首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Integrin-mediated interactions between cytoskeletal proteins and extracellular fibrinogen are required for platelet adhesion. We have previously demonstrated that the major platelet integrin, alpha(IIb)beta(3), becomes incorporated into the actin cytoskeleton of platelets in an activation-dependent, aggregation-independent manner. To determine if regulatory molecules are also associated with these integrin-rich cytoskeletal complexes, we examined actin cytoskeletons for the presence of kinases and phosphoproteins. Western immunoblot analysis revealed that the tyrosine kinases Src, Fyn, and Lyn are specifically associated with actin cytoskeletons of activated, nonaggregated platelets. However, as noted by others, the cytoskeletal association of focal adhesion kinase depends on platelet aggregation. Actin cytoskeletons isolated from (32)P-labeled platelets also contain a number of phosphorylated proteins. Interestingly, an approximately 18-kDa phosphoprotein was uniquely present in activated platelet cytoskeletons. Collectively, our results demonstrate that actin cytoskeletons of activated, nonaggregated platelets contain not only integrins, but also kinases and phosphoproteins that could regulate platelet adhesion and transmembrane communication.  相似文献   

2.
Integrins are adhesion receptors that exchange signals between the extracellular and intracellular compartments. From their cell surface transmembrane location, they interact with extracellular matrix ligands or cellular counter-receptors, translating external cues into signals that affect cytoskeletal organization, cell shape and motility. Conversely, intracellular events may modify the affinities of integrins for external ligands. Inside the cell, integrins connect with cytoskeletal structures that, until recently, were thought to be exclusively actin microfilaments. We comment on the case of the epithelial integrin, alpha(6)beta(4), which may instead interact with intermediate filaments. This integrin was recently shown by several laboratories to be part of the hemidesmosome complex, an epithelial adhesive structure that is the plasma membrane anchoring site for keratin-containing intermediate filaments.  相似文献   

3.
Syndecans are transmembrane proteoglycans expressed on adherent cells. They are a family of four proteins, which participate in cell-matrix adhesion, the regulation of growth factors (FGFs, VEGF, HGF) binding and signaling. The extracellular domain of syndecans contains heparan sulfate and chondroitin sulfate glycosaminoglycan chains. Syndecans have transmembrane region and a short cytoplasmic domain. The cytoplasmic domain attaches activated protein kinase Calpha, phosphatidyl-inositol-4,5-bisphosphate, syntenin, beta-catenin and many others molecules. Syndecans bind numerous ligands, which are present in extracellular matrix: growth factors, enzymes, extracellular matrix molecules (fibronectin, laminin). They form connections with actin cytoskeleton. The changes in syndecan expression influence on cell adhesion and migration, structure of focal contacts and cytoskeleton. Syndecans participate in cell differentiation and tissue regeneration.  相似文献   

4.
The transmembrane protein tyrosine phosphatase CD45 is required for Ag receptor signal transduction in lymphocytes. Recently, a role for CD45 in the regulation of macrophage adhesion has been demonstrated as well. To investigate further the role of CD45 in the regulation of adhesion, we examined integrin-mediated adhesion to fibronectin of two T cell lines and their CD45-deficient variants. The absence of CD45 correlated with enhanced adhesion to fibronectin via integrin alpha5beta1 (VLA-5), but not alpha4beta1 (VLA-4) in both cell lines. Adhesion returned to normal levels upon transfection of wild-type CD45 into the CD45-deficient lines. Transfection of chimeric or mutant molecules expressing some, but not all, CD45 domains and activities demonstrated that both the transmembrane domain and the tyrosine phosphatase activity of CD45 were required for regulation of integrin-dependent adhesion, but the highly glycosylated extracellular domain was dispensable. In contrast, only a catalytically active CD45 cytoplasmic domain was required for TCR signaling. Transfectants that restored normal levels of adhesion to fibronectin coimmunoprecipitated with the transmembrane protein known as CD45-associated protein. These studies demonstrate a novel role for CD45 in adhesion regulation and suggest a possible function for its association with CD45-associated protein.  相似文献   

5.
Adhesion molecules are known to -be important components of an active T-cell mediated immune response. Signals generated at a site of inflammation cause circulating T cells to respond by rolling, arrest and then transmigration through the endothelium, all of which are mediated by adhesion molecules. Consequently, strategies have been developed to treat immune disorders with specific antibodies that block the interaction of adhesion molecules. However, the therapeutic effects of such remedies are not always achieved. Our recent investigations have revealed that intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) work together with chemokines to induce immunosuppression mediated by Mesenchymal stem cells (MSCs), thus demonstrating the dual role of adhesion molecules in immune responses. Since MSCs represent an important component of the stromal cells in an inflammatory microenvironment, our findings provide novel information for understanding the regulation of immune responses and for designing new strategies to treat immune disorders.Adhesion molecules are cell surface proteins that mediate the interaction between cells, or between cells and the extracellular matrix (ECM). There are four families of adhesion molecules: immunoglobulin-like adhesion molecules, integrins, cadherins and selectins. Most of them are typical transmembrane proteins that have cytoplasmic, transmembrane and extracellular domains. In the immune system, cell adhesion plays a critical role in initiating and sustaining an effective immune response against foreign pathogens.1 Based on our recent data, we discuss herein the role of immunoglobulin superfamily cell adhesion molecules, ICAM1 and VCAM-1, in the immunosuppression mediated by Mesenchymal stem cells.  相似文献   

6.
We have investigated the source(s) and targeting of components to PNS nodes of Ranvier. We show adhesion molecules are freely diffusible within the axon membrane and accumulate at forming nodes from local sources, whereas ion channels and cytoskeletal components are largely immobile and require transport to the node. We further characterize targeting of NF186, an adhesion molecule that pioneers node formation. NF186 redistributes to nascent nodes from a mobile, surface pool. Its initial accumulation and clearance from the internode require extracellular interactions, whereas targeting to mature nodes, i.e., those flanked by paranodal junctions, requires intracellular interactions. After incorporation into the node, NF186 is immobile, stable, and promotes node integrity. Thus, nodes assemble from two sources: adhesion molecules, which initiate assembly, accumulate by diffusion trapping via interactions with Schwann cells, whereas ion channels and cytoskeletal components accumulate via subsequent transport. In mature nodes, components turnover slowly and are replenished via transport. VIDEO ABSTRACT:  相似文献   

7.
Regulation of actin-based cell migration by cAMP/PKA   总被引:10,自引:0,他引:10  
  相似文献   

8.
This study establishes that the physical state of the extracellular matrix can regulate integrin-mediated cytoskeletal assembly and tyrosine phosphorylation to generate two distinct types of cell-matrix adhesions. In primary fibroblasts, alpha(5)beta(1) integrin associates mainly with fibronectin fibrils and forms adhesions structurally distinct from focal contacts, independent of actomyosin-mediated cell contractility. These "fibrillar adhesions" are enriched in tensin, but contain low levels of the typical focal contact components paxillin, vinculin, and tyrosine-phosphorylated proteins. However, when the fibronectin is covalently linked to the substrate, alpha(5)beta(1) integrin forms highly tyrosine-phosphorylated, "classical" focal contacts containing high levels of paxillin and vinculin. These experiments indicate that the physical state of the matrix, not just its molecular composition, is a critical factor in defining cytoskeletal organization and phosphorylation at adhesion sites. We propose that molecular organization of adhesion sites is controlled by at least two mechanisms: 1) specific integrins associate with their ligands in transmembrane complexes with appropriate cytoplasmic anchor proteins (e.g., fibronectin-alpha(5)beta(1) integrin-tensin complexes), and 2) physical properties (e.g., rigidity) of the extracellular matrix regulate local tension at adhesion sites and activate local tyrosine phosphorylation, recruiting a variety of plaque molecules to these sites. These mechanisms generate structurally and functionally distinct types of matrix adhesions in fibroblasts.  相似文献   

9.
The adhesion of cells to their surrounding extracellular matrix has vital roles in embryonic development, inflammatory responses, wound healing and adult tissue homeostasis. Cells attach to extracellular matrix by specific cell-surface receptors, of which the integrins and transmembrane proteoglycans are major representatives. The engagement of adhesion receptors triggers assembly of functional matrix contacts, in which bound matrix components, adhesion receptors and associated intracellular cytoskeletal and signalling molecules form large, localised multiprotein complexes. This review discusses the functional categories of matrix contacts, examples of the biological roles of matrix contacts in normal physiology, and examples of the ways in which abnormalities of matrix contacts are associated with major human diseases.  相似文献   

10.
Adhesion and migration are integrated cell functions that build, maintain and remodel the multicellular organism. In migrating cells, integrins are the main transmembrane receptors that provide dynamic interactions between extracellular ligands and actin cytoskeleton and signalling machineries. In parallel to integrins, other adhesion systems mediate adhesion and cytoskeletal coupling to the extracellular matrix (ECM). These include multifunctional cell surface receptors (syndecans and CD44) and discoidin domain receptors, which together coordinate ligand binding with direct or indirect cytoskeletal coupling and intracellular signalling. We review the way that the different adhesion systems for ECM components impact cell migration in two- and three-dimensional migration models. We further discuss the hierarchy of these concurrent adhesion systems, their specific tasks in cell migration and their contribution to migration in three-dimensional multi-ligand tissue environments.  相似文献   

11.
Rous sarcoma virus-transformed BHK cells (RSV/B4-BHK) adhere to a fibronectin-coated substratum primarily at specific dot-shaped sites. Such sites contain actin and vinculin and represent close contacts with the substratum as revealed by interference reflection microscopy. Only a few adhesion plaques and actin filament bundles can be detected in these cells as compared to untransformed parental fibroblasts. In thin sections examined with transmission electron microscopy (TEM) these adhesion sites correspond to short protrusions of the ventral cell surface that contact the substratum at their apical portion. These structures, which may represent cellular feet, are therefore called podosomes. By screening a number of different transformed fibroblasts plated on a fibronectin-coated substratum we find that podosomes are common to mammalian and avian cell lines transformed either by Rous sarcoma virus (RSV) or by Fujinami avian sarcoma virus (FSV), whose oncogenes encode specific tyrosine kinases. Using antibodies reacting with phosphotyrosine in immunofluorescence experiments, we show that phosphotyrosine-containing molecules are concentrated in podosomes. Podosomes are not detected in fibroblasts transformed by other retroviruses (Snyder-Theilen sarcoma virus, Abelson leukemia virus and Kirsten sarcoma virus) or by DNA tumor viruses (polyoma, SV40), indicating that podosome-mediated adhesion in transformed fibroblasts is related to the peculiar properties of some oncoproteins and possibly to their tropism for adhesion systems. Podosomes and adhesion plaques, although similar in cytoskeletal protein composition, have different mechanisms and kinetics of formation. Assembly of podosomes, in fact (i) does not require fetal calf serum (FCS) in the adhesion medium, that is necessary for the organization of adhesion plaques; (ii) does not require protein synthesis; and (iii) is insensitive to the ionophore monensin, that prevents adhesion plaque formation. Moreover, during attachment to fibronectin-coated dishes, podosomes appear in the initial phase (60 min) of attachment, while adhesion plaques require a minimum of 180 min. In conclusion podosomes of RSV- and FSV-transformed fibroblasts represent a phenotypic variant of adhesion structures.  相似文献   

12.
We describe a novel synchronous detection approach to map the transmission of mechanical stresses within the cytoplasm of an adherent cell. Using fluorescent protein-labeled mitochondria or cytoskeletal components as fiducial markers, we measured displacements and computed stresses in the cytoskeleton of a living cell plated on extracellular matrix molecules that arise in response to a small, external localized oscillatory load applied to transmembrane receptors on the apical cell surface. Induced synchronous displacements, stresses, and phase lags were found to be concentrated at sites quite remote from the localized load and were modulated by the preexisting tensile stress (prestress) in the cytoskeleton. Stresses applied at the apical surface also resulted in displacements of focal adhesion sites at the cell base. Cytoskeletal anisotropy was revealed by differential phase lags in X vs. Y directions. Displacements and stresses in the cytoskeleton of a cell plated on poly-L-lysine decayed quickly and were not concentrated at remote sites. These data indicate that mechanical forces are transferred across discrete cytoskeletal elements over long distances through the cytoplasm in the living adherent cell. mechanical forces; deformation; focal adhesion; microfilament  相似文献   

13.
Action potential initiation and propagation requires clustered Na(+) (voltage-gated Na(+) [Nav]) channels at axon initial segments (AIS) and nodes of Ranvier. In addition to ion channels, these domains are characterized by cell adhesion molecules (CAMs; neurofascin-186 [NF-186] and neuron glia-related CAM [NrCAM]), cytoskeletal proteins (ankyrinG and betaIV spectrin), and the extracellular chondroitin-sulfate proteoglycan brevican. Schwann cells initiate peripheral nervous system node formation by clustering NF-186, which then recruits ankyrinG and Nav channels. However, AIS assembly of this protein complex does not require glial contact. To determine the AIS assembly mechanism, we silenced expression of AIS proteins by RNA interference. AnkyrinG knockdown prevented AIS localization of all other AIS proteins. Loss of NF-186, NrCAM, Nav channels, or betaIV spectrin did not affect other neuronal AIS proteins. However, loss of NF-186 blocked assembly of the brevican-based AIS extracellular matrix, and NF-186 overexpression caused somatodendritic brevican clustering. Thus, NF-186 assembles and links the specialized brevican-containing AIS extracellular matrix to the intracellular cytoskeleton.  相似文献   

14.
We have examined the role of cell surface glycosaminoglycans in fibronectin-mediated cell adhesion by analyzing the adhesive properties of Chinese hamster ovary cell mutants deficient in glycosaminoglycans. The results of our study suggest that the absence of glycosaminoglycans does not affect the initial attachment and subsequent spreading of these cells on substrata composed of intact fibronectin or a fibronectin fragment containing the primary cell-binding domain. However, in contrast to wild-type cells, the glycosaminoglycan- deficient cells did not attach to substrate composed of a heparin- binding fibronectin fragment. Furthermore, the wild-type but not the glycosaminoglycan-deficient cells formed F-actin-containing stress fibers and focal adhesions on substrata composed of intact fibronectin. We propose, therefore, that cell surface proteoglycan(s) participate in the transmembrane linking of intracellular cytoskeletal components to extracellular matrix components which occurs in focal adhesions.  相似文献   

15.
We have examined functions of the cytoplasmic domain of E-selectin, an inducible endothelial transmembrane protein, especially its ability to associate with the cytoskeleton during leukocyte adhesion. Confocal microscopy of interleukin-1 beta (IL-1 beta)-activated human umbilical vein endothelial cells (HUVEC) visualized clustering of E-selectin molecules in the vicinity of leukocyte-endothelial cell attachment sites. A detergent based extraction and Western blotting procedure demonstrated an association of E-selectin with the insoluble (cytoskeletal) fraction of endothelial monolayers that correlated with adhesion of leukocytes via an E-selectin-dependent mechanism. A mutant form of E-selectin lacking the cytoplasmic domain (tailless E-selectin) was expressed in COS-7 cell and supported leukocyte attachment (in a nonstatic adhesion assay) in a fashion similar to the native E-selectin molecule, but failed to become associated with the cytoskeletal fraction. To identify the cytoskeletal components that associate with the cytoplasmic domain of E-selectin, paramagnetic beads coated with the adhesion-blocking anti-E-selectin monoclonal antibody H18/7 were incubated with IL-1 beta-activated HUVEC, and then subjected to detergent extraction and magnetic separation. Certain actin-associated proteins, including alpha-actinin, vinculin, filamin, paxillin, as well as focal adhesion kinase (FAK), were copurified by this procedure, however talin was not. When a mechanical stress was applied to H18/7- coated ferromagnetic beads bound to the surface of IL-1 beta-activated HUVEC, using a magnetical twisting cytometer, the observed resistance to the applied stress was inhibited by cytochalasin D, thus demonstrating transmembrane cytoskeletal mechanical linkage. COS-7 cells transfected with the tailless E-selectin failed to show resistance to the twisting stress. Taken together, these data indicate that leukocyte adhesion to cytokine-activated HUVEC induces transmembrane cytoskeletal linkage of E-selectin through its cytoplasmic domain, a process which may have important implications for cell-cell signaling as well as mechanical anchoring during leukocyte- endothelial adhesive interactions.  相似文献   

16.
We have examined the relationship between the in vivo and in vitro expression of three adhesion-signaling proteins (FAK, PYK2 and Paxillin), using cells of the early chick embryo, where pure cell populations may be isolated and cultured, and in which epithelial-to-mesenchymal transformation is occurring. Focal Adhesion Kinase (FAK) and Proline-rich Tyrosine Kinase-2 (PYK2) are related in molecular structure, and may have some overlapping functions in signal transduction associated with cell-substratum adhesion. Paxillin, a cytoskeletal protein, is also localized to focal adhesions. We show that the immunocytochemical detection of these molecules in vivo does not reflect their in vitro localization. Focal Adhesion Kinase showed a developmentally regulated localization to the cytoplasm, but not to sites of adhesion, in epithelial cells in vivo, while Paxillin was associated with migrating mesoderm cells. Proline-rich Tyrosine Kinase-2 was undetectable in vivo. The level of expression of these molecules was compared under in vivo and in vitro conditions. While the expression of Focal Adhesion Kinase showed a tissue-specific regulation of expression with the change to in vitro conditions, Proline-rich Tyrosine Kinase-2 showed a more uniform and less tissue-specific up-regulation. Levels of Paxillin expression also showed an increase with this change in conditions. We conclude that despite the structural and functional relationships between these three molecules in the developing embryo, the expression and localization of each is independently regulated. We suggest that this provides these cells with the adaptability that they require in order to respond to the changing extracellular environment in the early embryo, and to undergo epithelial-to-mesenchymal transformation.  相似文献   

17.
Raji cells expressing syndecan-1 (Raji-S1) adhere and spread when plated on heparan sulfate-binding extracellular matrix ligands or monoclonal antibody 281.2, an antibody directed against the syndecan-1 extracellular domain. Cells plated on monoclonal antibody 281.2 initially extend a broad lamellipodium, a response accompanied by membrane ruffling at the cell margin. Membrane ruffling then becomes polarized, leading to an elongated cell morphology. Previous work demonstrated that the syndecan-1 cytoplasmic domain is not required for these activities, suggesting important roles for the syndecan-1 transmembrane and/or extracellular domains in the assembly of a signaling complex necessary for spreading. Work described here demonstrates that truncation of the syndecan-1 extracellular domain does not affect the initial lamellipodial extension in the Raji-S1 cells but does inhibit the active membrane ruffling that is necessary for cell polarization. Replacement of the entire syndecan-1 transmembrane domain with leucine residues completely blocks the cell spreading. These data demonstrate that the syndecan-1 transmembrane and extracellular domains have important but distinct roles in Raji-S1 cell spreading; the extracellular domain mediates an interaction that is necessary for dynamic cytoskeletal rearrangements whereas an interaction of the transmembrane domain is required for the initial spreading response.  相似文献   

18.
CD44 in Cancer Progression: Adhesion, Migration and Growth Regulation   总被引:31,自引:0,他引:31  
It is well established that the large array of functions that a tumour cell has to fulfil to settle as a metastasis in a distant organ requires cooperative activities between the tumour and the surrounding tissue and that several classes of molecules are involved, such as cell-cell and cell-matrix adhesion molecules and matrix degrading enzymes, to name only a few. Furthermore, metastasis formation requires concerted activities between tumour cells and surrounding cells as well as matrix elements and possibly concerted activities between individual molecules of the tumour cell itself. Adhesion molecules have originally been thought to be essential for the formation of multicellular organisms and to tether cells to the extracellular matrix or to neighbouring cells. CD44 transmembrane glycoproteins belong to the families of adhesion molecules and have originally been described to mediate lymphocyte homing to peripheral lymphoid tissues. It was soon recognized that the molecules, under selective conditions, may suffice to initiate metastatic spread of tumour cells. The question remained as to how a single adhesion molecule can fulfil that task. This review outlines that adhesion is by no means a passive task. Rather, ligand binding, as exemplified for CD44 and other similar adhesion molecules, initiates a cascade of events that can be started by adherence to the extracellular matrix. This leads to activation of the molecule itself, binding to additional ligands, such as growth factors and matrix degrading enzymes, complex formation with additional transmembrane molecules and association with cytoskeletal elements and signal transducing molecules. Thus, through the interplay of CD44 with its ligands and associating molecules CD44 modulates adhesiveness, motility, matrix degradation, proliferation and cell survival, features that together may well allow a tumour cell to proceed through all steps of the metastatic cascade.  相似文献   

19.
The role of cell adhesion molecules in mediating interactions with neighboring cells and the extracellular matrix has long been appreciated. More recently, these molecules have been shown to modulate intracellular signal transduction cascades critical for cell growth and proliferation. Expression of adhesion molecule on glia (AMOG) is downregulated in human and mouse gliomas, suggesting that AMOG may be important for growth regulation in the brain. In this report, we examined the role of AMOG expression on cell growth and intracellular signal transduction. We show that AMOG does not negatively regulate cell growth in vitro or in vivo. Instead, expression of AMOG in AMOG-deficient cells results in a dramatic increase in cell size associated with protein kinase B/Akt hyperactivation, which occurs independent of phosphatidylinositol 3-kinase activation. AMOG-mediated Akt phosphorylation specifically activates the mTOR/p70S6 kinase pathway previously implicated in cell size regulation, but it does not depend on tuberous sclerosis complex/Ras homolog enriched in brain (Rheb) signaling. These data support a novel role for a glial adhesion molecule in cell size regulation through selective activation of the Akt/mTOR/S6K signal transduction pathway.  相似文献   

20.
For many cell types, growth, differentiation, and motility are dependent on receptor-mediated adhesion to ligand-coated surfaces. Focal contacts are strong, specialized, adhesive connections between cell and substrate in which receptors aggregate and connect extracellular ligand to intracellular cytoskeletal molecules. In this paper, we present a mathematical model to examine how focal contact formation affects cellular adhesive strength. To calculate adhesive strength with and without focal contacts, we use a one-dimensional tape peeling analysis to determine the critical tension necessary to peel the membrane. Receptor-ligand bonds are modeled as adhesive springs. In the absence of focal contacts, we derive analytic expressions for the critical tension at low and high ligand densities and show how membrane morphology affects adhesion. Then, focal contacts are modeled as cytoplasmic nucleation centers which bind adhesion receptors. The extent of adhesive strengthening upon focal contact formation depends on the elastic rigidity of the cytoskeletal connections, which determines the structural integrity of the focal contact itself. We consider two limits to this elasticity, very weak and rigid. Rigid cytoskeletal connections give much greater attachment strengths. The dependence of attachment strength on measurable model parameters is quite different in these two limits, which suggests focal contact structure might be deduced from properly performed adhesion experiments. Finally, we compare our model to the adhesive strengthening response reported for glioma cell adhesion to fibronectin (Lotz et al., 1989. J. Cell Biol. 109:1795-1805). Our model successfully predicts the observed detachment forces at 4 degrees C and yields values for the number of fibronectin receptors per glioma cell and the density of cytoskeletal connection molecules (talin) involved in receptor clusters which are consistent with measurements for other cell types. Comparison of the model with data at 37 degrees C suggests that while cytoskeletal cross-linking and clustering of fibronectin receptors significantly increases adhesion strength, specific glioma cell-substratum attachment sites possess little mechanical rigidity and detach through a peeling mechanism, consistent with the view that these sites of < or = 15 nm cell-substrate separation are precursors to fully formed, elastically rigid focal contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号