首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three human centromere proteins, CENP-A, CENP-B and CENP-C, are a set of autoantigens specifically recognized by anticentromere antibodies often produced by patients with scleroderma. Microscopic observation has indicated that CENP-A and CENP-C localize to the inner plate of metaphase kinetochore, while CENP-B localizes to the centromere heterochromatin beneath the kinetochore. The antigenic structure, called "prekinetochore", is also present in interphase nuclei, but little is known about its molecular organization and the relative position of these antigens. Here, to visualize prekinetochore in living cells, we first obtained a stable human cell line, MDA-AF8-A2, in which human CENP-A is exogenously expressed as a fusion to a green fluorescent protein of Aequorea victoria. Simultaneous staining with anti-CENP-B and anti-CENP-C antibodies showed that the recombinant CENP-A colocalized with the endogenous CENP-C and constituted small discrete dots attaching to larger amorphous mass of CENP-B heterochromatin. When the cell growth was arrested in G1/ S phase with hydroxyurea, CENP-B heterochromatin was sometimes highly extended, while the relative location between GFP-fused CENP-A and the endogenous CENP-C was not affected. These results indicated that the fluorescent CENP-A faithfully localizes to the centromere/kinetochore throughout the cell cycle. We then obtained several mammalian cell lines where the same GFP-fused human CENP-A construct was stably expressed and their centromere/kinetochore is fluorescent throughout the cell cycle. These cell lines will further be used for visualizing the prekinetochore locus in interphase nuclei as well as analyzing kinetochore dynamics in the living cells.  相似文献   

2.
The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches.  相似文献   

3.
Alpha-L-fucosidase (FUC) is a glycosidase involved in the degradation of fucose-containing glycoconjugates. A cDNA representing the complete sequence of human FUC was inserted into the prokaryotic expression vector pGEX-2T. High levels of the glutathione S-transferase (GST) fusion protein were detected in Escherichia coli cells after induction with isopropyl thio-beta-D-galactopyranoside. The GST-FUC protein was mostly found as inclusion bodies and attempts to optimise its expression as a soluble form were unsuccessful. Nevertheless, the recombinant protein was purified by affinity chromatography on glutathione-sepharose and its fucosidase activity was characterised. After thrombin cleavage of the GST tag, the FUC precursor protein was purified by electro-elution.  相似文献   

4.
5.
Fluorescent proteins that can switch between distinct colors have contributed significantly to modern biomedical imaging technologies and molecular cell biology. Here we report the identification and biochemical analysis of a green-shifted red fluorescent protein variant GmKate, produced by the introduction of two mutations into mKate. Although the mutations decrease the overall brightness of the protein, GmKate is subject to pH-dependent, reversible green-to-red color conversion. At physiological pH, GmKate absorbs blue light (445 nm) and emits green fluorescence (525 nm). At pH above 9.0, GmKate absorbs 598 nm light and emits 646 nm, far-red fluorescence, similar to its sequence homolog mNeptune. Based on optical spectra and crystal structures of GmKate in its green and red states, the reversible color transition is attributed to the different protonation states of the cis-chromophore, an interpretation that was confirmed by quantum chemical calculations. Crystal structures reveal potential hydrogen bond networks around the chromophore that may facilitate the protonation switch, and indicate a molecular basis for the unusual bathochromic shift observed at high pH. This study provides mechanistic insights into the color tuning of mKate variants, which may aid the development of green-to-red color-convertible fluorescent sensors, and suggests GmKate as a prototype of genetically encoded pH sensors for biological studies.  相似文献   

6.
We have identified a novel centromere-associated gene product from Saccharomyces cerevisiae that plays a role in spindle assembly and stability. Strains with a deletion of SLK19 (synthetic lethal Kar3p gene) exhibit abnormally short mitotic spindles, increased numbers of astral microtubules, and require the presence of the kinesin motor Kar3p for viability. When cells are deprived of both Slk19p and Kar3p, rapid spindle breakdown and mitotic arrest is observed. A functional fusion of Slk19p to green fluorescent protein (GFP) localizes to kinetochores and, during anaphase, to the spindle midzone, whereas Kar3p-GFP was found at the nuclear side of the spindle pole body. Thus, these proteins seem to play overlapping roles in stabilizing spindle structure while acting from opposite ends of the microtubules.  相似文献   

7.
A fusion protein of human interleukin-2 (hIL-2) and green fluorescent protein (GFP) was expressed in insect Sf-9 cells infected with recombinant baculovirus derived from the Autographa californica nuclear polyhedrosis virus (AcNPV). This fusion protein was comprised of a histidine affinity ligand for simplified purification using immobilized metal affinity chromatography (IMAC), UV-optimized GFP (GFPuv) as a marker, an enterokinase cleavage site for recovery of hIL-2 from the fusion, and the model product hIL-2. Successful production of hIL-2 as a fusion protein (approximately 52,000 Da) with GFPuv was obtained. GFPuv enabled rapid monitoring and quantification of the hIL-2 by simply checking the fluorescence, obviating the need for Western blot and/or ELISA assays during infection and production stages. There was no increased 'metabolic burden' due to the presence of GFPuv in the fusion product. The additional histidine residues at the N-terminus enabled efficient one-step purification of the fusion protein using IMAC. Additional advantages of GFP as a fusion marker were seen, particularly during separation and purification in that hIL-2 containing fractions were identified simply by illumination with UV light. Our results demonstrated that GFP was an effective non-invasive on-line marker for the expression and purification of heterologous protein in the suspended insect cell/baculovirus expression system.  相似文献   

8.
Nile red is an uncharged hydrophobic molecule whose fluorescence is strongly influenced by the polarity of its environment. It interacts with many, but not all, native proteins, including beta-lactoglobulin, kappa-casein, and albumin, with a wide range of spectral changes for different proteins. It detects the exposure or formation of new hydrophobic surfaces induced by ligand binding to calmodulin, oligomerization of melittin, or unfolding of ovalbumin during early thermal denaturation. The dye is photostable, the working wavelength range is broad and removed from those at which many biomolecules absorb, the fluorescence is unaffected by pH between 4.5 and 8.5, the quantum yield is high, and hydrophobic sites on proteins may be investigated in dilute solutions.  相似文献   

9.
Hathaway NA  Bell O  Hodges C  Miller EL  Neel DS  Crabtree GR 《Cell》2012,149(7):1447-1460
Posttranslational histone modifications are important for gene regulation, yet the mode of propagation and the contribution to heritable gene expression states remains controversial. To address these questions, we developed a chromatin in vivo assay (CiA) system employing chemically induced proximity to initiate and terminate chromatin modifications in living cells. We selectively recruited HP1α to induce H3K9me3-dependent gene silencing and describe the kinetics and extent of chromatin modifications at the Oct4 locus in fibroblasts and pluripotent cells. H3K9me3 propagated symmetrically and continuously at average rates of ~0.18 nucleosomes/hr to produce domains of up to 10 kb. After removal of the HP1α stimulus, heterochromatic domains were heritably transmitted, undiminished through multiple cell generations. Our data enabled quantitative modeling of reaction kinetics, which revealed that dynamic competition between histone marking and turnover, determines the boundaries and stability of H3K9me3 domains. This framework predicts the steady-state dynamics and spatial features of the majority of euchromatic H3K9me3 domains over the genome.  相似文献   

10.
The use of green fluorescent protein (GFP) fusions as biosensors for examining protein localization and dynamics has revolutionized cell biology. Here, we describe the methods developed for imaging of GFP-fusions in the fission yeast Schizosaccharomyces pombe using fluorescence microscopy, with a focus on the use of time-lapse imaging to analyze the dynamics of microtubules. We discuss the considerations in fluorescence microscopy, cell preparation, data acquisition, and image analysis appropriate for analysis of living cells.  相似文献   

11.
Microfilaments, intermediate filaments, and microtubules are three major cytoskeletal systems providing cells with stability to maintain proper shape. Although the word “cytoskeleton” implicates rigidity, it is quite dynamic exhibiting constant changes within cells. In addition to providing cell stability, it participates in a variety of essential and dynamic cellular processes including cell migration, cell division, intracellular transport, vesicular trafficking, and organelle morphogenesis. During the past eight years since the green fluorescent protein (GFP) was first used as a marker for the exogenous gene expression, it has been an especially booming era for live cell observations of intracellular movement of many proteins. Because of the dynamic behavior of the cytoskeleton in the cell, GFP has naturally been a vital part of the studies of the cytoskeleton and its associated proteins. In this article, we will describe the advantage of using GFP and how it has been used to study cytoskeletal proteins.  相似文献   

12.
A-kinase anchoring proteins tether cAMP-dependent protein kinase (PKA) to specific subcellular locations. The purpose of this study was to use fluorescence resonance energy transfer to monitor binding events in living cells between the type II regulatory subunit of PKA (RII) and the RII-binding domain of the human thyroid RII anchoring protein (Ht31), a peptide containing the PKA-binding domain of an A-kinase anchoring protein. RII was linked to enhanced yellow fluorescent protein (EYFP), Ht31 was linked to enhanced cyan fluorescent protein (ECFP), and these constructs were coexpressed in Chinese hamster ovary cells. Upon excitation of the donor fluorophore, Ht31.ECFP, an increase in emission of the acceptor fluorophore, RII.EYFP, and a decrease in emission from Ht31.ECFP were observed. The emission ratio (acceptor/donor) was increased 2-fold (p < 0.05) in cells expressing Ht31.ECFP and RII.EYFP compared with cells expressing Ht31P.ECFP, the inactive form of Ht31, and RII.EYFP. These results provide the first in vivo demonstration of RII/Ht31 interaction in living cells and confirm previous in vitro findings of RII/Ht31 binding. Using surface plasmon resonance, we also showed that the green fluorescent protein tags did not significantly alter the binding of Ht31 to RII. Thus, fluorescence resonance energy transfer can be used to directly monitor protein-protein interactions of the PKA signaling pathway in living cells.  相似文献   

13.
One challenge in biotechnology industry is to produce recombinant proteins with prolonged serum half-life. One strategy for enhancing the serum half-life of proteins includes increasing the molecular weight of the protein of interest by fusion to the Fc part of an antibody. In this context, we have expressed a homodimer fusion protein in CHO cells which consists of two identical polypeptide chains, in which our target protein, recombinant human erythropoietin (rhEpo), is N-terminally linked with the Fc part of a human IgG1 molecule. In the present study, culture supernatant of a stable clone was collected and purified by affinity chromatography prior characterization. We emphasized product quality aspects regarding the fusion protein itself and in addition, post-translational characterization of the subunits in comparison to human antibodies and rhEpo. However, overproduction of recombinant proteins in mammalian cells is well established, analysis of product quality of complex products for different purposes, such as product specification, purification issues, batch to batch consistency and therapeutical consequences, is required. Besides product quantification by ELISA, N-acetylneuraminic acid quantification in microtiterplates, quantitative isoform pattern and entire glycan profiling was performed. By using these techniques for the characterization of the recombinant human Epo-Fc (rhEpo-Fc) molecule itself and furthermore, for the separate characterization of both subunits, we could clearly show that no significant differences in the core glycan structures compared to rhEpo and human antibody N-glycans were found. The direct comparison with other rhEpo-Fc fusion proteins failed, because no appropriate data were found in the literature.  相似文献   

14.
15.
The centromeres of a genome separate in a sequential, nonrandom manner that is apparently dependent upon the quantity and quality of pericentric heterochromatin. It is becoming increasingly clear that the biological properties of a centromere depend upon its physicochemical makeup, such as its tertiary structure, and not necessarily on its particular nucleotide sequence. To test this idea we altered the physical state of the AT-rich pericentric heterochromatin of mouse with Hoechst 33258 (bis-benzimidazole) and studied a biological parameter, viz., sequence of separation. We report that an alteration in the physical state of heterochromatin, i.e., decondensation, is accompanied by aberrations in the pattern of centromere separation. The most dramatic effect seems to be on chromosomes with large blocks of heterochromatin. Many chromosomes with large blocks of heterochromatin that, in untreated cells, separate late tend to separate early. Decondensation with Hoechst 33258 does not seem to alter the sequence of separation of inactive centromeres relative to that of active centromeres. These data indicate that alteration in the physical parameters of the pericentric heterochromatin might dispose the centromeres to errors. It is likely that this aberration results from early replication of the pericentric heterochromatin associated with active centromeres. Received: 24 August 1998; in revised form: 24 August 1998 / Accepted: 28 August 1998  相似文献   

16.
In this study, we examine the use of green fluorescent protein (GFP) for monitoring a hexokinase (HXK)-GFP fusion protein in Saccharomyces cerevisiae for various events including expression, degradation, purification, and localization. The fusion, HXK-EK-GFP-6 x His, was constructed where the histidine tag (6 x His) would allow for convenient affinity purification, and the enterokinase (EK) cleavage site would be used for separation of HXK from GFP after affinity purification. Our results showed that both HXK and GFP remained active in the fusion and, more importantly, that there was a linear correlation between HXK activity and GFP fluorescence. Enterokinase cleavage studies revealed that both GFP fluorescence intensity and HXK activity remained unchanged after separation of the fusion proteins, which indicated that fusion of GFP did not cause structural alteration of HXK and thus did not affect the enzymatic activity of HXK. We also found that degradation of the fusion protein occurred, and that degradation was limited to HXK with GFP remaining intact in the fusion. Confocal microscopy studies showed that while GFP was distributed evenly in the yeast cytosol, HXK-GFP fusion followed the correct localization of HXK, which resulted in a di-localization of both cytosol and the nucleus. GFP proved to be a useful fusion partner that may lead to the possibility of integrating the bioprocesses by quantitatively following the entire process visually.  相似文献   

17.
Nguyen KD  Au-Young SH  Nodwell JR 《Plasmid》2007,58(2):167-173
The enhanced green fluorescent protein (eGFP) is widely used to investigate cell type specific gene expression and protein localization in the filamentous streptomycetes. To broaden the scope of cell biological investigation in these organisms, we have adapted shuttle vectors for the construction of gene fusions to the monomeric red fluorescent protein (mRFP1) and have tested them in Streptomyces coelicolor. Using fusions of mRFP1 to the cell division proteins DivIVA and FtsZ, we show that mRFP1 is comparable to eGFP for cell biological research in this organism and suggest that this paves the way for the future use of two-color imaging and FRET.  相似文献   

18.
Although the mammalian germinal stem cell (GSC) provides a good model to investigate the regulation of stem cells, the small number of these cells currently available hampers elucidation of the regulatory mechanism. Here, we show the dramatic amplification of GSCs in mouse testis following transfection of human glial cell line-derived neurotrophic factor cDNA into Sertoli cells using an efficient, in vivo electroporation technique. Transplantation analysis demonstrated not only GSC enrichment but also differentiation from stem cells into sperm. The GSC population, as estimated using a colony-formation assay, was approximately 20-fold greater than in cryptorchid testis, or approximately 500- to 1000-fold greater than in normal adult testis. This system should provide sufficient quantities of GSCs to accelerate our understanding of GSC properties, regulation mechanisms, and behavior control.  相似文献   

19.
Aurora-A is known to be a mitotic kinase required for spindle assembly. We constructed a human stable cell-line in which Aurora-A, histone H3 and importinalpha were differentially expressed as fusions to green, cyan, and red fluorescent proteins (GFP, CFP and DsRed). In interphase cells, GFP-Aurora-A was localized in the centrosome. Its molecular behavior in living mitotic cells was extensively analyzed by an advanced timelapse image analyzing system. In G2 phase, duplicated centrosomal dots of Aurora-A separated and moved to the opposite poles, a process requiring 18 min. In prophase, the Aurora-A dots approached closer and the nuclear membrane of DsRed-importinalpha beneath them became thick and invaginated, resulting in a "dumb-bell" shaped nucleus with condensed chromatin. As the importinalpha membrane further shrank and disappeared, the condensed chromatin was excluded from the nucleus and the Aurora-A dots grew rapidly into a spindle-like structure. Congression of mitotic chromosomes continued for 20-50 min until they were properly aligned at the spindle equator and then the sister chromatids started to segregate, taking 4-6 min for them to reach the poles. An importinalpha membrane reappeared around the surface of chromatin 10 min after anaphase onset. Aurora-A gradually decreased in size in telophase and returned to the surface of the newly formed small sister nuclei. These observations showed that the morphological change of Aurora-A was cooperated with the breakdown and reformation of nuclear membrane. Immunostaining with anti-alpha or gamma-tubulin further indicated that Aurora-A was involved in the formation of mitotic spindle in metaphase as well as the subsequent chromosome movement in anaphase.  相似文献   

20.
The currently used Tumor Nectosis Factor (TNF)-α blockers such as infliximab, adalimumab and etanercept have Fc regions of the human IgG1 subtype have advantages in terms of in vivo half-life, however these could raise potential concerns for unwanted effector-mediated effects, such as antibody dependent cellular cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC). To address this issue, we constructed a novel hybrid protein with decreased ADCC and CDC potentials by fusing the TNF receptor to a hybrid Fc (hyFc) containing CH2 and CH3 regions of IgG4 and highly flexible hinge regions of IgD which neither has ADCC and CDC activities. The resulting fusion protein, TNFR-hyFc, was over-expressed in CHO cells. For use as a pre-clinical material in pharmacology, PK and toxicological evaluations were carried out for biochemical characterization which was then compared with etanercept that has similarity in structure. Amino acid composition analysis and peptide mapping showed that the expressed TNFR-hyFc matched the theoretical composition derived from the DNA sequence. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) showed that TNFR-hyFc is 2.9 kDa larger than etanercept. MALDI-TOF after removal of N-glycans by PNGase treatment showed that TNFR-hyFc is 3.9 kDa larger than etanercept. Isoelectric focusing and monosaccharide analysis showed that TNFR-hyFc is slightly more acidic than etanercept. N-terminal amino acid sequencing showed that N-terminal heterogeneity is present in both TNFR-hyFc and etanercept, although the ratios are somewhat different. Glycan analysis showed that the main glycan form is bi-antennary, similar to etanercept.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号