template for designing novel antifungal peptides useful for the treatment of infectious diseases.  相似文献   

20.
Pleurocidin (Ple) is a peptide derived from the winter flounder. In our previous study, we reported the antifungal effect of Ple and its mode of action. To develop novel antifungal peptides useful as therapeutic agents, two analogs, with amino acid substitutions, were designed to decrease the net hydrophobicity by Arg (R) or Ser (S)-substitution at the hydrophobic face of Ple without changing the amphipathic structure. By substituting Ser, the hydrophobicity of the peptide (anal-S) was decreased, and by substituting Arg, though the hydrophobicity of the peptide (anal-R) was decreased, the cationicity of this peptide was increased. CD measurements showed the substitution of Arg or Ser decrease the α-helical conformation of analog peptides. Studies with analog peptides have shown decreases in hydrophobicity and α-helicity do not affect antifungal activity but decrease hemolytic activity. These results suggest that highly hydrophobic and α-helical natures are not desirable in the design of antimicrobial peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号