首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objectives were to determine if relative lengths of photoperiods that induce reproductive cycles in ewes affect the length of the subsequent breeding season, if duration of the refractoriness that terminates breeding is affected by photoperiod length, and if the resulting refractoriness to an inductive photoperiod is absolute. Groups of Welsh Mountain ewes were exposed to either 12L:12D (n = 12) or 8L:16D (n = 6) photoperiods beginning at the summer solstice when daylengths reach a maximum of 17.5 h at Bristol, England. A control group (n = 10) was exposed to natural daylengths. Ovarian cycles in the controls, as judged by monitored plasma progesterone levels, commenced in early October, about 1 mo later (p less than 0.001 in both cases) than in sheep exposed to 12L:12D or 8L:16D. The advancement in cycle onset was similar under 12L:12D and 8L:16D (69 +/- 2 and 77 +/- 4 days after the summer solstice compared with 102 +/- 2 days in the controls). Duration of the breeding season (100 +/- 4 days) in ewes exposed to 12L:12D was significantly shorter (p less than 0.001 in both cases) than in ewes exposed to natural daylengths or 8L:16D (153 +/- 3 and 133 +/- 5 days, respectively). Approximately 70 days after the ending of ovulatory cycles in the 12L:12D group, half of the animals (n = 6) were transferred to 8L:16D. This treatment greatly (p less than 0.001) reduced the duration of anestrus and cycles began again 62 +/- 4 days after transfer to 8L:16D, or about 90 days earlier than in ewes (n = 6) remaining in 12L:12D.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The objectives of this study were to determine if ewes subjected to frontal hypothalamic deafferentation (FHD) during anestrus remained anestrus or began to have estrous cycles, and if melatonin secretion was disrupted by FHD. Ovary-intact ewes in Group 1 were subjected to either FHD (n = 10) or sham FHD (n = 5) in early July 1983. Estrous cycles were monitored by measuring circulating progesterone concentrations from before FHD until September 1985. Group 2 ewes (n = 4) were subjected to FHD in October 1984. In late April 1985, blood samples were taken from all ewes at 1- to 4-h intervals from 1100 h to 0700 h of the following day to monitor diurnal changes of melatonin. Hypothalami were collected for histological evaluation of lesions. All Group 1 ewes (sham FHD and FHD) initiated normal estrous cycles in August and September 1983, and all ceased cycles by mid-February 1984. All sham FHD and 4 FHD ewes remained anestrus until August or September of 1984 and then resumed normal cycles. In contrast, 5 FHD ewes resumed cycles as early as April 1984 and then cycled intermittently or almost continuously. Two Group 2 ewes cycled continuously after FHD and 2 cycled infrequently. FHD ewes that showed prolonged breeding seasons had cuts that damaged the suprachiasmatic nucleus (SCN) and adjacent structures. Mean nocturnal (2000 h-0500 h) melatonin concentrations did not differ (p greater than 0.05) between sham FHD, FHD "normal season," and FHD "continuous cycle" ewes. In summary, damage to the SCN region by FHD during anestrus had no detectable effect on either onset or cessation of the next breeding season but greatly prolonged subsequent breeding seasons. Thus, the environmental signals that both initiated and terminated the 1983 breeding season apparently had been given before FHD was performed in midsummer. Damage to the SCN region during the breeding season caused some ewes to cycle continuously. The effects of FHD apparently were not due to disruption of melatonin secretion. FHD ewes that showed prolonged breeding seasons had normal seasonal changes of plasma prolactin concentrations. This suggests that different neural structures control seasonal patterns of gonadotropin and prolactin secretion.  相似文献   

3.
The effect of dose of pregnant mares' serum gonadotropin (PMSG) on the reproductive performance of adult ewes and ewe lambs and lamb survival at birth after treatment with fluorogestone acetate (FGA)-impregnated intravaginal sponges and PMSG (250 IU or 500 IU) to synchronize estrus was evaluated. Ewes were exposed to rams for breeding at the synchronized and subsequent estrous cycles. The flock, comprised of three synthetic strains and two control breeds, was maintained in a controlled environment and exposed to an artificial light regimen which alternated at 4-mo intervals from 16h of light daily to 9h of light daily. Trials were conducted during January, May and September at the end of a 9-h daylength cycle. Adult ewes were bred in May and 8 mo later in January. Ewe lambs were bred in September at 6.5 to 7.5 mo of age. The overall reproductive performance of the adult ewes was similar at the two breedings: fertility approximately 90%, prolificacy approximately 2.7, fecundity approximately 240% and lambs born alive approximately 2.4. Dosage of PMSG had no effect. Reproductive performance of ewe lambs was lower and there was a strain x treatment interaction, suggesting greater variability in response. The results indicate there is no advantage to using a higher dose of PMSG in ewes with a natural relatively high fecundity. Moreover, the use of the artificial photoperiod appears to overcome the natural seasonal variation in reproductive performance.  相似文献   

4.
The springbok is an arid-adapted antelope inhabiting the desert and semidesert regions of southern Africa. Because it thrives in these sparsely vegetated areas, the springbok is of potential agricultural importance and the prospect of domestication has been speculated for many years. However, apart from observational studies on its breeding in the wild, suggesting it is an aseasonal breeder, little is known about the underlying reproductive endocrinology of this species. In this study, biweekly peripheral blood samples were collected from eight captive springbok ewes from October 1995 until September 1998 and analyzed for progesterone. At the start of the study, six ewes were prepubertal and cycling commenced spontaneously between November 1995 and June 1996. Cycling had already commenced in two ewes. At the end of November 1996, estrous cycles ceased abruptly in all ewes and restarted in April 1997. Cycling ceased again between December 1997 and February 1998 and restarted in June 1998 in six ewes; there was no cessation of estrous cycles in two ewes. Thus, although some individuals cycle continuously, there is a clear endocrine anestrus of between 4 and 5 mo in springbok, the timing and duration of which is synchronized between some individuals but the time of onset and cessation is variable from year to year. To ensure that the fluctuations we observed in progesterone levels were reliable indicators of changes in the estrous cycle, blood samples were collected every 6 h for 16 days in August 1998. A surge in LH secretion was observed in all ewes 55 +/- 5 h after the fall in progesterone. Progesterone levels increased again 45 +/- 8 h after the surge. A final study showed that the pattern of melatonin release in springbok exhibits a normal day/night profile, and thus photoperiodic information is transformed into an endocrine code to springbok but does not appear to affect reproduction. Rather, our data raise the possibility that the prevailing ambient temperature may influence the onset of ovarian activity in this species.  相似文献   

5.
Although many species display endogenous circannual rhythms of biological activity that are synchronized by day length, the specific photoperiodic requirements for synchronizing such rhythms are not established for any species. We tested the hypothesis that the circannual reproductive rhythm of sheep can be synchronized by exposure to just one or two discrete blocks of photoperiodic information each year. Ewes were pinealectomized to prevent their ability to transduce photoperiodic information into altered reproductive neuroendocrine activity. During the 53/4 yr following pinealectomy, specific photoperiodic signals were restored for discrete periods of time via replacement of 24-h patterns of melatonin, the pineal hormone that transmits photic information to the reproductive neuroendocrine axis. The ewes were kept in a 12-mo photoycycle that alternated between short (8L:16D) and long (16L:8D) days every 6 mo and that was 6 mo out of phase with the geophysical year. Pineal-intact control ewes exhibited synchronous annual reproductive cycles. Noninfused pinealectomized control ewes did not exhibit synchronous cycles. Pinealectomized ewes infused with alternating 70-day blocks of short- and long-day patterns of melatonin every 6 mo for the first 21/2 yr of the experiment exhibited synchronous annual reproductive cycles that were 6 mo out of phase with those of ewes maintained outdoors. This synchrony persisted when the frequency of the melatonin treatment was reduced to just one 70-day block of a long-day pattern of melatonin each 365 days. Cycle period was 368 +/- 3 days; standard deviation of the date of onset of reproductive induction averaged only 3 days. Our study provides the first direct evidence that a single block of photoperiodic information a year can synchronize a circannual rhythm.  相似文献   

6.
An increase in episodic release of LH is putatively the initial event leading to the onset of postpartum ovarian cyclicity in ewes. This experiment was conducted to determine the relationship between hypothalamic release of GnRH and onset of pulsatile secretion of LH during postpartum anestrus. Control ewes (n = 7) were monitored during the postpartum period to determine when normal estrous cycles resumed. In controls, the mean interval from parturition to the first postpartum estrus as indicated by a rise in serum progesterone greater than 1 ng/mg was 25.8 +/- 0.6 days. Additional ewes (n = 4-5) at 3, 7, 14, and 21 days postpartum (+/- 1 day) were surgically fitted with cannula for collection of hypophyseal-portal blood. Hypophyseal-portal and jugular blood samples were collected over a 6- to 7-h period at 10-min intervals. The number of GnRH pulses/6 h increased (p less than 0.05) from Day 3 postpartum (2.2 +/- 0.5) to Days 7 and 14 (3.6 +/- 0.2 and 3.9 +/- 0.4, respectively). A further increase (p less than 0.05) in GnRH pulse frequency was observed at Day 21 postpartum (6.4 +/- 0.4 pulses/6 h). Changes in pulsatile LH release paralleled changes observed in pulsatile GnRH release over Days 3, 7, 14, and 21 postpartum (0.83 +/- 0.3, 2.8 +/- 0.4, 2.9 +/- 0.6, and 4.0 +/- 1.1 pulses/6 h, respectively). GnRH pulse amplitude was higher at Day 21 than at Days 3, 7, or 14 postpartum. These findings suggest that an increase in the frequency of GnRH release promotes the onset of pulsatile LH release during postpartum anestrus in ewes.  相似文献   

7.
Using autumn-lambing ewes, this study investigated (i) the effects of diet on gonadotrophin secretion and responsiveness of the hypothalamic-pituitary-ovarian axis to exogenous GnRH during the early post-partum period; and (ii) whether ovulation prior to completion of uterine involution results in an increased incidence of aberrant ovarian cycles. Thirty-two ewes rearing 1.9+/-0.12 lambs were equally allocated to two dietary treatments at lambing (22 October +/-0.2 day). Diets comprised ad libitum hay and 1.5 kg per ewe per day of one of two concentrates (11.5 MJ ME, 195 g CP per kg) containing 300 g kg(-1) cracked maize grain (M) or 300 g kg(-1) sugar beet pellets (S). Half of the ewes on each diet (G) received 25 i.v. injections of 250 ng GnRH in 2 ml 0.9% saline at 2 h intervals from days 12-14 post-partum while remaining ewes (N) were monitored for the resumption of spontaneous ovarian cyclicity. Blood samples were obtained from all ewes throughout the study (lambing to 18 December) for measurement of circulating hormone concentrations and the uteri and ovaries of all ewes were examined via laparoscopy on day 21 post-partum. There were no effects of dietary treatment on ewe daily live weight loss, lamb daily live weight gain or the immediate post-partum increase in circulating FSH concentrations. Diet did not affect insulin concentrations or LH pulse frequency on day 12 post-partum but LH pulse amplitude was lower in ewes fed concentrate M compared to concentrate S (1.4+/-0.10 versus 1.7+/-0.12 ng ml(-1), respectively, P<0.05) and this was associated with an increased interval to the resumption of spontaneous ovarian cycles (35+/-3.1 versus 26+/-2.1 day, respectively, P<0.05). Administration of exogenous GnRH increased (P<0.05) the proportion of ewes on both diets that ovulated within 20 days of parturition and advanced the onset of ovarian cyclicity in ewes fed concentrate M by 9.5 days (significance of interaction, P<0.05). Four ewes, all of which ovulated before day 22 post-partum, had extended luteal activity while in remaining ewes, duration of the first luteal phase was inversely related to the time of first ovulation (r(2)=0.16, P<0.05). Results demonstrate that (i) the onset of ovarian cyclicity is influenced by diet and can be advanced by administration of exogenous GnRH; and (ii) ovulation during the early post-partum period is associated with an increased incidence of extended luteal activity.  相似文献   

8.
The objective was to determine if "clamping" ewes onto a 12L:12D photoperiod resulted in expression of circannual rhythms of reproductive activity. On 24 February, 1986, two groups of 6 yearling ewes each were placed in isolated adjacent photochambers under a 12L:12D photoperiod and controlled temperature. Six control ewes were kept outdoors. Blood samples taken thrice weekly were analyzed for progesterone. Data from Days 0-1056 are reported. The mean number of cycles by control and 12L:12D ewes did not differ (32.8 +/- 1.7 vs. 29.7 +/- 4.0). The ranges were 27-39 vs. 4-51, respectively. Ten 12L:12D ewes started cycling coincidentally or later than the controls, and then cycled either regularly or irregularly throughout the study. Two of the 12L:12D ewes cycled continuously. The mean number of cycles during the period 15 April-15 August (anestrus) in Years 1, 2, and 3 were 0.7, 0.7, 0.2 for controls versus 0.3, 5.1, and 4.5 for 12L:12D ewes. The mean number of cycles during the period 15 September-15 January (breeding season) in Years 1, 2, and 3 were 7.3, 7.7, and 7.3 for controls versus 2.8, 4.8, and 4.0 for 12L:12D ewes. All controls showed distinct, alternating annual periods of anestrus and ovarian cycles whereas only two 12L:12D ewes showed a similar pattern. Estrous cycles were distributed nonrandomly in all controls and in 2 ewes exposed to 12L:12D. In the 12L:12D ewes, melatonin concentrations rose immediately after the lights-off and fell immediately after on. Lengths of the luteal phases of the cycles did not differ between groups. In summary, estrous cycles of most ewes clamped on a 12L:12D photoperiod occurred throughout the year at variable intervals rather than in distinct breeding seasons.  相似文献   

9.
Microcebus murinus exhibits highly seasonal biological rhythms to cope with extreme seasonality in availability of resources. To study the role of daylength on seasonal changes in body mass and reproductive function, we exposed male and female gray mouse lemurs to natural, constant, or alternating light cycles for 2 years under constant environmental conditions. When exposed to either constant short (SD: 10 h light/day), long (LD: 14 h light/day), or intermediate (ID: 12 h light/day) daylength, males and females maintained a constant body mass with no spontaneous cyclic variation. We only observed typical seasonal body mass changes in subjects exposed to alternating periods of SD and LD, the weight gain being triggered by SD, whereas weight loss occurred under LD. Reproductive activity in females proceeded from an endogenous rhythm that was expressed under constant daylengths. In contrast, changes in reproductive activity in males depended on daylength variation. In both sexes, SD and LD have direct inhibitory or stimulatory effects on reproductive activity. In females, daylength regulates breeding season by synchronizing an endogenous sexual rhythm with the season, whereas in males, the perception of a critical photoperiod is used to determine the subsequent onset or arrest of their breeding season. These sexual differences in the effect of daylength could be related to sex-specific differences in reproductive constraints.  相似文献   

10.
The purpose of this study was to evaluate whether the insertion of a continuous-release melatonin implant into ewes provides a short-day photoperiodic signal or acts as a functional pinealectomy (provides no specific photoperiodic signal but renders ewes incapable of responding to changes in photoperiod). Ewes primed with 60 long days (18L:6D) during the spring were moved to intermediate day length (13L:11D) for 66 days and then given one of five treatments: 1) short-day control, second drop in photoperiod to 8L:16D; 2) intermediate-photoperiod control, kept on 13L:11D; 3) pinealectomy and kept on 13L:11D; 4) melatonin implant and kept on 13L:11D; 5) melatonin implant and moved to 8L:16D. Mean number of estrous cycles per group and total duration of reproductive activity were determined. Ewes in all groups began to exhibit estrous cycles after the initial reduction in photoperiod. The number of estrous cycles and duration of reproductive activity differed among groups. The number of estrous cycles and duration of reproductive activity was extended in ewes receiving the second drop in photoperiod compared to that of the intermediate-photoperiod controls. Pinealectomized ewes had a number of estrous cycles and duration of reproductive activity similar to those of ewes maintained on the intermediate photoperiod. Melatonin implants increased the number of estrous cycles and prolonged reproductive activity in ewes maintained on the intermediate photoperiod; melatonin implants did not prevent the extension of reproductive activity in ewes receiving the second photoperiodic drop to the short daylength.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
To test the hypothesis that the anestrous increase in estradiol negative feedback prevents estrous cycles by suppressing hypothalamic gonadotropin-releasing hormone (GnRH) pulse frequency, a variety of regimens of increasing GnRH pulse frequency were administered to anestrous ewes for 3 days. A luteinizing hormone (LH) surge was induced in 45 of 46 ewes regardless of amplitude or frequency of GnRH pulses, but only 19 had luteal phases. Estradiol administration induced LH surges in 6 of 6 ewes, only 3 having luteal phases. Anestrous luteal phase progesterone profiles were similar in incidence, time course, and amplitude to those of the first luteal phases of the breeding season, which in turn had lower progesterone maxima than late breeding season luteal phases. In the remaining ewes, progesterone increased briefly or not at all, the increases being similar to the transient rises in progesterone occurring in most ewes at the onset of the breeding season. These results demonstrate that increasing GnRH pulse frequency induces LH surges in anestrus and that the subsequent events are similar to those at the beginning of the breeding season. Finally, they support the hypothesis that the negative feedback action of estradiol prevents cycles in anestrus by suppressing the frequency of the hypothalamic pulse generator.  相似文献   

12.
Rasa Aragonesa ewes were used to evalutate whether treatment with melatonin implants in spring could modify: (i) the response to the male effect in terms of oestrous behaviour and ovulation rate; and (ii) the maintenance of sexual activity and ovulation rate at medium term, i.e. over the next 306 days. On 12 April, 42 ewes were divided into two groups, with (M; n = 21) or without (C; n = 21) a subcutaneous implant containing 18 mg melatonin. On 17 May (day 0), three aproned rams were introduced to each group to induce a ram effect. Ewes were observed for oestrus daily. The rams were removed 40 days later after which one aproned ram was introduced daily. Oestrous detection continued until 28 February, 306 days after the first male-female contact. The ovulation rate was determined by endoscopy in the first three cycles after ram introduction and in September-October and January. Progesterone was assayed from blood samples taken on 6 May, 10 and from day 0 to day 22 after ram introduction. Luteal activity before ram introduction was seen in 33% (M) and 29 (C)% of the ewes, respectively. Significantly more M ewes showed oestrous behaviour during the first 40 days after ram introduction (M: 100%; C: 62%; P < 0.01). Similar differences were observed for ewes anovulatory at ram introduction (M: 100%, C: 47%; P < 0.01). These differences were maintained over the three oestrous cycles in both groups. Treatment with melatonin implants was without detrimental effect on cyclic functions in the following breeding season, after seasonal anoestrus. Melatonin treatment significantly increased (P < 0.05) the mean ovulation rate of the first (1.62 +/- 0.11 versus 1.31 +/- 0.13), second (1.78 +/- 0.15 versus 1.36 +/- 0.15) and third cycles (M: 1.73 +/- 0.12 versus C: 1.27 +/- 0.14). There was a significant interaction between the effects of cyclicity at day 0 and melatonin treatment on the ovulation rate in the first cycle (P < 0.05). The mean ovulation rates of both groups were similar at the beginning (September) and middle (January) of the subsequent breeding season. Overall, the results confirmed that melatonin implants, combined with the ram effect, improved the reproductive parameters of reduced-seasonality ewes during spring mating, without impairing sexual activity or ovulation rate during the subsequent breeding season.  相似文献   

13.
Milk progesterone analysis was used to monitor reproductive function in 134 autumn calving cross-bred suckler cows. Progesterone was measured in milk samples collected three times per week from around 4 week post-calving to around day 60 of pregnancy during 1st and 2nd lactation. The mean day of onset of luteal activity (OLA) was 40.7 +/- 1.1 with the distribution skewed towards a later return. Once cyclicity had been initiated the incidence of reproductive cycle problems (6.5%) was low, though animals with such problems (n = 14) exhibited a delayed interval to first service (P < 0.05), lower conception and calving rates (P < 0.001), increased services per pregnancy (P < 0.001) and a higher (P < 0.10) barren rate (14.3% versus 4.0%) compared to animals with normal cycles (n = 201). In conclusion, using milk progesterone analysis we found a relatively low incidence of reproductive cycle problems in beefxdairy suckler cows. However, while the incidence of cycle problems was low, those animals with problems showed significantly impaired reproductive function.  相似文献   

14.
Forty entire ewes of mixed breeds were kept in environmentally-controlled rooms with a 6-monthly light cycle. Six mature spayed Border Leicester × Merino ewes and four mature intact Poll Dorset rams were kept under the same conditions.Over a period of 2 years (four light cycles) estimates were made of ovarian, testicular and pituitary activity in response to the artificial light regime. Non-pregnant ewes were bled twice weekly: peripheral plasma progesterone levels > 1 ng/ml were taken as indicative of ovarian activity. Testicular activity was estimated by weekly tests for peripheral plasma testosterone and scrotal sac volume. Pituitary activity was estimated monthly by the response to the injection (i.v.) of 75 μg gonadotrophin releasing hormone (GnRH) to rams and of 18.75, 37.5 or 75 μg to ewes, using peripheral plasma luteinising hormone (LH) estimations from the time of GnRH injection.Data for ovarian and testicular measurements were classed into categories according to week and for pituitary response to month of the light cycle.Cubic regression analyses were conducted on the percentage of ewes with progesterone levels > 1 ng/ml and on ram testosterone and scrotal measurements.Despite the irregularity of the curve for the light cycle, the ovarian and testicular responses of rams and ewes followed an alternating curve with peaks and troughs of activity separated by approximately 13 weeks in the 26-week cycle. The peak of ovarian activity occurred during the long daylength period which followed a 22-week period of decreasing daylength and was preceded by 1 month by peak ram testosterone and scrotal sac volume.The pattern of pituitary response was related to that of the actual light cycle and the data were subjected to time-lag regression. This econometrical technique revealed that there was a delay in pituitary response to daylength changes of 2 months for rams, and between 2 and 3 months for the spayed ewes. The peak pituitary response to the GnRH test occurred one month earlier for rams than for the spayed ewes, and coincided with the corresponding troughs of gonadal activity of each sex.The results showed that the breeding season of sheep can be compressed into 6 months and that the pattern of pituitary response follows the daylength pattern more closely than do measurements of gonadal activity. Peak reproductive activity in rams, as measured by pituitary and gonadal activity, precedes that of ewes by approximately 1 month.  相似文献   

15.
Cárdenas H  Wiley TM  Pope WF 《Theriogenology》2004,62(1-2):123-129
Effects of prostaglandin F(2alpha) (PGF(2alpha)), administered during the mid-luteal phase of the estrous cycle, were examined in ewes exhibiting estrous cycles classified as short (< or =16.5 days, short-cycle ewes, n = 10) or long (> or =18 days, long-cycle ewes, n = 9) based on the durations of two estrous cycles (cycles -2 and -1) before treatment. The ewes received (i.m.) 20mg of PGF(2alpha) on day 10 of the third estrous cycle (cycle 0) followed, 36 h later, by 25 microg of gonadotropin releasing hormone (GnRH) to time the events of ovulation. Duration of subsequent estrous cycles +1 and +2 were recorded, and then the ewes were treated with the same combination of PGF(2alpha) and GnRH beginning on day 10 of estrous cycle +3. Ovaries were recovered 6h after GnRH administration to assess development of pre-ovulatory follicles. The proportion of ewes that exhibited estrus after PGF(2alpha) and GnRH treatment on cycle 0 was not different (P > 0.05) between short- and long-cycle ewes. Onset of estrus occurred sooner (P < 0.05) after PGF(2alpha) injection in short-cycle ewes than in long-cycle ewes (1.9 +/- 0.1 days and 2.3 +/- 0.1 days, duration of cycle 0 was 11.9 and 12.3 days, respectively). Duration of estrous cycle +1 was 1.2 days longer (P < 0.01) than cycle -1 in short-cycle ewes. However, duration of estrous cycle +1 did not change (P > 0.05) after PGF(2alpha) and GnRH administration in ewes having long cycles. Pre-ovulatory follicles did not differ (P > 0.05) in numbers, diameter, layers of granulosa cells nor concentrations of progesterone and estradiol-17beta in follicular fluid between short- and long-cycle ewes after PGF(2alpha) and GnRH treatment. In conclusion, ewes having short or long estrous cycles responded differently to PGF(2alpha) and GnRH treatment with respect to the interval to onset of estrus and duration of the subsequent estrous cycle.  相似文献   

16.
Two experiments were performed to determine whether the eyes are necessary for photoperiodic control of reproduction in ewes. In the first, intact and estradiol-treated ovariectomized (OVX + E) ewes were housed in each of 2 photoperiod-controlled rooms with a vasectomized ram and subjected to 90-day alternations between long and short days. Prior to blinding, long days initiated anestrus in intact ewes and a suppression of serum luteinizing hormone (LH) levels in OVX + E ewes; short days caused onset of estrous cycles and an increase in LH levels in the intact and OVX + E ewes, respectively. After 1.5 years of such photoperiodic control, all ewes were blinded by bilateral orbital enucleation. Photoperiodic control was lost following blinding, but circannual alternations between cyclicity and anestrus or high and low LH levels, were maintained in most ewes for the remaining 2.5 years of the study. In one group of OVX + E ewes, serum LH levels remained synchronized to the 90-day shifts in photoperiod for about 1 year after blinding. Once the sighted ram was removed from the room, however, the 90-day rhythm in LH disappeared and a circannual pattern of LH became evident, suggesting that blind ewes may receive photoperiodic information from a sighted ram. This possibility was supported by the results of the second experiment in which 12 additional OVX + E ewes were blinded and exposed to 90 long days and 90 short days in the absence of a sighted ram. In these ewes, serum LH levels were not controlled by the changes in photoperiod. These results are consistent with the following conclusions: 1) the eyes are necessary for perception of photoperiod in the ewe and 2) ewes have an endogenous circannual rhythm of reproduction and/or they can be controlled by other environmental signals in the absence of photoperiodic input. Further, the results lead to the hypothesis that blind ewes can receive photoperiodic information indirectly from a sighted ram.  相似文献   

17.
The reproductive neuroendocrine response of Suffolk ewes to the direction of daylength change was determined in animals which were ovariectomized and treated with constant release capsules of oestradiol. Two groups of animals were initially exposed to 16 or 10 h light/day for 74 days. On day zero of the study, when one group of ewes was reproductively stimulated (elevated LH concentrations) and the other reproductively inhibited (undetectable LH concentrations), half the animals from each group were transferred to an intermediate daylength of 13 h light/day. The remaining ewes were maintained on their respective solstice photoperiods to control for photorefractoriness. LH concentrations rose in animals experiencing a 3 h decrease in daylength from 16L:8D to 13L:11D while LH concentrations fell to undetectable values in those that experienced a 3 h increase in daylength from 10L:14D to 13L:11D. The photoperiodic response of the Suffolk ewe, therefore, depends on her daylength history. Such a result could be explained if the 24-h secretory pattern of melatonin secretion, known to transduce photoperiodic information to the reproductive axis, was influenced by the direction of change of daylength. Hourly samples for melatonin were collected for 24 h 17 days before and three times after transfer to 13L:11D. The melatonin secretory profile always conformed to daylength. Therefore, the mechanism by which the same photoperiod can produce opposite neuroendocrine responses must lie downstream from the pineal gland in the processing of the melatonin signal.  相似文献   

18.
In previous experiments, lean Syrian hamsters fasted on days 1 and 2 of the estrous cycle failed to show sex behavior and ovulation normally expected to occur on the evening of day 4. The first goal of the present experiment was to determine whether systemic treatment with theob(obese) protein leptin could reverse the effects of fasting on estrous cyclicity, social behaviors, and ovulation rate. Fasting-induced anestrus was reversed and normal sex and social behavior and ovulation rate were restored in hamsters injected intraperitoneally with 5 mg/kg leptin every 12 h during fasting on days 1 and 2 of the estrous cycle. A second goal was to test whether the effects of leptin could be prevented by treatment with pharmacological agents that block the oxidation of metabolic fuels. Glucose oxidation was blocked by treatment with 2-deoxy- -glucose (2DG) and fatty acid oxidation was blocked by treatment with methyl palmoxirate (MP). 2DG (1000 mg/kg) or MP (20 mg/kg) was administered at doses that did not induce anestrus in hamsters fedad libitum.As in the first experiment, fasting-induced anestrus was reversed by leptin treatment. However, when each injection of leptin was preceded by an injection of 2DG or MP, leptin treatment did not reverse fasting-induced anestrus. In summary, estrous cyclicity was not restored when oxidation of metabolic fuels was blocked, despite high endogenous levels of leptin. These results are consistent with the hypothesis that leptin acts indirectly on the reproductive system by increasing fuel oxidation.  相似文献   

19.
The relative contributions of ovarian failure and hypothalamic-pituitary dysfunction to the prolongation and cessation of estrous cycles were assessed by measuring the ability of acutely ovariectomized (OVX) middle-aged (12 mo) mice to cycle after receiving grafts (under the renal capsule) of ovaries from young (2 mo) mice. The potentially disruptive effect of the acyclic state on the cycling response to grafted, young ovaries was avoided restricting grafting to middle-aged hosts that were still cycling. The effect of chronic exposure to ovarian secretions before the cessation of cyclicity on age-related hypothalamic-pituitary dysfunction was also assessed. The cycling ability of long-term OVX middle-aged mice (i.e., OVX at 3 mo) bearing grafts of young ovaries was compared to that of age-matched acutely OVX controls. Grafted young ovaries extended the cycling lifespan of acutely OVX middle-aged hosts by 60%. The length of this extended cycling lifespan, however, was only 80% of that achieved by young hosts bearing grafts of young ovaries. Young ovaries in middle-aged mice markedly lowered the incidence of long cycles (greater than 5 days), shifting the modal cycle length to 5 days. However, young ovaries in middle-aged mice failed to increase the incidence of 4-day cycles, the modal cycle of young controls. Middle-aged ovaries grafted into young hosts lengthened their cycles and shortened their cycling lifespan to middle-aged values. Long-term ovariectomy failed to increase the cycling lifespan of middle-aged hosts bearing grafts of young ovaries beyond that achieved in acutely OVX mice. Long-term ovariectomy did shorten the modal cycle length of middle-aged mice to 4 days, although the duration of 4-day cycling was only one-third (2 mo) that of young controls. These results indicate that the relative contributions of ovarian and neuroendocrine factors to three major events of reproductive aging vary with each event. Whereas the hypothalamic-pituitary unit appears to play an important role in the initial shift from 4- to 5-day cycles, the aging ovary plays the major role in the subsequent shift to longer cycles and in the ultimate cessation of cyclicity. Although chronic exposure to ovarian secretions during the period of cyclicity does not play a major role in the cessation of cyclicity, it appears to contribute to the hypothalamic-pituitary changes responsible for the initial shift from 4- to 5-day cycles.  相似文献   

20.
The effects on sex pheromone-releasing, or calling behaviour, of diel photoperiods of varying daylength, of light cycle phase shifts, and of continuous illumination were investigated in Trogoderma glabrum females. On light régimes with 8 to 20 hr daylengths, calling maxima tended to centre close to photophase midpoints. Although influencing the time of day at which calling occurred, daylength had little effect on the amount of activity or the length of the calling period. When 16 : 8 LD light cycles were advanced or delayed by 4 hr, the time of day at which calling peaks were observed shifted within 2 to 4 cycles so that a constant phase relationship with photoperiod was maintained. Daily calling peaks were evident in groups of females exposed to between 1 and 5 days of continuous illumination, but mean calling time occurred earlier in the day as light exposures were lengthened. It was concluded that a circadian rhythm of calling behaviour exists in T. glabrum females. and that the rhythm can be entrained to 24 hr periodicity by photoperiod.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号