首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glutathione (GSH) is an antioxidant synthesized from three constitutive amino acids (CAA): cysteine (Cys), glycine (Gly) and glutamate (Glu). Glutathione plays an important role in oocyte maturation, fertilization and early embryo development. This study aimed to investigate the effect of Cys (0.6 mM), Gly (0.6 mM) and Glu (0.9 mM) supplementation during in vitro fertilization (IVF) of cattle oocytes. In a Pilot Experiment, de novo synthesis of GSH in bovine zygote was evaluated using a modified TALP medium prepared without MEM-essential and MEM-non-essential amino acids (mTALP): mTALP + CAA (constitutive amino acids); mTALP + CAA+5 mMBSO (buthionine sulfoximide); mTALP + Cys + Gly; mTALP + Cys + Glu and mTALP + Gly + Glu. This evidence led us to investigate the impact of CAA supplementation to TALP medium (with essential and non-essential amino acids) on zygote viability, lipid peroxidation, total intracellular GSH content (include reduced and oxidized form; GSH-GSSG), pronuclear formation in zygotes and subsequent embryo development. IVF media contained a) TALP; b) TALP + Cys + Gly + Glu (TALP + CAA); c) TALP + Cys + Gly; d) TALP + Cys + Glu; e) TALP + Gly + Glu, were used. Total GSH-GSSG concentration was increased in TALP, TALP + CAA, and TALP + Cys + Gly. The viability of zygote was similar among treatments. Lipid peroxidation was increased in zygote fertilized with TALP + Cys + Gly; TALP + Cys + Glu; TALP + Gly + Glu and TALP + CAA. The percentage of penetrated oocytes decreased in TALP + CAA and TALP + Cys + Gly. The cleavage rate was lower in TALP + CAA and TALP + Gly + Glu. The percentage of embryos developing to the blastocyst stage was lower in TALP + Cys + Glu and TALP + CAA. In conclusion, we have demonstrated the synthesis of GSH during IVF. However, Cys, Gly and Glu supplementation to TALP medium had negative effects on embryonic development.  相似文献   

2.
Kishida R  Lee ES  Fukui Y 《Theriogenology》2004,62(9):1663-1676
To establish a defined in vitro maturation culture system for porcine oocytes, we examined the effects of adding cysteine (Cys) and epidermal growth factor (EGF) to the maturation medium. Furthermore, to evaluate cytoplasmic maturation, we investigated GSH concentrations and embryo development after intracytoplasmic sperm injection (ICSI). The basic media for IVM were modified TCM199 containing 10% newborn calf serum (NBCS) or 0.1% polyvinyl alcohol (PVA), supplemented with amino acids. Adding EGF (10 ng/ml) or EGF + Cys (0.57 mM) to the defined medium (0.1% PVA + amino acids) increased (P < 0.05) the rate of nuclear maturation relative to the defined medium (without these additives). After ICSI, oocytes matured in a medium supplemented with NBCS, Cys and EGF had a higher (P < 0.05) rate of pronuclear formation rate than oocytes matured in the defined IVM medium. Although there was no significant difference in cleavage rates between NBCS- and PVA-containing media supplemented with both Cys and EGF, the rate of blastocyst development was lower (P < 0.05) in the defined medium than in the NBCS-containing medium. Intracellular GSH concentrations of oocytes matured in the NBCS- and PVA-containing media supplemented with both Cys and EGF were higher (P < 0.05) than in oocytes matured in PVA alone or in oocytes before maturation. Adding Cys and EGF to a defined medium for porcine IVM improved rates of nuclear maturation and cleaved oocytes following ICSI, probably due to increased GSH concentrations. Also, embryos derived from oocytes matured in the defined medium (with the addition of Cys and EGF) developed into blastocysts after ICSI.  相似文献   

3.
Glutamine (GLN) is a metabolic precursor for hexosamine synthesis and its inclusion in culture medium has been reported to improve cumulus expansion. Glutamine and cysteine share the same transport system. Excess external GLN may act as a competitive inhibitor for the uptake of cysteine and stimulate loss of cellular cysteine, interfering this with GSH synthesis. Experiments were designed to evaluate the effect of 1–3 mM GLN during in vitro maturation (IVM) on bovine-cumulus expansion, intracellular GSH levels in both oocytes and cumulus cells, and subsequent embryo development up to blastocyst stage. Also, GSH content was measured in 6- to 8-cell embryos and a possible relationship between cumulus expansion and GSH synthesis was studied. Intact cumulus cell-oocyte complexes were incubated for 24 hr and cumulus expansion was measured by a computerized image-digitizing system either before or after IVM. IVM/IVF bovine oocytes were cultured up to 6- to 8-cell stage embryos for assessment of GSH content or for 8 days up to blastocyst stage for embryo development. The measurement of total GSH content was performed by an enzymatic method in oocytes, cumulus cells and 6- to 8-cell embryos. The maximal expansion was achieved by addition of 2 mM GLN without affecting GSH levels, in both oocytes and cumulus cells. At 3 mM, the degree of cumulus expansion was lower and the GSH levels decreased. The addition of 2 mM GLN improves cleavage and blastocyst rates, whereas no differences were found between 0, 1, and 3 mM GLN. Moreover, the GSH content in 6- to 8-cell embryos was similar at any GLN concentrations. In order to study the relationship between GSH and cumulus expansion: 6-diazo-5-oxo-1-norleucine (DON), an inhibitor of hexosamine synthesis, or buthionine sulfoximide (BSO), an inhibitor of GSH synthesis, either alone or with GLN was added to IVM medium. GSH level was not affected by the presence of DON. However, the degree of cumulus expansion was reduced in the presence of BSO. In conclusion, bovine oocytes matured in the presence of 2 mM GLN improve their capacity for subsequent embryo development. Nevertheless, GSH level was altered when GLN was added to IVM medium at a high concentration with a reduction in the degree of cumulus expansion. This study provides evidence that optimal cumulus expansion in vitro is partially dependent on hexosamine production and intracellular GSH content. Mol. Reprod. Dev. 51:76–83, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
The low number of embryos produced from in vitro matured, fertilized, and cultured (IVM-IVF-IVC) oocytes of prepubertal goat is mainly due to a low incidence of sperm head decondensation at fertilization (Martino et al., 1995: Theriogenology 43:473-485; Mogas et al., 1997: Theriogenology 48:815-829). Thiol compounds stimulate glutathione (GSH) synthesis and improve the rates of male pronucleus (MPN) formation and embryo development. The present study was carried out to determine whether supplementation of the IVM medium with 100 microM of cysteamine, 100 microM of beta-mercaptoethanol, 0.57 mM of cysteine, and 0.57 mM cystine might improve the embryo development and intracellular GSH level of prepubertal goat oocytes. After 27 hr post IVM, a sample of oocytes was frozen and the intracytoplasmic GSH content was evaluated by spectrophotometry. IVM-oocytes were inseminated with fresh semen and cultured in SOF medium. Only the addition of cysteamine to IVM media significantly improved the percentage of the morula plus blastocyst yield compared to the control group (oocytes matured in absence of thiol compounds) (22.2 vs. 6.4%, respectively; P < 0.05). The percentage of expanded blastocysts in cysteamine and control groups was 13.0 and 2.6%, respectively, and the mean cell number per blastocyst was 86.8 and 60.5, respectively. None of the other thiol compounds studied significantly improved the percentage of embryos obtained. It has been demonstrated that prepubertal goat oocytes synthesize GSH during IVM and that thiol compounds increase this GSH synthesis. In conclusion, only the addition of 100 microM of cysteamine to the maturation medium improves embryo development from prepubertal goat oocytes although all the thiol compounds used in this study increased intracellular GSH content.  相似文献   

5.
The present study was carried out to establish porcine defined IVP. In Experiments 1 and 2, we investigated the efficacy of additional 0.6 mM cystine and/or 100 microM cysteamine (Cys) to a defined TCM199 maturation medium with regard to the intracellular glutathione (GSH) concentration and the developmental competence of in vitro matured porcine oocytes following intracytoplasmic sperm injection (ICSI). The control medium was a modified TCM199 containing 0.05% (w/v) polyvinyl alcohol (PVA). Cys and/or cystine were added to the control medium. The control group and immature oocytes (presumptive germinal vesicle oocytes; GV) were prepared for GSH assay. In Experiment 3, the efficacy of epidermal growth factor (EGF) addition to a modified porcine zygote medium (mPZM) for in vitro culture (IVC) medium was investigated on embryonic development and the mean cell number of blastocysts following ICSI. As a positive or negative control, 0.3% BSA (mPZM-3) or 0.3% PVA (mPZM-4), respectively, was added to the base medium. The defined IVC medium was supplemented with 5 or 10 ng/ml EGF. In Experiment 1, no significant difference was found in the rates of cleavage (31.4-64.3%) and blastocyst formation (6.5-22.9%) among the treatment and control groups. The mean cell numbers per blastocyst ranged from 30 to 48 among the groups without significant differences. However, in Experiment 2, the intracellular GSH concentrations in the oocytes cultured in the medium supplemented with 100 microM Cys (9.6 pmol/oocyte) or Cys + cystine (9.9 pmol/oocyte) were significantly (p < 0.05) higher than the control (2.5 pmol/oocyte) and 0.6 mM cystine (6.5 pmol/oocyte) groups, but not different from the GV group (9.0 pmol/oocyte). The GSH concentration in the cystine group was also significantly (p < 0.05) higher than that in the control group, but not different from the GV group. In Experiment 3, the rates of cleavage and blastocyst formation and the mean cell numbers of blastocysts were not significantly different among the groups. However, the addition of 5 ng/ml EGF into the mPZM-4 resulted in a significantly (p < 0.05) higher blastocyst rate per cleaved embryo than the other two defined groups (mPZM-4 + 5 ng/ml: 48.6%, mPZM-4 and mPZM-4 +10 ng/ml: 23.4% and 23.1%, respectively).The present results indicate that the addition of Cys to a defined medium for in vitro maturation (IVM) of porcine oocytes increases intracellular GSH concentration. Further addition of cystine into the IVM medium containing 100 microM Cys is not necessary and TCM199 plus Cys (100 microM) could be used as a defined IVM medium for porcine oocytes. The addition of 5 ng/ml EGF to a defined IVC medium has enhanced subsequent development after ICSI. This study shows that porcine blastocysts can be produced by defined media throughout the steps of IVP (IVM, ICSI and IVC).  相似文献   

6.
This study evaluated the effect of adding reduced glutathione (GSH) during sperm washing and insemination on the subsequent fertilization dynamics and development of IVM porcine oocytes. Follicular oocytes were matured in vitro in NCSU 23 medium with porcine follicular fluid, cysteine and hormone supplements for 22 h. They were then matured in the same medium but without hormones for another 22 h. Matured oocytes were stripped of cumulus cells and co-incubated with frozen-thawed spermatozoa for 5 h. Putative embryos were cultured in NCSU 23 with BSA for either 7 h to examine fertilization parameters or 6 d to evaluate cleavage (2 d) and blastocyst rates. In Experiment 1, GSH was added to the insemination medium at 0, 0.125, 0.25 or 0.5 mM. The presence of GSH during insemination did not affect (P>0.05) rates of penetration, polyspermy, male pronuclear formation or cleavage, but did increase (P<0.05) blastocyst formation rates when added at concentrations of 0.125 (36%) and 0.25 mM (34%) compared with that of the control (0 mM; 19%). However, the numbers of inner cell mass and trophectoderm cells of blastocysts were unaffected by GSH treatment (P>0.05). The presence of GSH during insemination was found not to significantly increase intracellular glutathione concentrations of oocytes (P>0.05). In Experiment 2, addition of GSH (0.25 mM) during sperm washing did not affect cleavage or blastocyst formation rates or cell numbers (P>0.05). In conclusion, the presence of GSH during insemination improves the developmental competence of IVM pig oocytes in a dose-dependent manner.  相似文献   

7.
The present study was carried out to study de novo glutathione (GSH) synthesis and to evaluate the effect of stimulating GSH synthesis during in vitro maturation (IVM) of adult and prepubertal mouse oocytes on the embryo developmental rate. Adult (8 weeks old) and prepubertal mice (24-26 days old) were primed with 5 IU of PMSG and oocytes were retrieved from the ovary 48 hr later for IVM. After IVM (18 hr) Cumulus oocyte complexes (COC) were in vitro fertilized (IVF) and in vitro culture (IVC) in order to observe embryo development. The IVM medium was supplemented with: 0, 25, 50, 100, or 200 microM of cysteamine. To study the novo GSH synthesis, 5 mM BSO was added during IVM of adult or prepubertal oocyte. Developmental rates up to blastocyst were recorded for each group. Experiments also included a group of ovulated oocytes (in vivo matured) after priming with PMSG and HCG. After IVM of adult mice oocytes, an improvement was observed on embryo development in all the supplemented groups when compared with the untreated group (P < 0.05). No differences were observed in blastocyst rate among IVM oocytes with cysteamine and ovulated oocytes. Prepubertal IVM mouse oocytes had a lower cleavage rate compared with ovulated oocytes (P < 0.05). Cysteamine failed to improve prepubertal oocytes developmental rates (P > 0,05). 2-cell embryos, coming from IVM prepubertal oocytes and ovulated oocytes had the same preimplantation developmental rate up to the blastocyst stage. In prepubertal, and adult oocytes an inhibition of embryo development was observed when buthionine sulfoximide (BSO), a specific inhibitor of the gamma-glutamylcysteine synthetase, was added during oocyte maturation (P < 0.01). In conclusion, an improvement in mouse embryo development was observed when cysteamine was added to the IVM medium of adult mice oocytes. In prepubertal oocytes cysteamine addition during oocyte maturation failed to improve embryo developmental rates. The presence of BSO lowered or completely blocked blastocyst development. This proves that, de novo GSH synthesis during oocyte maturation of adult and prepubertal oocytes undoubtedly plays an important role in embryo development. The improvement on oocyte competence observed in adult mice oocytes is probably related to intracellular GSH synthesis stimulated by cysteamine. Nevertheless the reason why cysteamine failed to improve prepubertal oocytes competence remains as an open question.  相似文献   

8.
The evaluation of culture medium for bovine oocytes has progressed toward more defined conditions during the last few years. The main objective of this study was to evaluate different sources of albumin as a protein supplement during in vitro maturation (IVM) of bovine oocytes in synthetic oviduct fluid medium (SOF). The replacement of protein with polyvinyl pyrrolidone (PVP) or polyvinyl alcohol (PVA) was also evaluated. The effect of recombinant human FSH on cumulus expansion and nuclear maturation in SOF containing BSA (BSA-V) or PVP-40 was also studied. Addition of BSA-V during IVM retarded nuclear maturation when compared with addition of PVP-40 or use of SOF alone. The inclusion of different concentrations of BSA-V, fetal calf serum (FCS), or PVA during IVM had no positive effect on the developmental capacity of the oocytes compared with the use of SOF alone with no supplement but significantly decreased the percentage of embryos reaching the morula and blastocyst stages. However, when BSA-V was replaced with purified BSA, BSA that was essentially free of fatty acids, or chicken egg albumin, embryonic development rates were restored. The presence of PVP-40 but not PVP-360 during IVM significantly increased morula and blastocyst production. These results indicate that although SOF alone can support bovine oocyte maturation, a high proportion of morulae and blastocysts can be produced from IVM oocytes cultured in medium containing PVP-40. These studies are the first to show that the effect of FSH on nuclear maturation and cumulus expansion is dependent on substrates present in IVM medium.  相似文献   

9.
Serum, gonadotrophins, growth factors, and steroid hormones stimulate the in vitro maturation (IVM) of competent oocytes, acting, directly or indirectly, upon the adenylate cyclase pathway to produce the intracellular messenger, cAMP. The intracellular levels of cAMP in cattle cumulus‐oocyte complexes (COC) were manipulated by adding to the collection and maturation media invasive adenylate cyclase (iAC), a toxin produced by the bacterium, Bordetella pertussis. High concentrations of iAC (1 or 5 μg/ml) in the maturation medium inhibited the resumption of meiosis, while low concentrations (0.1 or 0.01 μg/ml) resulted in high rates of maturation to the MII stage (92.6 ± 2.5 and 98.5 ± 1.4% respectively). The same low concentrations of iAC in the maturation medium resulted in rates of development to the blastocyst stage 8 days post insemination (30.1 ± 4.2 and 45.1 ± 3.9%, respectively), which were either not different, or significantly better, than those obtained after IVM in medium supplemented only with serum and gonadotrophins (36.1 ± 2.9%). Finally, the addition of 0.1 μg/ml iAC and 0.5 mM 3‐isobutyl 1‐methylxanthine (IBMX) in the collection medium significantly improved the blastocyst rate when IVM was performed in control medium or medium supplemented with 0.01 μg/ml iAC (31.9 ± 5.5 vs. 12.1 ± 1.6 and 45.5 ± 2.9 vs. 19.1 ± 2.3% respectively). It is concluded that the maintenance of an optimal intracellular concentration of cAMP before and during IVM ensures a high developmental competence of bovine oocytes matured in medium without serum and hormones. Mol. Reprod. Dev. 54:86–91,1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
Supplementation of IVM medium with cysteamine, beta-mercaptoethanol, cysteine and cystine induced bovine oocyte glutathione (GSH) synthesis, but only the effect of cysteamine on the developmental competence of these oocytes was tested. During IVM of sheep oocytes, cysteamine but not beta-mercaptoethanol increased embryo development. However, it is not known how long the high intracellular oocyte GSH levels obtained after IVM with thiol compounds, can be maintained. Thus, the present study was carried out to evaluate the effects of supplementing maturation medium with 100 microM beta-mercaptoethanol, 0.6 mM cysteine and 0.6 mM cystine on 1) intracellular GSH level after IVM, 2) after IVF, 3) in 6 to 8-cell embryos and 4) on embryo development. In oocytes after IVM and in presumptive zygotes after IVF, intracellular GSH levels were significantly higher in the treated groups (P < 0.05). While, GSH content in 6 to 8-cell embryos was similar among treatment groups (P > 0.05). Differences in cleavage rates and the percentage of embryos that developed to morula and blastocyst stages were significantly higher (P < 0.05) for treated oocytes than for those matured in the control medium. We conclude from the results that the high intracellular GSH levels after induction of GSH synthesis in bovine IVM by thiol compounds remain during IVF and are still present at the beginning of IVC, improving developmental rates. Moreover, the results indicate that this metabolic pathway is an important component of the cytoplasmic maturation process that affects the subsequent steps of in vitro embryo production.  相似文献   

11.
Maintaining oocytes at the germinal vesicle (GV) stage in vitro may permit enhanced acquisition of the developmental competence. The objective of the current study was to evaluate the nuclear and cytoplasmic maturation in vitro of porcine oocytes after pretreatment with S-roscovitine (ROS). Cumulus oocyte complexes (COC) were treated with 50 microM ROS for 48 h and then matured for various lengths of time in a conventional step-wise in vitro maturation (IVM) system by using dibutyryl cyclic AMP. The COC that were matured in the same system for 44 h without pretreatment with ROS were used as the control group. At various periods after the start of IVM, oocytes were assessed for the meiotic stages and subjected to in vitro fertilization (IVF) with fresh spermatozoa. The ROS treatment inhibited GV breakdown of 94.4% oocytes, with the majority arrested at the GV-I stage (67.4%). Maximum maturation rate to the metaphase-II stage after ROS treatment was achieved by 44 h of IVM (92.1%) and no differences were observed with control oocytes (95.0%). Penetration rate was correlated to the maturation rate. The duration of IVM had no effects on polyspermy and male pronuclear (MPN) formation rates at 8 h post insemination (hpi), whereas both rates increased at 22 hpi. Direct comparison with controls assessed at 22 hpi confirmed a lesser MPN formation in ROS-treated oocytes (73.7% compared with 53.6%). Glutathione (GSH) concentrations were less in oocytes treated with ROS than in control oocytes (5 compared with 7.7 pmol/oocyte) as well as blastocyst rate (22.0% compared with 38.1%, respectively). These results demonstrate that cytoplasmic maturation in porcine oocytes pretreated with ROS for 48 h did not equal that of control oocytes in the current IVM system.  相似文献   

12.
The aim of the present study was to investigate the effects of inhibition of the enzyme inducible nitric oxide synthase (iNOS) by aminoguanidine (AG) on the in vitro maturation of oocyte-cumulus cell complex(es) (COC) of cattle. COC were cultured with different concentrations of AG (0, 1, 10, and 100mM) for 24h. In Experiment 1, the extent of cumulus complex expansion, nuclear maturation status and plasma membrane integrity of oocytes and cumulus cells from each treatment were assessed. Nitrate/nitrite (NO(3)(-)/NO(2)(-)) concentrations were determined in culture medium by the Griess method. Addition of different concentrations of AG to maturation medium promoted a dose-response inhibitory effect on cumulus expansion (P<0.05). Addition of 1 and 10mM AG to IVM medium did not affect plasma membrane integrity of oocytes or nuclear maturation rates (P>0.05), but it did reduce plasma membrane integrity in cumulus cells. One hundred millimolar inhibited pre-metaphase I (pre-MI) to metaphase II (MII) transition, promoted plasma membrane damage in oocytes (P<0.05), and increased NO(3)(-)/NO(2)(-) concentration when compared to controls (P<0.05). To evaluate if this effect was reversible, 10(-5)M sodium nitroprusside (SNP, NO donor) was added, only in the treatment with 100mM AG that inhibited the nuclear maturation. However, association of 10(-5)M SNP to 100mM AG did not reverse the effects of AG, but increased NO(3)(-)/NO(2)(-)concentration (P<0.05). In Experiment 2, the effect of different AG concentrations on cytoplasmic maturation in vitro was assessed based on cortical granule migration, and embryonic development. There was a dose effect on cortical granule migration rate, in which 1mM AG (83.9+/-6.2%) did not differ from control oocytes (83.6+/-8.2%; P>0.05), but 10mM partially inhibited migration (3.8+/-6.4%) and 100mM totally inhibited migration (P<0.05). SNP (10(-5)M) did not revert this inhibitory effect on cortical granules migration in oocytes treated with 100mM AG. Only those concentrations that did not inhibit IVM were used to assess cleavage and blastocyst development. Addition of 10mM AG to IVM medium reduced (73.0+/-8.1%, 15.0+/-8.9%; P<0.05) cleavage and blastocyst development, respectively when compared with controls (89.1+/-3.4%, 37.6+/-7.3%, respectively), but did not differ, (P>0.05), from the group treated with 1mM AG (80.9+/-8.4%, 41.5+/-10.5%, respectively). The results from the present study demonstrate that NO derived from iNOS affects the in vitro maturation of bovine COC, modulating the viability of cumulus cells and of oocyte, the progression of meiosis after GVBD, the migration of cortical granules, and cleavage and blastocyst development.  相似文献   

13.

The objectives were to evaluate

1) copper (Cu) concentrations in plasma and follicular fluid (FF) from cattle ovaries; 2) the effects of supplemental Cu during in vitro maturation (IVM) on DNA damage of cumulus cells and glutathione (GSH) content in oocytes and cumulus cells; and 3) supplementary Cu during IVM on subsequent embryo development. Copper concentrations in heifer plasma (116 ± 27.1 μg/dL Cu) were similar (P > 0.05) to concentrations in FF from large (90 ± 20.4 μg/dL Cu) and small (82 ± 22.1 μg/dL Cu) ovarian follicles in these heifers. The DNA damage in cumulus cells decreased with supplemental Cu concentrations of 4 and 6 μg/mL (P < 0.01) in the IVM medium (mean ± SEM index of DNA damage was: 200.0 ± 27.6, 127.6 ± 6.0, 46.4 ± 4.8, and 51.1 ± 6.0 for supplementation with 0, 2, 4, and 6 μg/mL Cu respectively). Total GSH concentrations increased following supplementation with 4 μg/mL Cu (4.7 ± 0.4 pmol in oocytes and 0.4 ± 0.04 nmol/106 cumulus cells) and 6 μg/mL Cu (5.0 ± 0.5 pmol in oocytes and 0.5 ± 0.05 nmol/106 cumulus cells, P < 0.01) compared with the other classes. Cleavage rates were similar (P ≥ 0.05) when Cu was added to the IVM medium at any concentration (65.1 ± 2.0, 66.6 ± 1.6, 72.0 ± 2.1, and 70.7 ± 2.1 for Cu concentrations of 0, 2, 4, and 6 μg/mL). Percentages of matured oocytes that developed to the blastocyst stage were 18.7 ± 0.6, 26.4 ± 0.03, and 29.0 ± 1.7% for 0, 2, and 4 μg/mL Cu, and was highest (33.2 ± 1.6 %) in oocytes matured with 6 μg/mL Cu (P > 0.01). There was an increase (P > 0.05) in mean cell number per blastocyst obtained from oocytes matured with 4 and 6 μg/mL Cu relative to 0 Cu (IVM alone) and 2 μg/mL Cu. In conclusion, Cu concentrations in the FF and plasma of heifers were similar. Adding copper during oocyte maturation significantly increased both intracellular GSH content and DNA integrity of cumulus cells. Since embryo development was responsive to copper supplementation, we inferred that optimal embryo development to the blastocyst stage was partially dependent on the presence of adequate Cu concentrations during IVM.  相似文献   

14.
Glutathione (GSH) has been shown to play an important role in embryo development. In a previous study, we demonstrated that cysteamine supplementation of in vitro maturation (IVM) medium increased the intracellular GSH content in bovine oocytes and improved subsequent embryo development to the blastocyst stage. The present study was carried out to evaluate the effect of inhibition by buthionine sulfoximide (BSO) of GSH synthesis during IVM in the presence of cysteamine, on subsequent embryo development, and the effect of cysteamine during IVM on the survival of blastocysts following freezing. The effect of β-mercaptoethanol and cysteine added to the maturation medium on GSH levels in bovine oocytes, as well as the effect of these compounds on de novo GSH synthesis by oocytes during in vitro maturation, was also studied. The inhibitory effect of BSO during in vitro maturation on GSH synthesis was also evaluated. Evidence was found confirming that GSH synthesis occurs intracellularly during IVM of oocytes and is stimulated by cysteamine, β-mercaptoethanol and cysteine. Moreover, the present results suggest that the increase in the rate of embryo development exerted by cysteamine, when present during IVM, was due to its stimulatory effect on GSH synthesis. This increase in GSH levels during IVM improves embryo development and quality, producing more embryos reaching the blastocyst stage on day 6, those most suitable for freezing. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Glucose concentration during cumulus-oocyte complex (COC) maturation influences several functions, including progression of oocyte meiosis, oocyte developmental competence, and cumulus mucification. Glucosamine (GlcN) is an alternative hexose substrate, specifically metabolized through the hexosamine biosynthesis pathway, which provides the intermediates for extracellular matrix formation during cumulus cell mucification. The aim of this study was to determine the influence of GlcN on meiotic progression and oocyte developmental competence following in vitro maturation (IVM). The presence of GlcN during bovine IVM did not affect the completion of nuclear maturation and early cleavage, but severely perturbed blastocyst development. This effect was subsequently shown to be dose-dependent and was also observed for porcine oocytes matured in vitro. Hexosamine biosynthesis upregulation using GlcN supplementation is well known to increase O-linked glycosylation of many intracellular signaling molecules, the best-characterized being the phosphoinositol-3-kinase (PI3K) signaling pathway. We observed extensive O-linked glycosylation in bovine cumulus cells, but not oocytes, following IVM in either the presence or the absence of GlcN. Inhibition of O-linked glycosylation significantly reversed the effect of GlcN-induced reduction in developmental competence, but inhibition of PI3K signaling had no effect. Our data are the first to link hexosamine biosynthesis, involved in cumulus cell mucification, to oocyte developmental competence during in vitro maturation.  相似文献   

16.
The objective was to investigate the effects of supplementary zinc (Zn) during in vitro maturation (IVM) of bovine oocytes. The DNA damage in cumulus cells was low with supplemental Zn concentrations of 1.1 and 1.5 μg/mL in the IVM medium (mean ± SEM index of DNA damage was 67.52 ± 9.32, 68.52 ±13.34, 33.80 ± 4.89, and 34.65 ± 7.92 for supplementation with 0, 0.7, 1.1, and 1.5 μg/mL Zn, respectively; P < 0.01). Total glutathione concentrations did not differ following Zn supplementation of 1.1 and 1.5 μg/mL (3.7 ± 0.4 vs. 4.0 ± 0.5 pmol, respectively, in oocytes; and in cumulus cells, 0.5 ± 0.04 nmol/106 cells, combined for both treatments), but were greater (P < 0.01) than supplementation with 0.7 μg/mL (1.8 ± 0.5 pmol in oocytes and 0.2 ± 0.02 nmol/106 cumulus cells). Cleavage rate increased (P < 0.05) when Zn was added to the IVM medium at any concentration (67.16 ± 1.17, 73.15 ± 1.15, 74.05 ± 1.23, and 72.76 ± 0.74 for 0, 0.7, 1.1, and 1.5 μg/mL Zn). For these concentrations, subsequent embryo development to the blastocyst stage was 17.83 ± 2.15, 21.95 ± 0.95, 27.65 ± 1.61, and 30.33 ± 2.78%, highest (P < 0.01) in oocytes matured with 1.5 μg/mL Zn. There was an increase (P < 0.05) in mean cell number per blastocyst obtained from oocytes matured with 1.1 and 1.5 μg/mL Zn relative to 0 Zn (IVM alone) and 0.7 μg/mL Zn. In conclusion, Zn during oocytes maturation significantly affected intracellular GSH content and DNA integrity of cumulus cells, and improved preimplantational embryo development. We inferred that optimal embryo development to the blastocyst stage was partially dependent on the presence of adequate Zn concentrations.  相似文献   

17.
This study examined the ability of epidermal growth factor (EGF) to improve the developmental competence of pig oocytes matured in a protein-free (PF) in vitro maturation (IVM) system. Oocyte maturation was done in one of three media: 1. PF-TCM: tissue culture medium (TCM) 199 + 0.1% polyvinylalcohol (PVA); 2. PF-TCM+EGF: PF-TCM + 10 ng/ml EGF; and 3. +ve CONT: North Carolina State University (NCSU) 23 medium + 10% porcine follicular fluid. All media contained 0.57 mM cysteine. Hormonal supplements, 0.5 microg/mL LH and 0.5 microg/mL FSH, were present only for the first half (20 to 22 h) of the culture period. After maturation, oocytes were co-incubated with frozen-thawed spermatozoa for 5 to 6 h and transferred to embryo culture medium, NCSU 23 containing 0.4% BSA, for 144 h. In Experiment 1, differences in cumulus expansion were observed for oocytes matured in +ve CONT (Category 4), PF-TCM (Category 2) and PF-TCM+EGF (Category 3). However, no significant differences in nuclear maturation to metaphase II stage were observed. In Experiment 2, no differences in fertilization parameters were observed. Significant (P < 0.01) differences in cleavage rates were observed among the three media for a proportion of the oocytes matured (52, 60 and 69% in PF-TCM, PF-TCM+EGF, and +ve CONT, respectively). Oocytes matured in PF-TCM showed the lowest (P < 0.01) blastocyst development (22%). However, the same rate of blastocyst development was obtained for +ve CONT (37%) and PF-TCM+EGF (37%). Blastocyst cell numbers were significantly higher when oocytes were matured in the presence of EGF (26 vs. 37 to 41). In Experiment 3, oocytes matured in PF-TCM+EGF had a significantly (P < 0.05) higher intracellular glutathione (GSH) concentration (5.9 vs. 11.4 pmol/oocyte) compared with PF-TCM. Twenty-two of 25 embryo transfer recipients became pregnant (Experiment 4). Four animals returned to estrus in within 60 days. Six pregnant animals slaughtered at 26 to 45 days had 43 fetuses (range: 4 to 12) and the remaining 12 animals farrowed 82 piglets (range: 3 to 12). These results indicate that EGF enhances the developmental competence of pig oocytes matured in a protein-free culture medium which is correlated with higher GSH level in oocytes. Birth of piglets indicate that embryos derived from oocytes matured in the presence of EGF are viable.  相似文献   

18.
The energy substrates lactate, pyruvate, and glucose were evaluated for supporting in vitro cytoplasmic maturation of rhesus monkey oocytes. A total of 321 cumulus-oocyte complexes (COCs) aspirated from > or = 1000 microm diameter follicles of unstimulated adult monkeys were matured in one of six media with various individual or combinations of energy substrates: (1) mCMRL-1066 (control); (2) HECM-10 (containing 4.5 mM lactate); (3) HECM-10+0.2 mM pyruvate; (4) HECM-10 + 5.0 mM glucose; (5) HECM-10+ 0.2 mM pyruvate + 5.0 mM glucose; and (6) HECM-10 minus lactate + 5.0 mM glucose. All media contained gonadotropins, oestradiol, and progesterone. Following maturation, all mature oocytes were subjected to the same in vitro fertilization and embryo culture procedures. Oocytes matured in control medium or in treatment groups 4 and 6 had the best morulae+ blastocysts developmental responses (35, 36, and 32%, respectively, P < 0.05). HECM-10 + 0.2 mM pyruvate + 5.0 mM glucose for COC maturation supported intermediate embryonic development (16% morulae + blastocysts). The lowest (P < 0.05) morula + blastocyst developmental responses were obtained after maturation of COCs in HECM-t10 and HECM-10 + 0.2 mM pyruvate (4 and 6%, respectively). The COCs matured in glucose-containing medium showed greater levels of cumulus expansion than those in glucose-free medium. These results indicate that (a) glucose is both necessary and sufficient as the energy substrate for supporting optimal cytoplasmic maturation in vitro of oocytes from unstimulated rhesus monkeys; (b) pyruvate suppresses the stimulatory effect of glucose on oocyte maturation; (c) glucose is involved in cumulus expansion; (d) cumulus expansion is not a reliable indicator of primate oocyte competence.  相似文献   

19.
Glutathione (gamma-glutamyl-cysteinyl-glycine; GSH) is a ubiquitous intracellular free thiol that improves development of the male pronucleus at fertilisation and has also been implicated in promoting the development of preimplantation embryos. The objective of this study was to evaluate the effects of adding GSH or cysteine to the in vitro maturation medium on intracellular GSH amounts after in vitro maturation and fertilisation of prepubertal goat oocytes. Oocytes were matured in TCM199 medium supplemented with 10% bovine fetal serum, 1 mg/ml 17beta-estradiol, 10 microg/ml o-FSH, 10 microg/ml LH and 50 mg/ml gentamicin. In vitro maturation medium was completed with two independent treatments: GSH at different concentrations (0, 0.25, 0.50 and 1.00 mM) and L-cysteine at different concentrations (0, 150, 300, 600 and 900 microM). After 27 h of culture at 38.5 degrees C in 5% CO2 in air, the nuclear stage was evaluated. Simultaneously, another sample of oocytes was frozen and the intracellular GSH level was evaluated with spectrophotometric methodology. Oocytes were inseminated with fresh semen (2-3 x 10(6) sperm/ml) in TALP medium supplemented with 1 mg/ml hypotaurine. Oocytes were fixed at 20 h post-insemination to evaluate the in vitro fertilisation. Oocytes matured in 1.00 mM GSH-supplemented medium exhibited higher amounts of intracellular GSH (3.23 pmol per oocyte). The percentage of normal fertilisation (17-27%) was similar for the treatment groups. In conclusion, the addition of 1.00 mM GSH to the maturation medium could be a useful method for increasing the intracellular GSH levels of prepubertal goat oocytes. However, this increase was not associated with a higher normal fertilisation rate of prepubertal goat oocytes.  相似文献   

20.
Kobayashi M  Lee ES  Fukui Y 《Theriogenology》2006,65(6):1191-1199
The present study was carried out to investigate the effect of adding 100 microM cysteamine (Cys) or 100 microM beta-mercaptoethanol (beta-ME) to a defined maturation medium on in vitro maturation (IVM), and fertilization and developmental competence of in vitro matured porcine oocytes following intracytoplasmic sperm injection (ICSI). The two control media for IVM culture were modified TCM199 containing 10% (v/v) porcine follicular fluid (pFF) or 0.05% (w/v) polyvinyl alcohol (PVA), and Cys or beta-ME was supplemented to the PVA-control medium. There was no significant difference in the proportions of in vitro matured oocytes among the four treatment groups (94.5-98.4%). The percentages of pronuclear formation (51.0-64.2%) after ICSI were also not significantly different among the four groups. The cleavage rate (72.8%) in the oocytes treated with Cys showed no significant difference compared with those of the two control media containing pFF (72.2%) or PVA (61.5%), but was higher (P<0.05) than that in the oocytes treated with beta-ME (56.3%). However, the rates of blastocyst formation of Cys (36.7%), beta-ME (27.1%) and pFF (31.4%) were higher (P<0.05) than that using the control medium containing PVA (15.6%). The mean cell number of blastocysts ranged from 42 to 52 among the four groups, without significant differences. In conclusion, the addition of Cys or beta-ME to a defined maturation medium enhanced blastocyst formation after ICSI, to a level similar to that achieved by adding pFF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号