首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: On gel electrophoresis in dodecyl sulphate solutions shark CNS myelin showed four bands close in mobility to the proteolipid protein of bovine CNS myelin. They had apparent molecular weights of 21,000, 26,000, 27,000, and 31,500. Unlike bovine proteolipid protein, all of these shark proteins were shown to be glycosylated by staining gels with the periodate-Schiff reagent. Amino acid analyses of the polypeptides eluted from polyacrylamide gels indicated a high content of apolar amino acids and a composition approximating that of the Po protein of bovine peripheral nervous system (PNS) myelin, rather than that of the CNS proteolipid protein. The shark poly-peptide of apparent molecular weight 31,500 was obtained by elution from dodecyl sulphate gels and antibodies raised against it in rabbits. By probing of electroblots with this antiserum the four shark CNS bands were shown to share common determinants with each other, with a major shark PNS protein and with sheep and chicken major PNS glycoproteins (Po). The binding of antibody was unaffected by deglycosylation of the shark CNS polypeptides with anhydrous hydrogen fluoride. Together, these results appeared to establish that shark CNS myelin contains four proteins that are closely related to a major shark PNS protein and to the Po protein of higher species.  相似文献   

2.
Injured axons in mammalian peripheral nerves often regenerate successfully over long distances, in contrast to axons in the brain and spinal cord (CNS). Neurite growth-inhibitory proteins, including the recently cloned membrane protein Nogo-A, are enriched in the CNS, in particular in myelin. Nogo-A is not detectable in peripheral nerve myelin. Using regulated transgenic expression of Nogo-A in peripheral nerve Schwann cells, we show that axonal regeneration and functional recovery are impaired after a sciatic nerve crush. Nogo-A thus overrides the growth-permissive and -promoting effects of the lesioned peripheral nerve, demonstrating its in vivo potency as an inhibitor of axonal regeneration.  相似文献   

3.
Bjartmar  Carl  Yin  Xinghua  Trapp  Bruce D. 《Brain Cell Biology》1999,28(4-5):383-395
Myelination provides extrinsic trophic signals that influence normal maturation and long-term survival of axons. The extent of axonal involvement in diseases affecting myelin or myelin forming cells has traditionally been underestimated. There are, however, many examples of axon damage as a consequence of dysmyelinating or demyelinating disorders. More than a century ago, Charcot described the pathology of multiple sclerosis (MS) in terms of demyelination and relative sparing of axons. Recent reports demonstrate a strong correlation between inflammatory demyelination in MS lesions and axonal transection, indicating axonal loss at disease onset. Disruption of axons is also observed in experimental allergic encephalomyelitis and in Theiler's murine encephalomyelitis virus disease, two animal models of inflammatory demyelinating CNS disease. A number of dysmyelinating mouse mutants with axonal pathology have provided insights regarding cellular and molecular mechanisms of axon degeneration. For example, the myelin-associated glycoprotein and proteolipid protein have been shown to be essential for mediating myelin-derived trophic signals to axons. Patients with the inherited peripheral neuropathy Charcot-Marie Tooth disease type 1 develop symptomatic progressive axonal loss due to abnormal Schwann cell expression of peripheral myelin protein 22. The data summarized in this review indicate that axonal damage is an integral part of myelin disease, and that loss of axons contributes to the irreversible functional impairment observed in affected individuals. Early neuroprotection should be considered as an additional therapeutic option for these patients.  相似文献   

4.
When highly purified myelin from rat sciatic nerve was incubated with [gamma-32P]ATP, protein components of the membrane were phosphorylated indicating the presence of both the substrate (receptor protein) and an endogenous kinase in the membrane. Polyacrylamide gel electrophoresis of the phosphorylated membrane proteins followed by scintillation counting of gel slices and autoradiography showed that the polypeptides of molecular weights 28000, 23000 and 19000 were phosphorylated, and 32P from [gamma-32P]ATP having been incorporated into serine residues of the substrate proteins. Phosphorylation of purified myelin was Mg2+-dependent, was optimal at pH 6.5 and was not stimulated by adenosine 3',5'-monophosphate. We found that proteins other than those in myelin, such as phosvitin, casein, protamine and histones, can also act as a substrate for the membrane associated kinase. Muscle protein kinase inhibitor had no effect on the endogenous phosphorylation of myelin proteins or on the phosphorylation of phosvitin by peripheral nerve myelin protein kinase. However, the phosphorylation of histone by peripheral nerve myelin protein kinase was inhibited by the protein kinase inhibitor. After washing the membrane with 150 mM KCl the protein kinase that utilizes histone as substrate was found in the supernatant. In contrast, the endogenous phosphorylation of membrane proteins or the phosphorylation of phosvitin by the membrane associated kinase was not affected by washing. From these findings we conclude that at least two protein kinase systems exist in purified peripheral nerve myelin. One system is not inhibited by muscle kinase inhibitor, is tightly bound to the membrane and utilizes as its receptor proteins either exogenous phosvitin or endogenous membrane proteins. The second system is inhibited by muscle kinase inhibitor, is removable from the membrane and utilizes histones as its receptor proteins.  相似文献   

5.
Lipoproteins originating from axon and myelin breakdown in injured peripheral nerves are believed to supply cholesterol to regenerating axons. We have used compartmented cultures of rat sympathetic neurons to investigate the utilization of lipids from lipoproteins for axon elongation. Lipids and proteins from human low density lipoproteins (LDL) and high density lipoproteins (HDL) were taken up by distal axons and transported to cell bodies, whereas cell bodies/proximal axons internalized these components from only LDL, not HDL. Consistent with these observations, the impairment of axonal growth, induced by inhibition of cholesterol synthesis, was reversed when LDL or HDL were added to distal axons or when LDL, but not HDL, were added to cell bodies. LDL receptors (LDLRs) and LR7/8B (apoER2) were present in cell bodies/proximal axons and distal axons, with LDLRs being more abundant in the former. Inhibition of cholesterol biosynthesis increased LDLR expression in cell bodies/proximal axons but not distal axons. LR11 (SorLA) was restricted to cell bodies/proximal axons and was undetectable in distal axons. Neither the LDL receptor-related protein nor the HDL receptor, SR-B1, was detected in sympathetic neurons. These studies demonstrate for the first time that lipids are taken up from lipoproteins by sympathetic neurons for use in axonal regeneration.  相似文献   

6.
When highly purified myelin from rat sciatic nerve was incubated with [γ-32P]ATP, protein components of the membrane were phosphorylated indicating the presence of both the substrate (receptor protein) and an endogenous kinase in the membrane. Polyacrylamide gel electrophoresis of the phosphorylated membrane proteins followed by scintillation counting of gel slices and autoradiography showed that the polypeptides of molecular weights 28000, 23000 and 19000 were phosphorylated, and 32P from [γ-32P]ATP having been incorporated into serine residues of the substrate proteins. Phosphorylation of purified myelin was Mg2+-dependent, was optimal at pH 6.5 and was not stimulated by adenosine 3′,5′-monophosphate. We found that proteins other than those in myelin, such as phosvitin, casein, protamine and histones, can also act as a substrate for the membrane associated kinase. Muscle protein kinase inhibitor had no effect on the endogenous phosphorylation of myelin proteins or on the phosphorylation of phosvitin by peripheral nerve myelin protein kinase. However, the phosphorylation of histone by peripheral nerve myelin protein kinase was inhibited by the protein kinase inhibitor. After washing the membrane with 150 mM KCl the protein kinase that utilizes histone as substrate was found in the supernatant. In contrast, the endogenous phosphorylation of membrane proteins or the phosphorylation of phosvitin by the membrane associated kinase was not affected by washing.From these findings we conclude that at least two protein kinase systems exist in purified peripheral nerve myelin. One system is not inhibited by muscle kinase inhibitor, is tightly bound to the membrane and utilizes as its receptor proteins either exogenous phosvitin or endogenous membrane proteins. The second system is inhibited by muscle kinase inhibitor, is removable from the membrane and utilizes histones as its receptor proteins.  相似文献   

7.
Intermediate filaments in nervous tissues   总被引:59,自引:30,他引:29  
Intermediate filaments have been isolated from rabbit intradural spinal nerve roots by the axonal flotation method. This method was modified to avoid exposure of axons to low ionic strength medium. The purified filaments are morphologically 75-80 percent pure. The gel electrophoretogram shows four major bands migrating at 200,000, 145,000, 68,000, and 60,000 daltons, respectively. A similar preparation from rabbit brain shows four major polypeptides with mol wt of 200,000 145,000, 68,000, and 51,000 daltons. These results indicate that the neurofilament is composed of a triplet of polypepetides with mol wt of 200,000, 145,000, and 68,000 daltons. The 51,000-dalton band that appears in brain filament preparations as the major polypeptide seems to be of glial origin. The significance of the 60,000- dalton band in the nerve root filament preparation is unclear at this time. Antibodies raised against two of the triplet proteins isolated from calf brain localize by immunofluorescence to neurons in central and peripheral nerve. On the other hand, an antibody to the 51,000-dalton polypeptide gives only glial staining in the brain, and very weak peripheral nerve staining. Prolonged exposure of axons to low ionic strength medium solubilizes almost all of the triplet polypeptides, leaving behind only the 51,000- dalton component. This would indicate that the neurofilament is soluble at low ionic strength, whereas the glial filament is not. These results indicate that neurofilaments and glial filaments are composed of different polypeptides and have different solubility characteristics.  相似文献   

8.
Localized changes in the composition of axonal cytoplasm (axoplasm) are critical for many biological processes, including axon guidance, responses to injury, neurite outgrowth, and axon‐glia interactions. Biochemical and molecular studies of these mechanisms have been heavily focused on in vitro systems because of the difficulty of obtaining subcellular extracts from mammalian tissues in vivo. As in vitro systems might not replicate the in vivo situation, reliable methods of axoplasm extraction from whole nerve would be helpful for mechanistic studies on axons. Here we develop and evaluate a new procedure for preparation of axoplasm from rat peripheral nerve, based on incubation of separated short segements of nerve fascicles in hypotonic medium to separate myelin and lyse nonaxonal structures, followed by extraction of the remaining axon‐enriched material. We show that this new procedure reduces serum and glial cell contamination and facilitates proteomic analyses of axonal contents. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2010  相似文献   

9.
Membrane-membrane interactions between axons and Schwann cells are required for initial myelin formation in the peripheral nervous system. However, recent studies of double myelination in sympathetic nerve have indicated that myelin sheaths continue to exist after complete loss of axonal contact (Kidd, G. J., and J. W. Heath. 1988. J. Neurocytol. 17:245-261). This suggests that myelin maintenance may be regulated either by diffusible axonal factors or by nonaxonal mechanisms. To test these hypotheses, axons involved in double myelination in the rat superior cervical ganglion were destroyed by chronic guanethidine treatment. Guanethidine-induced sympathectomy resulted in a Wallerian-like pattern of myelin degeneration within 10 d. In doubly myelinated configurations the axon, inner myelin sheath (which lies in contact with the axon), and approximately 75% of outer myelin sheaths broke down by this time. Degenerating outer sheaths were not found at later periods. It is probably that outer sheaths that degenerated were only partially displaced from the axon at the commencement of guanethidine treatment. In contrast, analysis of serial sections showed that completely displaced outer internodes remained ultrastructurally intact. These internodes survived degeneration of the axon and inner sheath, and during the later time points (2-6 wk) they enclosed only connective tissue elements and reorganized Schwann cells/processes. Axonal regeneration was not observed within surviving outer internodes. We therefore conclude that myelin maintenance in the superior cervical ganglion is not dependent on direct axonal contact or diffusible axonal factors. In addition, physical association of Schwann cells with the degenerating axon may be an important factor in precipitating myelin breakdown during Wallerian degeneration.  相似文献   

10.
—The presence of rapidly transported axonal proteins in purified preparations of myelin has been investigated in the goldfish visual system. Fish were injected intraocularly with 3H proline and contralateral optic tecta were pooled 8–12 h later for purification of myelin. Three purification procedures were employed using continuous and discontinuous gradients of sucrose and continuous gradients of CsCl. All of the myelin preparations were found to have physical, chemical and enzymatic properties attributable to relatively pure preparations of myelin. The goldfish myelin differed from mammalian preparations in having a slightly lower density and in containing an additional major protein of approx. 45,000 mol. wt. All of the myelin preparations retained relatively high levels of axonally transported radioactivity with specific radioactivities which ranged from 70 to 80 per cent of that of the whole tectal homogenate. Acrylamide gel analysis showed the myelin-associated radioactivity to be confined to the higher molecular weight proteins with very little radioactivity associated with basic protein or proteolipid protein. Both the axonally transported radioactivity and the group of higher molecular weight proteins were found to be more concentrated in a myelin subfraction of relatively high density than in a subfraction of low density. The possible significance of the association of axonally transported proteins with myelin is discussed.  相似文献   

11.
Role of macrophages in peripheral nerve degeneration and repair.   总被引:6,自引:0,他引:6  
A cut or crush injury to a peripheral nerve results in the degeneration of that portion of the axon isolated from the cell body. The rapid degeneration of this distal segment was for many years believed to be a process intrinsic to the nerve. It was believed that Schwann cells both phagocytosed degenerating axons and myelin sheaths and also provided growth factors to promote regeneration of the damaged axons. In recent years, it has become apparent that the degenerating distal segment is invaded by monocytes from the blood. We will review the evidence that these recruited macrophages play a role in both degeneration and regeneration of peripheral nerve axons after injury and consider whether the slow degeneration and poor monocyte recruitment in the central nervous system may contribute to the poor regeneration there.  相似文献   

12.
SYNOPSIS. Severed distal stumps of nerve axons have now beenreported to survive for months to years in both vertebrate andinvertebrate nervous systems While low (>15°C) temperaturesmay increase survival times in some preparations such as unmyelinatedgarfish olfactory axons, temperature between 15 and 25°Cis not the only significant factor determining the time courseof survival in goldfish Mauthner axons and for many invertebrateaxons For example when different axons in a crayfish are allstudied at the same temperature, long term survival differsin different axons In some cases these differences appear tobe due to differences in the nature of the ghal reaction orthe presence of synaptic contacts. The possible cellular mechanisms for long term survival fallinto three general cate gories slow degradation of axonal proteinsde novo axoplasmic protein synthesis, and transfer of proteinsfrom adjacent cells to severed axonal stumps In crayfish andsquid giant axons, there is evidence that proteins are indeedtransferred intact from glia to axons or from axon to axon,possibly via exocytotic/endocytotic processes However cellularmechanisms for long term survival may well differ in differentaxons of the same organism, much less between axons in organismsfrom different phyla In particular the ghal sheaths of myehnatedvertebrate axons which demonstrate long term survival mightbe expected to impede ghal/axonal or axonal/axonal protein transfer. The study of long term survival of severed distal stumps isimportant for studies of axonal regeneration because axons inorganisms having long survival times often show functional reconnectionmuch more rapidly and with higher specificity than do axonsin organisms lacking long survival times The study of long termsurvival is also important to cell biologists for an understandingof the molecular mechanisms which allow a piece of cytoplasmseparated from direct cytoplasmic contact with any nucleus toremain morphologically intact and functionally competent formonths to years.  相似文献   

13.
14.
One of the reasons for the lack of nerve regeneration in the CNS is the formation of a glial scar over-expressing multiple inhibitory factors including myelin-associated proteins and members of the Semaphorin family. Innovative therapeutic strategies must stimulate axon extension across the lesion site despite this inhibitory molecular barrier. We recently developed a synthetic neurotrophic compound combining an omega-alkanol with a retinol-like cycle (3-(15-hydroxy-pentadecyl)-2,4,4,-trimethyl-cyclohexen-2-one (tCFA15)). Here, we demonstrate that tCFA15 is able to promote cortical axon outgrowth in vitro even in the presence of the inhibitory Semaphorin 3A and myelin extracts. This growth-promoting effect is selectively observed in axons and requires multiple growth-associated intracellular pathways. Our results illustrate the potential use of synthetic neurotrophic compounds to promote nerve regeneration by counteracting the axonal growth inhibition triggered by glial scar-associated inhibitory factors.  相似文献   

15.
Muscle biopsy homogenates contain GLUT-3 mRNA and protein. Before these studies, it was unclear where GLUT-3 was located in muscle tissue. In situ hybridization using a midmolecule probe demonstrated GLUT-3 within all muscle fibers. Fluorescent-tagged antibody reacting with affinity-purified antibody directed at the carboxy-terminus demonstrated GLUT-3 protein in all fibers. Slow-twitch muscle fibers, identified by NADH-tetrazolium reductase staining, possessed more GLUT-3 protein than fast-twitch fibers. Electron microscopy using affinity-purified primary antibody and gold particle-tagged second antibody showed that the majority of GLUT-3 was in association with triads and transverse tubules inside the fiber. Strong GLUT-3 signals were seen in association with the few nerves that traversed muscle sections. Electron microscopic evaluation of human peripheral nerve demonstrated GLUT-3 within the axon, with many of the particles related to mitochondria. GLUT-3 protein was found in myelin but not in Schwann cells. GLUT-1 protein was not present in nerve cells, axons, myelin, or Schwann cells but was seen at the surface of the peripheral nerve in the perineurium. These studies demonstrated that GLUT-3 mRNA and protein are expressed throughout normal human skeletal muscle, but the protein is predominantly found in the triads of slow-twitch muscle fibers.  相似文献   

16.
The cellular mechanisms that regulate the topographic arrangement of myelin internodes along axons remain largely uncharacterized. Recent clonal analysis of oligodendrocyte morphologies in the mouse optic nerve revealed that adjacent oligodendrocytes frequently formed adjacent internodes on one or more axons in common, whereas oligodendrocytes in the optic nerve were never observed to myelinate the same axon more than once. By modelling the process of axonal selection at the single cell level, we demonstrate that internode length and primary process length constrain the capacity of oligodendrocytes to myelinate the same axon more than once. On the other hand, probabilistic analysis reveals that the observed juxtaposition of myelin internodes among common sets of axons by adjacent oligodendrocytes is highly unlikely to occur by chance. Our analysis may reveal a hitherto unknown level of communication between adjacent oligodendrocytes in the selection of axons for myelination. Together, our analyses provide novel insights into the mechanisms that define the spatial organization of myelin internodes within white matter at the single cell level.  相似文献   

17.
Rapid and efficient axon remyelination aids in restoring strong electrochemical communication with end organs and in preventing axonal degeneration often observed in demyelinating neuropathies. The signals from axons that can trigger more effective remyelination in vivo are still being elucidated. Here we report the remarkable effect of delayed brief electrical nerve stimulation (ES; 1 hour @ 20 Hz 5 days post-demyelination) on ensuing reparative events in a focally demyelinated adult rat peripheral nerve. ES impacted many parameters underlying successful remyelination. It effected increased neurofilament expression and phosphorylation, both implicated in axon protection. ES increased expression of myelin basic protein (MBP) and promoted node of Ranvier re-organization, both of which coincided with the early reappearance of remyelinated axons, effects not observed at the same time points in non-stimulated demyelinated nerves. The improved ES-associated remyelination was accompanied by enhanced clearance of ED-1 positive macrophages and attenuation of glial fibrillary acidic protein expression in accompanying Schwann cells, suggesting a more rapid clearance of myelin debris and return of Schwann cells to a nonreactive myelinating state. These benefits of ES correlated with increased levels of brain derived neurotrophic factor (BDNF) in the acute demyelination zone, a key molecule in the initiation of the myelination program. In conclusion, the tremendous impact of delayed brief nerve stimulation on enhancement of the innate capacity of a focally demyelinated nerve to successfully remyelinate identifies manipulation of this axis as a novel therapeutic target for demyelinating pathologies.  相似文献   

18.
Wrapping it up: the cell biology of myelination   总被引:5,自引:0,他引:5  
During nervous system development, oligodendroglia in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS) synthesise large amounts of specific proteins and lipids to generate myelin, a specialised membrane that spirally ensheathes axons and facilitates fast conduction of the action potential. Myelination is initiated after glial processes have attached to the axon and polarisation of the plasma membrane has been triggered. Myelin assembly is a multi-step process that occurs in spatially distinct regions of the cell. We propose that assembly of myelin proteins and lipids starts during their transport through the biosynthetic pathway and continues at the plasma membrane aided by myelin-basic protein (MBP). These sequential processes create the special lipid and protein composition necessary for myelin to perform its insulating function during nerve conduction.  相似文献   

19.
In addition to supporting rapid nerve conduction, myelination nurtures and stabilizes axons and protects them from acute toxic insults. One myelin molecule that protects and sustains axons is myelin-associated glycoprotein (MAG). MAG is expressed on the innermost wrap of myelin, apposed to the axon surface, where it interacts with axonal receptors that reside in lateral membrane domains including gangliosides, the glycosylphosphatidylinositol-anchored Nogo receptors, and β1-integrin. We report here that MAG protection extends beyond the axon to the neurons from which those axons emanate, protecting them from excitotoxicity. Compared to wild type mice, Mag-null mice displayed markedly increased seizure activity in response to intraperitoneal injection of kainic acid, an excitotoxic glutamate receptor agonist. Mag-null mice also had larger lesion volumes in response to intrastriatal injection of the excitotoxin NMDA. Prior injection of a soluble form of MAG partially protected Mag-null mice from NMDA-induced lesions. Hippocampal neurons plated on proteins extracted from wild-type rat or mouse myelin were resistant to kainic acid-induced excitotoxicity, whereas neurons plated on proteins from Mag-null myelin were not. Protection was reversed by anti-MAG antibody and replicated by addition of soluble MAG. MAG-mediated protection from excitotoxicity was dependent on Nogo receptors and β1-integrin. We conclude that MAG engages membrane-domain resident neuronal receptors to protect neurons from excitotoxicity, and that soluble MAG mitigates excitotoxic damage in vivo.  相似文献   

20.
Nonpolysomal cytoplasmic (free) mRNA.protein (mRNP) complexes of embryonic chicken muscle were purified by a combination of oligo(dT)-cellulose chromatography and sucrose density gradient centrifugation. The protein moieties of the purified mRNP complex were analyzed by two-dimensional gel electrophoresis using separation according to charge in the first dimension and molecular weight in the second. Sixteen polypeptides of Mr = 27,000 to 75,000 were present in the mRNP complex. These mRNP polypeptides displayed different electrophoretic migration properties than those of ribosomal proteins. A protein kinase activity was found associated with the mRNP. This enenzyme was able to transfer phosphate group(s) from ATP to at least three acidic mRNP polypeptides of Mr = 27,000, 38,000, and 73,000 and one basic polypeptide of Mr = 75,000. Among these, the Mr = 38,000 acidic polypeptide was the best acceptor of phosphate groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号