首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In the study of vaccines for dengue viruses, which are multivalent immunization, genetically and antigenically distinct, we should have more sophisticated understanding of viral immune physiology. Because the immune response to dengue and its role in the pathophysiology of dengue fever and dengue hemorrhagic fever are multifaceted, several different efforts have been made to engineer a protective vaccine. Because of space limitations, this review is focused only on vaccines that have emerged from preclinical studies into clinical trial.  相似文献   

2.
Dengue is one of the most important emerging vector-borne viral diseases. There are four serotypes of dengue viruses (DENV), each of which is capable of causing self-limited dengue fever (DF) or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The major clinical manifestations of severe DENV disease are vascular leakage, thrombocytopenia, and hemorrhage, yet the detailed mechanisms are not fully resolved. Besides the direct effects of the virus, immunopathological aspects are also involved in the development of dengue symptoms. Although no licensed dengue vaccine is yet available, several vaccine candidates are under development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, and live recombinant, DNA and subunit vaccines. The live attenuated virus vaccines and live chimeric virus vaccines are undergoing clinical evaluation. The other vaccine candidates have been evaluated in preclinical animal models or are being prepared for clinical trials. For the safety and efficacy of dengue vaccines, the immunopathogenic complications such as antibody-mediated enhancement and autoimmunity of dengue disease need to be considered.  相似文献   

3.
登革病毒疫苗研究现状与展望   总被引:1,自引:0,他引:1  
登革病毒是属于黄病毒科的小型包膜病毒,在热带和亚热带地区通过蚊媒传播。其感染可引起临床症状轻微的登革热,甚至危及生命的登革出血热和登革休克综合征。登革病毒包含4种血清型,有效的登革病毒疫苗需对4种血清型的登革病毒均具有抗病毒保护作用。目前,尚未有针对登革病毒的特效药和成熟的疫苗产品。各类登革病毒疫苗均在研发中,其中一些已进入临床试验阶段。本文就登革病毒疫苗研究进展作一综述并对未来发展进行展望。  相似文献   

4.
Dengue is becoming recognized as one of the most important vector-borne human diseases. It is predominant in tropical and subtropical zones but its geographical distribution is progressively expanding, making it an escalating global health problem of today. Dengue presents with spectrum of clinical manifestations, ranging from asymptomatic, undifferentiated mild fever, dengue fever (DF), to dengue hemorrhagic fever (DHF) with or without shock (DSS), a life-threatening illness characterized by plasma leakage due to increased vascular permeability. Currently, there are no antiviral modalities or vaccines available to treat and prevent dengue. Supportive care with close monitoring is the standard clinical practice. The mechanisms leading to DHF/DSS remains poorly understood. Multiple factors have been attributed to the pathological mechanism, but only a couple of these hypotheses are popular in scientific circles. The current discussion focuses on underappreciated factors, temperature, natural IgM, and endotoxin, which may be critical components playing roles in dengue pathogenesis.  相似文献   

5.
Melino S  Paci M 《The FEBS journal》2007,274(12):2986-3002
Transmitted by the Aedes aegypti mosquito, the dengue virus is the etiological agent of dengue fever, dengue hemorrhagic fever and dengue shock syndrome, and, as such, is a significant factor in the high death rate found in most tropical and subtropical areas of the world. Dengue diseases are not only a health burden to developing countries, but pose an emerging problem worldwide. The immunopathological mechanisms appear to include a complex series of immune responses. A rapid increase in the levels of cytokines and chemical mediators during dengue disease plays a key role in inducing plasma leakage, shock and hemorrhagic manifestations. Currently, there are no vaccines available against dengue virus, although several tetravalent live-attenuated dengue vaccines are in clinical phases I or II, and prevention through vaccination has become a major priority on the agendas of the World Health Organization and of national ministries of health and military organizations. An alternative to vaccines is found in therapeutic-based approaches. Understanding the molecular mechanisms of viral replication has led to the development of potential drugs, and new molecular viral targets for therapy are emerging. The NS3 protease domain of the NS3 protein is responsible for processing the viral polyprotein and its inhibition is one of the principal aims of pharmacological therapy. This review is an overview of the progress made against dengue virus; in particular, it examines the unique properties--structural and functional--of the NS3 protease for the treatment of dengue virus infections by the inhibition of viral polyprotein processing.  相似文献   

6.
Dengue virus(DENV) has four distinct serotypes. DENV infection can result in classic dengue fever and life-threatening dengue hemorrhagic fever/dengue shock syndrome. In recent decades, DENV infection has become an important public health concern in epidemic-prone areas. Vaccination is the most effective measure to prevent and control viral infections. However, several challenges impede the development of effective DENV vaccines, such as the lack of suitable animal models and the antibody-dependent enhancement phenomenon. Although no licensed DENV vaccine is available, significant progress has been made. This review summarizes candidate DENV vaccines from recent investigations.  相似文献   

7.

Background

Despite the seriousness of dengue-related disease, with an estimated 50–100 million cases of dengue fever and 250,000–500,000 cases of dengue hemorrhagic fever/dengue shock syndrome each year, a clear understanding of dengue pathogenesis remains elusive. Because of the lack of a disease model in animals and the complex immune interaction in dengue infection, the study of host response and immunopathogenesis is difficult. The development of genomics technology, microarray and high throughput quantitative PCR have allowed researchers to study gene expression changes on a much broader scale. We therefore used this approach to investigate the host response in dengue virus-infected cell lines and in patients developing dengue fever.

Methodology/Principal Findings

Using microarray and high throughput quantitative PCR method to monitor the host response to dengue viral replication in cell line infection models and in dengue patient blood samples, we identified differentially expressed genes along three major pathways; NF-κB initiated immune responses, type I interferon (IFN) and the ubiquitin proteasome pathway. Among the most highly upregulated genes were the chemokines IP-10 and I-TAC, both ligands of the CXCR3 receptor. Increased expression of IP-10 and I-TAC in the peripheral blood of ten patients at the early onset of fever was confirmed by ELISA. A highly upregulated gene in the IFN pathway, viperin, was overexpressed in A549 cells resulting in a significant reduction in viral replication. The upregulation of genes in the ubiquitin-proteasome pathway prompted the testing of proteasome inhibitors MG-132 and ALLN, both of which reduced viral replication.

Conclusion/Significance

Unbiased gene expression analysis has identified new host genes associated with dengue infection, which we have validated in functional studies. We showed that some parts of the host response can be used as potential biomarkers for the disease while others can be used to control dengue viral replication, thus representing viable targets for drug therapy.  相似文献   

8.
Dengue is a mosquito-borne viral disease of expanding geographical range and incidence. The existence of four viral serotypes and the association of prior dengue virus infection with an increased risk for more severe disease have presented significant obstacles to vaccine development. An increased understanding of the adaptive immune response to natural dengue virus infection and candidate dengue vaccines has helped to define the specific antibody and T cell responses that are associated with either protective or pathological immunity during dengue infection. Further characterization of immunological correlates of disease outcome and the validation of these findings in vaccine trials will be invaluable for developing effective dengue vaccines.  相似文献   

9.

Background

Dengue is a major public health problem worldwide, especially in the tropical and subtropical regions of the world. Infection with a single Dengue virus (DENV) serotype causes a mild, self-limiting febrile illness called dengue fever. However, a subset of patients experiencing secondary infection with a different serotype progresses to the severe form of the disease, dengue hemorrhagic fever/dengue shock syndrome. Currently, there are no licensed vaccines or antiviral drugs to prevent or treat dengue infections. Biodegradable nanoparticles coated with proteins represent a promising method for in vivo delivery of vaccines.

Findings

Here, we used a murine model to evaluate the IgG production after administration of inactivated DENV corresponding to all four serotypes adsorbed to bovine serum albumin nanoparticles. This formulation induced a production of anti-DENV IgG antibodies (p < 0.001). However, plaque reduction neutralization assays with the four DENV serotypes revealed that these antibodies have no neutralizing activity in the dilutions tested.

Conclusions

Our results show that while the nanoparticle system induces humoral responses against DENV, further investigation with different DENV antigens will be required to improve immunogenicity, epitope specicity, and functional activity to make this platform a viable option for DENV vaccines.  相似文献   

10.
Immunopathogenesis of dengue virus infection   总被引:19,自引:0,他引:19  
Dengue virus infection causes dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), whose pathogeneses are not clearly understood. Current hypotheses of antibody-dependent enhancement, virus virulence, and IFN-gamma/TNFalpha-mediated immunopathogenesis are insufficient to explain clinical manifestations of DHF/DSS such as thrombocytopenia and hemoconcentration. Dengue virus infection induces transient immune aberrant activation of CD4/CD8 ratio inversion and cytokine overproduction, and infection of endothelial cells and hepatocytes causes apoptosis and dysfunction of these cells. The coagulation and fibrinolysis systems are also activated after dengue virus infection. We propose a new hypothesis for the immunopathogenesis for dengue virus infection. The aberrant immune responses not only impair the immune response to clear the virus, but also result in overproduction of cytokines that affect monocytes, endothelial cells, and hepatocytes. Platelets are destroyed by crossreactive anti-platelet autoantibodies. Dengue-virus-induced vasculopathy and coagulopathy must be involved in the pathogenesis of hemorrhage, and the unbalance between coagulation and fibrinolysis activation increases the likelihood of severe hemorrhage in DHF/DSS. Hemostasis is maintained unless the dysregulation of coagulation and fibrinolysis persists. The overproduced IL-6 might play a crucial role in the enhanced production of anti-platelet or anti-endothelial cell autoantibodies, elevated levels of tPA, as well as a deficiency in coagulation. Capillary leakage is triggered by the dengue virus itself or by antibodies to its antigens. This immunopathogenesis of DHF/DSS can account for specific characteristics of clinical, pathologic, and epidemiological observations in dengue virus infection.  相似文献   

11.
12.
Dengue fever, caused by infection with dengue virus, is not a new disease, but recently because of its serious emerging health threats, coupled with possible dire consequences including death, it has aroused considerable medical and public health concerns worldwide. Today, dengue is considered one of the most important arthropod-borne viral diseases in humans in terms of morbidity and mortality. Globally, it is estimated that approximate 50 to 100 million new dengue virus infections occur annually. Among these, there are 200,000 to 500,000 cases of potential life-threatening dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS), characterized by thrombocytopenia and increased vascular permeability. The death rate associated with the more severe form DHF/DSS is approximately 5%, predominantly in children under the age of 15. Although intensive efforts have been made to study the early clinical pathophysiology of dengue infection with the objective to identify the potential cause of DHF, results or data that have accumulated from different regions of the world involving studies of different ethnicity groups are inconsistent at present in terms of identifying a unified hypothesis for the pathogenesis of DHF/DSS. Thus, the potential mechanisms involved in the pathogenesis of DHF and DSS remain elusive. The purpose of this review is to identify alternate factors, such as innate immune parameters, hyper-thermal factors, conditioning of neutralizing antibody, concept of vector transmission, and physical status of virus in viremic patients that may play a role in the induction of DHF and DSS, which might have directly or indirectly contributed to the discrepancies that are noted in the literature reported to date. It is the hope that identification of an alternative explanation for the pathogenesis of DHF/DSS will pave the way for the institution of new strategies for the prevention of this complicated disease.  相似文献   

13.
14.
Infection with dengue virus (DENV) causes both mild dengue fever and severe dengue diseases, such as dengue hemorrhagic fever and dengue shock syndrome. The pathogenic mechanisms for DENV are complicated, involving viral cytotoxicity, immunopathogenesis, autoimmunity, and underlying host diseases. Viral load correlates with disease severity, while the antibody-dependent enhancement of infection largely determines the secondary effects of DENV infection. Epidemiological and experimental studies have revealed an association between the plasma levels of interleukin (IL)-10, which is the master anti-inflammatory cytokine, and disease severity in patients with DENV infection. Based on current knowledge of IL-10-mediated immune regulation during infection, researchers speculate an emerging role for IL-10 in clinical disease prognosis and dengue pathogenesis. However, the regulation of dengue pathogenesis has not been fully elucidated. This review article discusses the regulation and implications of IL-10 in DENV infection. For future strategies against DENV infection, manipulating IL-10 may be an effective antiviral treatment in addition to the development of a safe dengue vaccine.  相似文献   

15.
登革病毒属黄病毒属,可通过蚊虫传播,感染人体后可引发一系列临床症状,从轻微发热到严重的并发症,称为登革热、登革出血热以及登革休克综合征。过去50年,全球登革热感染病例增加了约30倍。目前,全球热带、亚热带地区约占世界2/5的人口存在感染风险。由于缺乏有效的治疗药物,疫苗研究已成为登革热疾病防控的重心。然而,由于缺乏对病毒致病机理及病毒感染免疫应答深入的了解,候选疫苗的研发受到阻碍。但经过几十年的努力,疫苗研究取得了明显进展。目前正在研究的登革病毒疫苗依托各种技术平台,种类多样,对正处于临床前研究及临床试验阶段的不同类型疫苗进行阐述。  相似文献   

16.
Despite significant efforts in many countries, there is still no commercially viable dengue vaccine. Currently, attention is focused on the development of either live attenuated vaccines or live attenuated chimaeric vaccines using a variety of backbones. Alternate vaccine approaches, such as whole inactivated virus and subunit vaccines are in the early stages of development, and are each associated with different problems. Subunit vaccines offer the advantage of providing a uniform antigen of well-defined nature, without the added risk of introducing any genetic material into the person being inoculated. Preliminary trials of subunit vaccines (using dengue E protein) in rhesus monkeys have shown promising results. However, the primary disadvantages of dengue subunit vaccines are the low levels of expression of dengue proteins in mammalian or insect cells, as well as the added unknown risks of antigens produced from mammalian cells containing other potential sources of contamination. In the past two decades, plants have emerged as an alternative platform for expression of biopharmaceutical products, including antigens of bacterial, fungal or viral origin. In the present minireview, we highlight the current plant expression technologies used for expression of biopharmaceutical products, with an emphasis on plants as a production system for dengue subunit vaccines.  相似文献   

17.
Dengue viruses cause two severe diseases that alter vascular fluid barrier functions, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Preexisting antibodies to dengue virus disposes patients to immune-enhanced edema (DSS) or hemorrhagic (DHF) disease following infection by a discrete dengue virus serotype. Although the endothelium is the primary vascular fluid barrier, direct effects of dengue virus on endothelial cells (ECs) have not been considered primary factors in pathogenesis. Here, we show that dengue virus infection of human ECs elicits immune-enhancing EC responses. Our results suggest that rapid early dengue virus proliferation within ECs is permitted by dengue virus regulation of early, but not late, beta interferon (IFN-β) responses. The analysis of EC responses following synchronous dengue virus infection revealed the high-level induction and secretion of immune cells (T cells, B cells, and mast cells) as well as activating and recruiting cytokines BAFF (119-fold), IL-6/8 (4- to 7-fold), CXCL9/10/11 (45- to 338-fold), RANTES (724-fold), and interleukin-7 (IL-7; 128-fold). Moreover, we found that properdin factor B, an alternative pathway complement activator that directs chemotactic anaphylatoxin C3a and C5a production, was induced 34-fold. Thus, dengue virus-infected ECs evoke key inflammatory responses observed in dengue virus patients which are linked to DHF and DSS. Our findings suggest that dengue virus-infected ECs directly contribute to immune enhancement, capillary permeability, viremia, and immune targeting of the endothelium. These data implicate EC responses in dengue virus pathogenesis and further rationalize therapeutic targeting of the endothelium as a means of reducing the severity of dengue virus disease.  相似文献   

18.
The four serotypes of dengue virus (DENV) cause dengue fever (DF) and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Severe disease has been associated with heterotypic secondary DENV infection, mediated by cross-reactive antibodies (Abs) and/or cross-reactive T cells. The role of cross-reactive immunity in mediating enhanced disease versus cross-protection against secondary heterotypic DENV infection is not well defined. A better understanding of the cross-reactive immune response in natural infections is critical for development of safe and effective tetravalent vaccines. We studied the B cell phenotype of circulating B cells in the blood of pediatric patients suspected of dengue during the 2010-2011 dengue season in Managua, Nicaragua (n = 216), which was dominated by the DENV-3 serotype. We found a markedly larger percentage of plasmablast/plasma cells (PB/PCs) circulating in DENV-positive patients as compared to patients with Other Febrile Illnesses (OFIs). The percentage of DENV-specific PB/PCs against DENV-3 represented 10% of the circulating antibody-producing cells (ASCs) in secondary DENV-3 infections. Importantly, the cross-reactive DENV-specific B cell response was higher against a heterotypic serotype, with 46% of circulating PB/PCs specific to DENV-2 and 10% specific to DENV-3 during acute infection. We also observed a higher cross-reactive DENV-specific IgG serum avidity directed against DENV-2 as compared to DENV-3 during acute infection. The neutralization capacity of the serum was broadly cross-reactive against the four DENV serotypes both during the acute phase and at 3 months post-onset of symptoms. Overall, the cross-reactive B cell immune response dominates during secondary DENV infections in humans. These results reflect our recent findings in a mouse model of DENV cross-protection. In addition, this study enabled the development of increased technical and research capacity of Nicaraguan scientists and the implementation of several new immunological assays in the field.  相似文献   

19.
登革病毒引发的登革热等疾病每年在全球范围内造成了相当大的经济、医疗、社会负担,严重威胁到人类生命健康。在目前研究的各种登革病毒疫苗中,采用反向遗传技术制得的3'UTRΔ30系列减毒活疫苗由于其免疫原性好,效价高,成本低等特点,在临床试验中展现出良好保护作用,研究推进快。能对四种血清型登革病毒都产生均衡免疫保护的3'UTRΔ30四联疫苗已处于III期临床试验阶段,效力强,不良反应少,待随访期结束后有望上市,是当今最有前景的登革减毒灭活疫苗之一。为更深入了解3'UTRΔ30系列疫苗,现主要从起源、制备方法、临床研究等方面进行介绍。  相似文献   

20.
Dengue fever (DF) and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) are considered the most important arthropod-borne viral diseases in terms of morbidity and mortality. The emergency and severity of dengue (Den) infections increase the necessity of an early, quick and effective dengue laboratory diagnostic. Viral isolation is considered a gold standard for diagnosis of dengue infection using monoclonal antibodies (mAbs) as a tool for determining serotype specificity. Alternatives have been used to improve sensitivity and time to dengue diagnosis. Based on the early expression of dengue C protein in the life cycle, we focused our study on the application of an anti-dengue 2 virus capsid protein mAb in dengue diagnosis. The kinetic expression of dengue-2 capsid in mosquito cells and its immuno-localization in experimentally infected suckling albin Swiss (OF-1) mice brain tissues was established. The results demonstrate the possible utility of this mAb in early dengue diagnosis versus traditional isolation. In addition, a preliminary study of an enzyme immunoassay method using 8H8 mAb for specific detection of dengue C protein antigen was performed, making possible recombinant C protein quantification. The results suggest that detection of dengue capsid protein could be useful in the diagnosis of early dengue infection.Key words: monoclonal antibodies, capsid protein, dengue virus, diagnosis, immunoassays  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号