首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The correlation between changes in seed protein electrophoretic patterns and the hydrolysis of lipid and protein reserves of loblolly pine ( Pinus taeda L.) seed was studied. Seeds were incubated at 30°C for up to 12 days following stratification, then megagametophytes and embryos were assayed for lipid and protein content after each day of imbibition. The megagametophyte of mature seed was found to contain 20% lipid and 12% storage protein on a fresh weight basis. The embryo contained 26% lipid and 15% protein. Both lipid and protein reserves were depleted constantly following imbibition. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of soluble and insoluble protein fractions showed a 60 kDa protein that was representative of crystalloid-like proteins. These crystalloid-like proteins comprised 85% of the insoluble protein storage reserves. A small number of insoluble storage proteins, including a 47 kDa protein, were distinct in that they were unaffected by 2-mercaptoethanol treatment. The soluble fractions from both tissues were labelled with [35S]-methionine, and incorporation was visualized by two-dimensional electrophoresis. Proteins were found to belong to one of three categories, those synthesized constitutively (comprising the bulk of newly synthesized proteins), those synthesized during germination or those synthesized after radicle emergence. Accompanying seed reserve hydrolysis were developmental shifts in protein pattern and synthesis, suggesting the possibility that control of hydrolysis is at the level of enzyme accumulation.  相似文献   

2.
After seed germination, hydrolysis of storage proteins provides a nitrogen source for the developing seedling. In conifers the majority of these reserves are located in the living haploid megagametophyte tissue. In the developing loblolly pine (Pinus taeda L.) seedling an influx of free amino acids from the megagametophyte accompanies germination and early seedling growth. The major component of this amino acid pool is arginine, which is transported rapidly and efficiently to the seedling without prior conversion. This arginine accounts for nearly half of the total nitrogen entering the cotyledons and is likely a defining factor in early seedling nitrogen metabolism. In the seedling, the enzyme arginase is responsible for liberating nitrogen, in the form of ornithine and urea, from free arginine supplied by the megagametophyte. In this report we investigate how the seedling uses arginase to cope with the large arginine influx. As part of this work we have cloned an arginase cDNA from a loblolly pine expression library. Analysis of enzyme activity data, accumulation of arginase protein and mRNA abundance indicates that increased arginase activity after seed germination is due to de novo synthesis of the enzyme. Our results suggest that arginase is primarily regulated at the RNA level during loblolly pine seed germination and post-germinative growth.  相似文献   

3.
King JE  Gifford DJ 《Plant physiology》1997,113(4):1125-1135
The mobilization and utilization of the major storage proteins in loblolly pine (Pinus taeda L.) seeds following imbibition were investigated. Most of the seed protein reserves were contained within the megagametophyte. Breakdown of these proteins occurred primarily following radicle emergence and correlated with a substantial increase in the free amino acid pool in the seedling; the majority of this increase appeared to be the result of export from the megagametophyte. The megagametophyte was able to break down storage proteins and export free amino acids in the absence of the seedling. Arginine (Arg) was the most abundant amino acid among the principal storage proteins of the megagametophyte and was a major component of the free amino acid pools in both the seedling and the megagametophyte. The increase in free Arg coincided with a marked increase in arginase activity, mainly localized within the cotyledons and epicotyl of the seedling. Arginase activity was negligible in isolated seedlings. Experiments with phenylphosphorodiamidate, a urease inhibitor, supported the hypothesis that arginase participates in Arg metabolism in the seedling. The results of this study indicate that Arg could play an important role in the nutrition of loblolly pine during early seedling growth.  相似文献   

4.
Clonal production of loblolly pine ( Pinus taeda L.) through somatic embryogenesis has the potential to meet the increasing industrial demands for high-quality uniform raw materials. A major barrier to the commercialization of this technology is the low quality of the resulting embryos. Twenty-five newly initiated loblolly pine genotypes were followed through the process of liquid culture establishment, embryo maturation, germination, and retrieval from cryogenic storage. A maturation medium, capable of promoting the development of loblolly pine somatic embryos that can germinate, is presented that combines 1/2 P6 modified salts, 2% maltose, 13% polyethylene glycol 8000 (PEG), 5 mg/l abscisic acid (ABA), and 2.5 g/l Gelrite. A procedure for converting and acclimating germinants to growth in soil and greenhouse conditions is also described. A set of somatic seedlings, produced from the maturation medium, showed 100% survival when planted in a field setting. Somatic seedlings showed normal yearly growth relative to standard seedlings from natural seed. The quality of the resulting embryos was examined and compared to that of zygotic embryos using such parameters as morphology, dry weight, germination performance, and gene expression. All of the observations that were made support the conclusion that even with the new maturation medium somatic embryos grow approximately only halfway through the normal sequence of development and then prematurely discontinue growth.  相似文献   

5.
Changes in the patterns of gene expression were examined during loblolly pine ( Pinus taeda L.) seed stratification, germination, and post-germinative growth. In both the megagametophyte and the embryo, DNA contents remained relatively constant at all stages examined. RNA contents, however, increased in both tissues following seed germination, particularly in the embryo where a 7-fold increase in the RNA content was observed 5 days after germination. Poly(A)+ RNA, extracted from megagametophytes and embryos, was translated in vitro in a rabbit reticulocyte lysate cell-free system. Analysis of [35S]-methionine-labelled translation products by two-dimensional electrophoresis/fluorography indicated that there were changes in the populations of mRNAs during all developmental stages examined. In both the megagametophyte and the embryo several distinct mRNA populations, including one constitutively present at all stages examined, were identified. One mRNA population, present in the mature seed, decreased during seed stratification. Another population, not present in the mature seed, rose during the period of stratification that coincided with an increase in seed germinability. A third population, which appeared during seed germination, increased steadily during post-germinative growth. Besides these similarities, specific differences between megagametophyte and embryo were noted. For example, one mRNA population, which was present in the megagametophyte of the mature seed and remained constant during the stratification period, disappeared immediately following seed germination. In the embryo, one set of messages was germination specific. In total, these results show that mRNA populations change in a temporal fashion that is consistent with the patterns of de novo protein synthesis known to occur in loblolly pine during the same developmental periods.  相似文献   

6.
During loblolly pine zygotic embryo development, increases in mRNAs for three ABA-responsive LEA-like genes coincided with the two developmental stage-specific peaks of endogenous ABA accumulation (Kapik et al. 1995). These ABA concentration profiles from zygotic embryo development were used to develop several tissue culture approaches that altered the exposure of somatic embryos to exogenous ABA. Elevating exogenous ABA at a time corresponding to mid-maturation improved the germination and resulted in more zygotic-like expression of selected genes in somatic embryos. Extending the time on maturation medium for a fourth month increased embryo yield, dry weight, and germination in high-and low-yield genotypes. Optimizing the amounts of embryogenic suspension, plated and exogenous ABA concentration increased from 22 to 66% in the early-stage bipolar embryos that developed to the cotyledonary stage.  相似文献   

7.
Todd CD  Gifford DJ 《Planta》2002,215(1):110-118
Following loblolly pine (Pinus taeda L.) seed germination, storage-protein breakdown in the megagametophyte and in the seedling results in a large increase in the seedling's free amino acid pool. A substantial portion of both the storage proteins and the amino acid pool is arginine, a very efficient nitrogen-storage compound. Free arginine is hydrolyzed in the seedling by the enzyme arginase (EC 3.5.3.1), which is under strong developmental control. At present, regulation of arginase in conifers is not well understood. Here we report the utilization of an in vitro culture system to address the separate impacts of the seedling and megagametophyte tissues on arginase enzyme activity, protein levels and patterns of gene expression. We also describe the generation of an anti-arginase antibody prepared from a histidine-tagged loblolly pine arginase fusion protein expressed in Escherichia coli. Our results indicate that arginase gene expression in the seedling is initiated by the seedling itself and then maintained or up-regulated by the megagametophyte. The contribution of storage-protein breakdown and the free amino acid pool, particularly arginine, in this regulation is also addressed.  相似文献   

8.
9.
Todd CD  Gifford DJ 《Planta》2003,217(4):610-615
Following germination of loblolly pine (Pinus taeda L.) seeds, storage proteins in the embryo and megagametophyte are broken down to provide nitrogen, in the form of amino acids, to the developing seedling. A substantial portion of the free amino acids released in this process is arginine. Arginine is hydrolyzed in the cotyledons of the seedling by the enzyme arginase (EC 3.5.3.1), which is under developmental control. It has been shown previously that the seedling is able to initiate arginase gene expression in vitro in the absence of the megagametophyte, however, presence of the megagametophyte causes a greater accumulation of arginase protein and mRNA. Using an in vitro culture system we show that arginine itself may be responsible for up-regulating arginase activity. Application of exogenous arginine to cotyledons of seedlings germinated in the absence of the megagametophyte caused an increase in total shoot pole arginase activity as well as arginase specific activity. Arginine was also able to induce arginase mRNA accumulation in the same tissue.  相似文献   

10.
Triglycerides in developing zygotic embryos of Norway spruce and loblolly pine were found to accumulate continuously during the course of development, comprising nearly 50% of the fresh weight of a mature embryo. Embryogenic calli of these two species contained dramatically lower levels of triglycerides. Abscisic acid treatments promoted both embryo production and triglyceride accumulation in Norway spruce cultures. A method used to determine triglyceride levels in human serum, commercially available in kit form, was adapted for use with plant tissues. Low levels of triglycerides in the cultured tissues may be related to difficulties in the development and germination of conifer somatic embryos.  相似文献   

11.
Pine embryogenic tissue derived from immature zygotic embryos may consist of multiple genotypes due to simple polyembryony. To test this hypothesis, megagametophytes with intact zygotic embryos were cultured from immature loblolly pine (Pinus taeda L.) seeds of clone WV42 control pollinated with a 1:1:1 pollen mix of clones WV44, WV47, and WV48. Each pollen parent contained a marker allele at one or more of the following loci: aconitase, malic dehydrogenase, 6-phosphogluconate dehydrogenase, and shikimate dehydrogenase, allowing determination of the paternal parent. After two to four weeks in culture, embryogenic tissue derived from zygotic embryos extruded from megagametophytes was separated into individual embryos and sectors of embryogenic tissue. The paternal genotype of each resulting cell line was determined by starch gel electrophoresis. Three of thirty-six explants produced multiple cell lines with genotypic differences among the cell lines within each explant. Our results unequivocally show that it is possible to initiate embryogenic tissue from more than one zygotic embryo of a loblolly pine seed and that the resulting cell lines may be genetically different.Abbreviations ACO aconitase - MDH malic dehydrogenase - SKDH shikimate dehydrogenase - 6PGD 6-phosphogluconate dehydrogenase  相似文献   

12.
There is increasing interest in using somatic embryogenesis to meet the demand for high quality seedlings. However, in vitro production of propagules on a large scale depends on the optimization of the maturation and germination steps promoted by desiccation and subsequent imbibition of the embryo, respectively. It is therefore important to characterize zygotic and somatic embryos in terms of their water relations. Bound water, elastic modulus, osmotic potential at full turgor, and relative water content at turgor loss point were determined for somatic and zygotic embryos of western larch and loblolly pine and somatic embryos of white spruce at two developmental stages. These water relations parameters were derived from water-release curves obtained by suspending tissue samples in sealed vials over unsaturated NaCl solutions of known water potential. There was little difference in water relations parameters among species but marked stage dependency for bound water and elastic modulus. The amount of bound water was lowest in western larch somatic embryos (0.02-0.07) and highest in zygotic loblolly pine embryos (0.10-0.18). Elastic modulus ranged from 2.5 to 6.2 MPa in somatic embryos but varied between 1.4 and 1.8 MPa in zygotic embryos. The osmotic potential was lower in somatic embryos than in their zygotic counterparts. Our results show that water relations parameters are remarkably conservative across species but that, within a given species, these parameters are stage specific. It would seem, therefore, that desiccation protocols might be developed for a given developmental stage and applied across a range of species without the confounding effects of differences in water relations parameters.  相似文献   

13.
Summary Somatic and zygotic embryos of soybean cv. Jack were analyzed for soluble carbohydrate, total lipids, and protein during development. Zygotic embryos accumulated trace amounts of fructose, galactose, and galactinol., whereas somatic embryos contained only trace amounts of galactose. Somatic embryos accumulated much higher glucose levels than zygotic embryos. Both somatic and zygotic embryos contain low levels of sucrose, myoinositol, and pinitol. Raffinose and stachyose accumulated in the late developmental stages of zygotic embryos, but only stachyose was found to accumulate in the late stage somatic embryos. Zygotic embryos contained low total lipid levels up to 50 d after flowering (DAF) and then the levels increased to 16% by 55 DAF and 21% at 65 DAF. Somatic embryos had low levels of total lipids throughout development with the maximum of only 4.7%. Soybean zygotic embryos contained about 40% protein throughout development, while the protein concentration of somatic embryos decreased from 44% to 25% as maturation approached. These studies demonstrate that the composition of Jack zygotic embryos is similar to that described for other cultivars during development while the somatic embryo composition and size is markedly different. The low somatic embryo germination often noted might be due to the abnormal development as shown by a composition different from that of mature zygotic embryos. The low concentration of the raffinose series sugars might be especially important factors.  相似文献   

14.
Many plant species contain a seed-specific tonoplast intrinsic protein (TIP) in their protein storage vacuoles (PSVs). Although the function of the protein is not known, its structure implies it to act as a transporter protein, possibly during storage nutrient accumulation/breakdown or during desiccation/imbibition of seeds. As mature somatic embryos of Picea abies (L.) Karst. (Norway spruce) contain PSVs, we examined the presence of TIP in them. Both the megagametophyte and seed embryo accumulate storage nutrients, but at different times and we therefore studied the temporal accumulation of TIP during seed development. Antiserum against the seed-specific a-TIP of Phaseolus vulgaris recognized an abundant 27 kDa tonoplast protein in mature seeds of P. abies. By immunogold labeling of sectioned mature megagametophytes we localized the protein to the PSV membrane. We also isolated the membranes of the PSVs from mature seeds and purified an integral membrane protein that reacted heavily with the antiserum. A sequence of 11 amino acid residues [AEEATHPDSIR], that was obtained from a polypeptide after in-gel trypsin digestion of the purified membrane protein, showed high local identity to a-TIP of Arabidopsis thaliana and to a-TIP of P. vulgaris. The greatest accumulation of TIP in the megagametophytes occurred at the time of storage protein accumulation. A lower molecular mass band also stained from about the time of fertilization until early embryo development. The staining of this band disappeared as the higher molecular mass (27 kDa) band accumulated in the megagametophyte during seed development. Total protein was also extracted from developing zygotic embryos and from somatic embryos. In zygotic embryos low-levels of TIP were seen at all stages investigated, but stained most at the time of storage protein accumulation. The protein was also present in mature somatic embryos but not in proliferating embryogenic tissues in culture. In addition to the seed tissue material, the antiserum also reacted with proteins present in extracts from roots and hypocotyls but not cotyledons from 13-day-old seedlings.  相似文献   

15.
Embryogeny of gymnosperms: advances in synthetic seed technology of conifers   总被引:26,自引:0,他引:26  
Synthetic seed technology requires the inexpensive production of large numbers of high-quality somatic embryos. Proliferating embryogenic cultures from conifers consist of immature embryos, which undergo synchronous maturation in the presence of abscisic acid and elevated osmoticum. Improvements in conifer somatic embryo quality have been achieved by identifying the conditions in vitro that resemble the conditions during in ovulo development of zygotic embryos. One normal aspect of zygotic embryo development for conifers is maturation drying, which allows seeds to be stored and promotes normal germination. Conditions of culture are described that yield mature conifer somatic embryos that possess normal storage proteins and fatty acids and which survive either partial drying, or full drying to moisture contents similar to those achieved by mature dehydrated zygotic embryos. Large numbers of quiescent somatic embryos can be produced throughout the year and stored for germination in the spring, which simplifies production and provides plants of uniform size. This review focuses on recent advances in conifer somatic embryogenesis and synthetic seed technology, particularly in areas of embryo development, maturation drying, encapsulation and germination. Comparisons of conifer embryogeny are made with other gymnosperms and angiosperms.Abbreviations ABA abscisic acid - LEA late embryogenesis abundant - PEG polyethylene glycol - PGR plant growth regulator - RH relative humidity - TAG triacylglycerol  相似文献   

16.
One of the main seed storage proteins of Norway spruce ( Picea abies ), is a salt-soluble protein with an average molecular mass of 42 kDa. This protein was localized by immunocytochemical methods in ultrathin sections of megagametophytes active in storage protein synthesis, as analyzed by SDS-PAGE. The megagametophyte in spruce starts accumulating storage materials, proteins and lipids, as the young embryo grows into the gametophytic tissue. It then continues to accumulate these storage products throughout seed development (Hakman 1993). Megagametophytes at an early stage of storage protein accumulation were chosen in this study for analysing the likely transport pathway of the proteins, since only a small amount of lipid had yet accumulated in the cells, and cell organelles were still easy to distinguish. An antibody against the 42 kDa storage protein showed very good reactivity with the 42 kDa protein in immunoblot experiments with total protein extracts from megagametophytes and embryos. In ultrathin sections of the megagametophyte, the antibodies were preferentially localized in the lumen of Golgi cisterna, in Golgi-associated vesicles, protein deposits close to the vacuolar membrane and in protein storage vacuoles (protein bodies). These observations indicate that the transport is mediated by the Golgi apparatus.
Also, proteins present in storage vacuoles in mature zygotic and somatic embryos showed intense labelling with these antibodies in ultrathin sections.  相似文献   

17.
Total protein was extracted from zygotic embryos and from somatic embryos of Picea abies (L.) Karst. (Norway spruce) cultured in vitro at different times during their development. An analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 2-dimensional gel electrophoresis of the protein extracts showed that protein composition and the temporal changes in protein abundance were very similar in the two embryo types. Both zygotic and somatic embryos accumulated storage proteins in abundance during their maturation phase of growth; the somatic embryos when cultured on medium containing 90 m M sucrose and 7.6 μ M ABA. The major storage proteins are composed of polypeptides with molecular masses of about 22, 28, 33 and 42 kDa and they are identical in both embryo types according to their molecular mass and average isoelectric points. These proteins are also the most abundant proteins in the female gametophytic tissue of the mature seed.  相似文献   

18.
Summary Potassium leakage and morphological changes during imbibition of white spruce [Picea glauca (Moench) Voss] seeds and somatic embryos were investigated. A single desiccated somatic embryo, a single somatic embryo exposed to a high relative humidity environment for 2 d, and a single dry zygotic embryo leaked similar amounts of potassium over a 120-min period of imbibition in liquid germination medium. A seed without a seed coat leaked two and eight times more potassium than a single whole seed and a single zygotic embryo, respectively. Nearly 50% of the potassium leaked for all tissues was leaked within the first 20 min of imbibition. Exposure of somatic embryos to an environment with high relative humidity resulted in a reduction in the percentage of potassium leaked after 80 and min to levels equivalent to those for zygotic embryos. Using an environmental scanning electron microscope, we found that desiccated somatic embryos and dry zygotic embryos had wrinkled surface cells, with cells in the surface of zygotic embryos being more shrunken in appearance. Imbibition of both types of embryos in water resulted in turgid surface cells after 2 h. Imbibition in liquid germination medium did not cause much hydration of surface cells, which still had wrinkled appearances after 2 h. Finally, imbibition on filter paper on semisolidified germination medium resulted in slower hydration of somatic and zygotic embryos. Cells near the medium appeared hydrated while cotyledon surface cells furthest from the medium resembled cells in desiccated embryos.  相似文献   

19.
Total protein patterns were studied in the course of development of pea somatic embryos using simple protocol of direct regeneration from shoot apical meristems on auxin supplemented medium. Protein content and total protein spectra (SDS-PAGE) of somatic embryos in particular developmental stages were analysed in Pisum sativum, P. arvense, P. elatius and P. jomardi. Expression of seed storage proteins in somatic embryos was compared with their accumulation in zygotic embryos of selected developmental stages. Pea vegetative tissues, namely leaf and root, were used as a negative control not expressing typical seed storage proteins. The biosynthesis and accumulation of seed storage proteins was observed during somatic embryo development (since globular stage), despite of the fact that no special maturation treatment was applied. Major storage proteins typical for pea seed (globulins legumin, vicilin, convicilin and their subunits) were detected in somatic embryos. In general, the biosynthesis of storage proteins in somatic embryos was lower as compared to mature dry seed. However, in some cases the cotyledonary somatic embryos exhibited comparatively high expression of vicilin, convicilin and pea seed lectin, which was even higher than those in immature but morphologically fully developed zygotic embryos. Desiccation treatments did not affect the protein content of somatic embryos. The transfer of desiccated somatic embryos on hormone-free germination medium led to progressive storage protein degradation. The expression of true seed storage proteins may serve as an explicit marker of somatic embryogenesis pathway of regeneration as well as a measure of maturation degree of somatic embryos in pea.  相似文献   

20.
Megagametophytes of Siberian pine were cultured on an in vitro culture medium 1/2 LV supplemented with growth regulators 2,4-dichlorophenoxyacetic acid (2,4-D) and benzylaminopurine (6-BAP) to form embryos. The competency of somatic cell of explants to embryogenesis manifested itself in an organized growth and polarity. A coenocyte consisting of long vacuolated cells was formed in the megagametophyte culture. Then, the migration of the nuclei to one of the poles of the cell, their division, and formation of embryoids was observed. The megagametophyte culture of the Siberian pine differed from the zygotic embryo culture by the absence of asymmetric division in the vacuolated cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号