首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nefedova LN  Kim AI 《Genetika》2007,43(10):1388-1395
Drosophila melanogaster retrotransposons of the gypsy group are considered to be potential errantiviruses. Their infectivity is caused by the functional activity of the third open reading frame (ORF3) encoding the Env protein, which was probably captured from baculoviruses. Mobile genetic elements (MGEs) of the gypsy group can be conventionally divided into three subgroups: with three ORFs, with a defective ORF3, and without the ORF3. To establish the patterns of evolution of gypsy retrotransposons in D. melanogaster, the members of the three subgroups were examined. Structural analysis of retrotransposons opus and rover, which carry a defective ORF3, as well as retrotransposons Burdock, McClintock, qbert, and HMS-Beagle, which lack the ORF3, suggests that the evolution of these MGEs followed the pattern of loosing the ORF3. At the same time, an MGE of the same subgroup, Transpac, may be an ancestral form, which had acquired the env gene and gave rise to the first errantiviruses. The capture of the ORF3 by retrotransposons provided their conversion to a fundamentally new state. However, the ORF3 in the genome is not subjected to strong selective pressure, because it is not essential for intragenomic transpositions. Because of this, the process of its gradual loss seems quite natural.  相似文献   

2.
Full classification of Drosophila melanogaster retrotransposons with long terminal repeats (LTR-retrotransposons) has been recomposed, and their evolutional analysis in sequenced genomes of different species of drosophila and other arthropods has been carried out. D. melanogaster LTR-retrotransposons are divided into three groups: gypsy (one, two, or three open reading frames (ORFs)), copia (one ORF), and BEL (one ORF). The gypsy group is divided into three subgroups. Subgroup I is underrepresented by retrotransposons-retroviruses with three ORFs and their derivatives, which have lost the env gene (ORF3). Subgroup II is underrepresented by retrotransposons with two ORFs, and subgroup III is underrepresented by retrotransposons with one ORF. A comparative analysis of homologs of gypsy group LTR-retrotransposons evidences that subgroups I and II are represented only in the genomes of Lepidoptera and Diptera. The gypsy group of LTR-retrotransposons with one and two ORFs is found in almost all genomes of arthropods. Most of the families of D. melanogaster gypsy group LTR-retrotransposons have close homologs in the genomes of other species of drosophila. A degree of identity of retrotransposons sequences is correlated with a degree of relation between species of drosophila, indicating vertical transmission of retrotransposons. Obvious cases of horizontal transfer of some mobile elements have been detected including retrotransposons without the env gene. Homologs of distinct ORFs of retrotransposons—genes gag and env—have been found. Gene-homolog of the gag gene—Grp (CG5680)—is under purifying selection, so it has an important function in drosophila genome.  相似文献   

3.
4.
Drosophila melanogaster retrotransposons of the gypsy group are considered to be potential errantiviruses. Their infectivity is caused by the functional activity of the third open reading frame (ORF3) encoding the Env protein, which was probably captured from baculoviruses. Mobile genetic elements (MGEs) of the gypsy group can be conventionally divided into three subgroups: with three ORFs, with a defective ORF3, and without the ORF3. To establish the patterns of evolution of gypsy retrotransposons in D. melanogaster, the members of the three subgroups were examined. Structural analysis of retrotransposons opus and rover, which carry a defective ORF3, as well as retrotransposons Burdock, McClintock, qbert, and HMS-Beagle, which lack the ORF3, suggests that the evolution of these MGEs followed the pattern of loosing the ORF3. At the same time, an MGE of the same subgroup, Transpac, may be an ancestral form, which had acquired the env gene and gave rise to the first errantiviruses. The capture of the ORF3 by retrotransposons provided their conversion to a fundamentally new state. However, the ORF3 in the genome is not subjected to strong selective pressure, because it is not essential for intragenomic transpositions. Because of this, the process of its gradual loss seems quite natural.  相似文献   

5.
For the elucidation of the molecular basis of RSV adaptation to conditionally permissive host from the genome library of duck embryo fibroblasts, transformed by Rous sarcoma virus in 30 passages on these cells, recombinant bacteriophages that include provirus sequences, were obtained. Complete and transformation-defective proviruses were characterized, nucleotide sequences of their env-genes were compared with their counterparts the original RSV (Pr-RSV-C) and with viruses of other subgroups (A, B, D and E). The possible relation of the revealed changes in domains coding gp85 and gp37, with the changes of chicken RSV characteristics during adaptation to duck cells is discussed.  相似文献   

6.
7.
The gypsy element of Drosophila melanogaster is the first retrovirus identified so far in invertebrates. According to phylogenetic data, gypsy belongs to the same group as the Ty3 class of LTR-retrotransposons, which suggests that retroviruses evolved from this kind of retroelements before the radiation of vertebrates. There are other invertebrate retroelements that are also likely to be endogenous retroviruses because they share with gypsy some structural and functional retroviral-like characteristics. Gypsy is controlled by a Drosophila gene called flamenco, the restrictive alleles of which maintain the retrovirus in a repressed state. In permissive strains, functional gypsy elements transpose at high frequency and produce infective particles. Defective gypsy proviruses located in pericentromeric heterochromatin of all strains seem to be very old components of the genome of Drosophila melanogaster, which indicates that gypsy invaded this species, or an ancestor, a long time ago. At that time, Drosophila melanogaster presumably contained permissive alleles of the flamenco gene. One can imagine that the species survived to the increase of genetic load caused by the retroviral invasion because restrictive alleles of flamenco were selected. The characterization of a retrovirus in Drosophila, one of the most advanced model organisms for molecular genetics, provides us with an exceptional clue to study how a species can resist a retroviral invasion. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Paralemmin-1 is a protein implicated in plasma membrane dynamics, the development of filopodia, neurites and dendritic spines, as well as the invasiveness and metastatic potential of cancer cells. However, little is known about its mode of action, or about the biological functions of the other paralemmin isoforms: paralemmin-2, paralemmin-3 and palmdelphin. We describe here evolutionary analyses of the paralemmin gene family in a broad range of vertebrate species. Our results suggest that the four paralemmin isoform genes (PALM1, PALM2, PALM3 and PALMD) arose by quadruplication of an ancestral gene in the two early vertebrate genome duplications. Paralemmin-1 and palmdelphin were further duplicated in the teleost fish specific genome duplication. We identified a unique sequence motif common to all paralemmins, consisting of 11 highly conserved residues of which four are invariant. A single full-length paralemmin homolog with this motif was identified in the genome of the sea lamprey Petromyzon marinus and an isolated putative paralemmin motif could be detected in the genome of the lancelet Branchiostoma floridae. This allows us to conclude that the paralemmin gene family arose early and has been maintained throughout vertebrate evolution, suggesting functional diversification and specific biological roles of the paralemmin isoforms. The paralemmin genes have also maintained specific features of gene organisation and sequence. This includes the occurrence of closely linked downstream genes, initially identified as a readthrough fusion protein with mammalian paralemmin-2 (Palm2-AKAP2). We have found evidence for such an arrangement for paralemmin-1 and -2 in several vertebrate genomes, as well as for palmdelphin and paralemmin-3 in teleost fish genomes, and suggest the name paralemmin downstream genes (PDG) for this new gene family. Thus, our findings point to ancient roles for paralemmins and distinct biological functions of the gene duplicates.  相似文献   

9.

Background  

The genome of invertebrates is rich in retroelements which are structurally reminiscent of the retroviruses of vertebrates. Those containing three open reading frames (ORFs), including an env -like gene, may well be considered as endogenous retroviruses. Further support to this similarity has been provided by the ability of the env -like gene of DmeGypV (the Gypsy endogenous retrovirus of Drosophila melanogaster) to promote infection of Drosophila cells by a pseudotyped vertebrate retrovirus vector.  相似文献   

10.
11.
12.
13.
14.
Protease gene structure and env gene variability of the AIDS virus   总被引:4,自引:0,他引:4  
T Yasunaga  N Sagata  Y Ikawa 《FEBS letters》1986,199(2):145-150
The protease gene structure and the env gene variability have been precisely compared between the AIDS virus and members of the HTLV/BLV family. The conserved amino acid sequence (LVDT) which is repeated in the proteases of the HTLV/BLV family is not repeated in AIDS virus. Comparative analysis of the env gene sequences reveals the striking fact that the env gene of AIDS virus is 8-12-times more variable than those of the HTLV/BLV family. Within the AIDS virus env gene, the surface glycoprotein region is more liable to vary than is the transmembrane region; unexpectedly, however, this liability is not a characteristic feature of the AIDS virus because it is more prominent in other retroviruses including members of the HTLV/BLV family.  相似文献   

15.
Endogenous retroviruses (ERVs) are widespread in vertebrate genomes and have been loosely grouped into "classes" on the basis of their phylogenetic relatedness to the established genera of exogenous retroviruses. Four of these genera-the lentiviruses, alpharetroviruses, betaretroviruses, and deltaretroviruses-form a well-supported clade in retroviral phylogenies, and ERVs that group with these genera have been termed class II ERVs. We used PCR amplification and sequencing of retroviral fragments from more than 130 vertebrate taxa to investigate the evolution of the class II retroviruses in detail. We confirm that class II retroviruses are largely confined to mammalian and avian hosts and provide evidence for a major novel group of avian retroviruses, and we identify additional members of both the alpha- and the betaretrovirus genera. Phylogenetic analyses demonstrated that the avian and mammalian viruses form distinct monophyletic groups, implying that interclass transmission has occurred only rarely during the evolution of the class II retroviruses. In contrast to previous reports, the lentiviruses clustered as sister taxa to several endogenous retroviruses derived from rodents and insectivores. This topology was further supported by the shared loss of both the class II PR-Pol frameshift site and the class II retrovirus G-patch domain.  相似文献   

16.
LTR retrotransposons may be important contributors to host gene evolution because they contain regulatory and coding signals. In an effort to assess the possible contribution of LTR retrotransposons to C. elegans gene evolution, we searched upstream and downstream of LTR retrotransposon sequences for the presence of predicted genes. Sixty-three percent of LTR retrotransposon sequences (79/124) are located within 1 kb of a gene or within gene boundaries. Most gene-retrotransposon associations were located along the chromosome arms. Our results are consistent with the hypothesis that LTR retrotransposons have contributed to the structural and/or regulatory evolution of genes in C. elegans.  相似文献   

17.
Two methods are described for directing the expression of genes to the livers of animals using retroviral vectors containing the predominantly liver-specific promoter from the gene for phosphoenolpyruvate carboxykinase (PEPCK)-linked to the structural gene for either amino 3'-glycosyl phosphotransferase (neo) or bovine growth hormone (bGH). Replication-incompetent retrovirus was used to infect the livers of fetal rats by intraperitoneal injection of animals in utero or to infect adult rats by direct injection into the portal vein after partial hepatectomy. The proviruses were integrated into the hepatic DNA, and the chimeric genes were expressed from the PEPCK promoter for as long as 8 months after infection. The expression of the PEPCK-bGH gene was regulated by diet and hormones in a manner similar to the regulation of the endogenous PEPCK gene in the liver. The potential of this method for targeting genes to the liver is discussed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号