首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Understanding dynamics and inheritance of DNA methylation represents important facets for elucidating epigenetic paradigms in plant development and evolution. Using four sets of sorghum (Sorghum bicolor L.) inter-strain hybrids and their inbred parents, the developmental stability and inheritance of cytosine methylation in two tissues, leaf and endosperm, by MSAP analysis were investigated. It was found that in all lines (inbred and hybrid) studied, endosperm exhibited a markedly reduced level of full methylation of the external cytosine or both cytosines at the CCGG sites relative to leaf, which caused a variable reduction in the estimated total methylation level in endosperm by 6.89–19.69% (11.47% on average). For both tissues, a great majority of cytosine methylation profiles transmitted to F1 hybrids, however, from 1.69 to 3.22% of the profiles showed altered patterns in hybrids. Both inherited and altered methylation profiles can be divided into distinct groups, and their frequencies are variable among the cross-combinations, and between the two tissues. The variations in methylation level and pattern detected in the hybrids were not caused by parental heterozygosity, and they could be either non-random or stochastic among hybrid individuals. Homology analysis of isolated bands that showed endosperm-specific hypomethylation or variation in hybrids indicated that diverse sequences were involved, including known-function cellular genes and mobile elements. RT-PCR analysis of six genes representing endosperm-specific hypomethylation in MSAP profiles indicated that all showed higher expression in endosperm than in leaf, suggesting involvement of methylation state in regulating tissue-specific or tissue-biased expression in sorghum. Analysis on leaf-RNA from 5-azacytidine-treated plants further corroborated this possibility. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Yaakov B  Kashkush K 《Génome》2011,54(1):42-49
Rapid and reproducible genomic changes can be induced during the early stages of the life of nascent allopolyploid species. In a previous study, it was shown that following allopolyploidization, cytosine methylation changes can affect up to 11% of the wheat genome. However, the methylation patterns around transposable elements (TEs) were never studied in detail. We used transposon methylation display (TMD) to assess the methylation patterns of CCGG sites flanking three TE families (Balduin, Apollo, and Thalos) in the first four generations of a newly formed wheat allohexaploid. In addition, transposon display (TD), using a methylation-insensitive restriction enzyme, was applied to search for genomic rearrangements at the TE insertion sites. We observed that up to 54% of CCGG sites flanking the three TE families showed changes in methylation patterns in the first four generations of a newly formed wheat allohexaploid, where hypermethylation was predominant. Over 70% of the changes in TMD patterns occurred in the first two generations of the newly formed allohexaploid. Furthermore, analysis of 555 TE insertion sites by TD and 18 cases by site-specific PCR revealed a full additive pattern in the allohexaploid, an indication for lack of massive rearrangements. These data indicate that following allopolyplodization, DNA-TE insertion sites can undergo a significantly high level of methylation changes compared with methylation changes of other genomic sequences.  相似文献   

3.
4.
Citrus somatic hybrids produced in the past years provide a novel opportunity to study the immediate effects of allopolyploidization on genome structure and methylation. Here, we present a first attempt to investigate the alterations in genome structure and methylation in three sets of citrus somatic allotetraploids and their diploid parents using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) techniques. Our results indicate that all the allotetraploids mainly have the AFLP and MSAP banding patterns containing specific bands from both parents plus some alterations. The incidences of the AFLP polymorphic bands in allotetraploids show a range from 4.61 to 7.88 %, while from 12.50 to 15.67 % of the sites are methylated. In addition, the proportions of callus-parent-specific DNA structure and methylation alterations are much greater than those of leaf-parent-specific alterations in the somatic hybrids. Furthermore, we find that the somatic hybrids take on a greater divergence from the callus parent and a closer relationship to leaf parent in all groups of plants by dendrogram analysis based on AFLP or MSAP data. Taken together, our results suggest that somatic hybrids are very useful in elucidating the immediate changes that occur in newly synthesized allotetraploid.  相似文献   

5.
郭新红  刘少军  颜金鹏  刘筠 《遗传》2004,26(6):875-880
采用质粒克隆测序方法,获得了异源四倍体鲫鲤5个个体、异源四倍体鲫鲤雌核发育二倍体后代2个个体、三倍体湘云鲫2个个体及红鲫、湘江野鲤和日本白鲫各1个个体的线粒体DNA 12S rRNA基因的全序列。经对比发现,异源四倍体5个个体共享2种单元型,异源四倍体鲫鲤雌核发育二倍体后代2个个体、三倍体湘云鲫2个个体以及红鲫、湘江野鲤和日本白鲫各1个个体分别共享1种单元型。用MEGA 1.0 软件分析了它们的碱基组成和核苷酸序列差异,用邻接法构建系统进化树。它们间的序列同源性在95%~99%之间,异源四倍体鲫鲤、三倍体湘云鲫和它们母本(分别为红鲫和日本白鲫)之间的序列同源性大于异源四倍体鲫鲤、三倍体湘云鲫和它们父本(分别为湘江野鲤和异源四倍体鲫鲤)之间的序列同源性,结果表明:异源四倍体鲫鲤和三倍体湘云鲫在线粒体DNA 12S rRNA基因上具有母性遗传特征。本研究另一值得注意地方的是异源四倍体鲫鲤经过9代(F3-F11)繁殖后,在5个个体中发现了2种单元型,说明在四倍体基因库中存在遗传多样性,为四倍体基因库的繁殖、保护和种群复壮提供了一些有价值的信息。  相似文献   

6.
Previous studies have shown rapid and extensive genomic instability associated with early stages of allopolyploidization in wheat.However, these studies are based on either a few pre-selected genomic loci or genome-wide analysis of a single plant individual for a given cross combination, thus making the extent and generality of the changes uncertain.To further study the generality and characteristics of allopolyploidization-induced genomic instability in wheat, we investigated genetic and epigenetic changes from a genome-wide perspective (by using the AFLP and MSAP markers) in four sets of newly synthesized allotetraploid wheat lines with various genome constitutions, each containing three randomly chosen individual plants at the same generation.We document that although general chromosomal stability was characteristic of all four sets of allotetraploid wheat lines, genetic and epigenetic changes at the molecular level occurred in all these plants, with both kinds of changes classifiable into two distinct categories, i.e., stochastic and directed.The abundant type of genetic change is loss of parental bands while the prevalent cytosine methylation pattern alteration is hypermethylation at the CHG sites.Our results have extended previous studies regarding allopolyploidization-induced genomic dynamics in wheat by demonstrating the generality of both genetic and epigenetic changes associated with multiple nascent allotetraploid wheat lines, and providing novel insights into the characteristics of the two kinds of induced genomic instabilities.  相似文献   

7.
从ATPase8-6基因研究杂交多倍体鱼线粒体母性遗传   总被引:3,自引:0,他引:3  
郭新红  刘少军  刘筠 《动物学报》2004,50(3):408-413
异源四倍体鲫鲤是世界上首例人工培育的两性可育并形成群体的且能自然繁殖的四倍体鱼。本文采用质粒克隆测序法测定了红鲫、异源四倍体鲫鲤、三倍体湘云鲫和三倍体湘云鲤的ATPase8和ATPase6基因全序列 ,结合鲤鱼、日本白鲫和斑马鱼的同源序列 ,对不同倍性水平鲤科鱼类的ATPase8和ATPase6基因进行了比较 ,分析了碱基组成、变异情况以及核苷酸和氨基酸序列差异。红鲫、鲤鱼、异源四倍体鲫鲤、日本白鲫、三倍体湘云鲫和三倍体湘云鲤之间的序列差异为 0 0 % - 1 3 4 % ,它们与外群斑马鱼之间的序列差异为 2 7 9% -31 0 %。用MEGA软件中的MP法、ME法、NJ法和UPGMA法构建分子系统树 ,得到了相似的拓扑结构。结果分析表明 ,人工杂交多倍体异源四倍体鲫鲤、三倍体湘云鲫和三倍体湘云鲤在线粒体ATPase8和ATPase6基因上具有严格的母性遗传特征。值得注意的是 ,异源四倍体鲫鲤经过 1 1代的繁育后 ,与其原始母本红鲫仍然保持了非常高的同源性 ,说明了新的异源四倍体基因库在线粒体ATPase8和ATPase6基因上拥有稳定的遗传特性。对不同倍性鲤科鱼类线粒体ATPase8和ATPase6基因的研究表明 ,ATPase8和ATPase6基因是杂交鱼后代遗传变异研究的一个很好的分子标记  相似文献   

8.
The merger of two or more divergent genomes within an allopolyploid nucleus can facilitate speciation and adaptive evolution in flowering plants. Widespread changes to gene expression have been shown to result from interspecific hybridisation and polyploidy in a number of plant species, and attention has now shifted to determining the epigenetic processes that drive these changes. We present here an analysis of cytosine methylation patterns in triploid F(1) Senecio (ragwort) hybrids and their allohexaploid derivatives. We observe that, in common with similar studies in Arabidopsis, Spartina and Triticum, a small but significant proportion of loci display nonadditive methylation in the hybrids, largely resulting from interspecific hybridisation. Despite this, genome duplication results in a secondary effect on methylation, with reversion to additivity at some loci and novel methylation status at others. We also observe differences in methylation state between different allopolyploid generations, predominantly in cases of additive methylation with regard to which parental methylation state is dominant. These changes to methylation state in both F(1) triploids and their allohexaploid derivatives largely mirror the overall patterns of nonadditive gene expression observed in our previous microarray analyses and may play a causative role in generating those expression changes. These similar global changes to DNA methylation resulting from hybridisation and genome duplication may serve as a source of epigenetic variation in natural populations, facilitating adaptive evolution. Our observations that methylation state can also vary between different generations of polyploid hybrids suggests that newly formed allopolyploid species may display a high degree of epigenetic diversity upon which natural selection can act.  相似文献   

9.
Evidence for maternal inheritance of mitochondrial DNA in allotetraploid.   总被引:1,自引:0,他引:1  
The complete mitochondrial DNA (mtDNA) sequences of the allotetraploid and red crucian carp were determined in this paper. We compared the complete mtDNA sequences between the allotetraploid and its female parent red crucian carp, and between the allotetraploid and its male parent common carp. The results indicated that the complete mtDNA nucleotide identity (99.7%) between the allotetraploid and its female parent red crucian carp was higher than that (89.0%) between the allotetraploid and its male parent common carp. Moreover, the analysis on the start and stop codons, overlaps and spacers, and phylogeny of the mt genomes indicated the genetic relationship between the allotetraploid and its female parent red crucian carp was closer than that between the allotetraploid and its male parent common carp. Our results indicated that the allotetraploid mt genome was strictly maternally inherited. Through maternal inheritance, the mt genome in the F(11) allotetraploid displayed extremely high similarity to that in the female parent red crucian carp after 11 generations (from F(1) to F(11) hybrids). Such results indicated that the F(11) allotetraploid possessed the stable inheritance characteristic. Thus the tetraploid stocks possessed the good base to form a new tetraploid species in the future. Since the establishment of the new tetraploid stocks has the great significance in analyzing evolutionary theory of vertebrate and in improving aquaculture industry, analysis of the mt genome and the elucidation of the variation of the mt genome in the allotetraploid and its parents proved that it was a useful genetic marker to monitor the variations in the progeny of the crosses.  相似文献   

10.
Genomic alteration is a common phenomenon associated with plant tissue culture, which often encompasses genetic changes and epigenetic modifications (e.g. cytosine methylation). Here, we studied genomic alteration in maize by assessing calli and regenerated plants derived from three inbred lines (M17, J7 and JC) and two pairs of reciprocal F1 hybrids (pair I: M17/J7 and J7/M17 and pair II: M17/JC and JC/M17). By employing two molecular markers, the amplified fragment length polymorphism and methylation‐sensitive amplified polymorphism, we found that both types of genomic alterations occurred in calli and regenerated plants of all the studied maize inbred lines and F1 hybrids, but the extent and pattern of changes varied substantially across the genotypes. Among the three inbred lines, M17 showed markedly higher frequencies of both genetic (from 2.1% to 3.8%) and methylation alterations (from 6.5% to 9.9%, by adding up the various patterns) than the other two lines which showed similar frequencies for both types of alterations (genetic: 0.5–1.8%, methylation: 2.1–3.7%). Of the two F1 hybrid pairs, while pair I showed genetic variation frequencies similar to that of the inbred parent with lower changing frequency and pair II was intermediate of those of the parents, both pairs showed frequencies of methylation alteration more or less intermediate of those of their inbred parental lines. Parent‐of‐origin effects in both genetic and methylation changes were detected in only one of the hybrid pairs (primarily pair II) for a given changing pattern. Statistical testing confirmed the genotypic difference in both genetic and methylation (hypomethylation) alterations among the regenerants. Taken together, it could be concluded that the frequency and pattern of both genetic and cytosine methylation alterations in maize tissue culture were largely genetic context‐dependent traits, but stochasticity also played an important part. F1 hybrids were not significantly more stable than their inbred parental lines under tissue culture conditions.  相似文献   

11.
Guo X  Liu S  Zhang C  Liu Y 《Genetica》2004,121(3):295-301
The mitochondrial cyt b genes in the allotetraploid and triploid crucian carp as well as triploid common carp were isolated and completely sequenced. Their DNA sequences were compared with those derived from the cyt b genes of the red crucian carp, Japanese crucian carp, and common carp with MEGA 1.0 software. Phylogenetic analysis revealed the sister relationships between allotetraploid and diploid red crucian carp, between the triploid crucian carp and diploid Japanese crucian carp, and between triploid common carp and diploid common carp. Our results indicated the cyt b genes in the allotetraploid, triploid crucian carp, and triploid common carp were maternally inherited. Through maternal inheritance, the cyt b gene in the F11 tetraploid displayed extremely high similarity to that in the female parent red crucian carp after 11 generations (from F1 to F11 hybrids). Since the establishment of the new tetraploid stocks has great significance in analyzing evolutionary theory of vertebrate and in improving aquaculture industry, analysis of the cyt b gene and the elucidation of the variation of the cyt b gene DNA in different cyprinids prove that cyt b is a useful genetic marker to monitor the variations in the progeny of the crosses.  相似文献   

12.
Significant cytosine demethylation in ribosomal RNA genes (18S or 25S) were detected in all four studied rice lines containing introgressed DNA from wild rice, Zizania latifolia Griseb. In each line, the changed RFLP (restriction fragment length polymorphism) patterns produced with the methylation-sensitive enzyme (HpaII) were identical between two randomly selected individual plants both within and between generations. This indicates that the methylation changes are non-random and stably inherited. Cytosine demethylation in ribosomal RNA genes could be a major cause for the drastically altered phenotypic variations observed in the introgression lines.  相似文献   

13.
DNA methylation is an important regulatory mechanism for gene expression that involved in the biological processes of development and differentiation in plants. To investigate the association of DNA methylation with heterosis in Brassica, a set of intraspecific hybrids in Brassica rapa and B. napus and interspecific hybrids between B. rapa and B. napus, together with parental lines, were used to monitor alterations in cytosine methylation at 5′-CCGG sites in seedlings and buds by methylation-sensitive amplification polymorphism analysis. The methylation status of approximately a quarter of the methylation sites changed between seedlings and buds. These alterations were related closely to the genomic structure and heterozygous status among accessions. The methylation status in the majority of DNA methylation sites detected in hybrids was the same as that in at least one of the parental lines in both seedlings and buds. However, the association between patterns of cytosine methylation and heterosis varied among different traits and between tissues in hybrids of Brassica, although a few methylation loci were associated with heterosis. Our data suggest that changes in DNA methylation at 5′-CCGG sites are not associated simply with heterosis in the interspecific and intraspecific hybridizations derived from B. rapa and B. napus.  相似文献   

14.
15.
16.
Allopolyploidy--a shaping force in the evolution of wheat genomes   总被引:2,自引:0,他引:2  
  相似文献   

17.
黄瓜属不同倍性异源多倍体的形态及生理特性分析   总被引:1,自引:0,他引:1  
以黄瓜属3种不同倍性异源多倍体为试验材料,比较分析它们的形态和生理特性与基因组剂量的关系,为进一步研究黄瓜属基因组剂量效应、探讨植物多倍体进化机理奠定基础。结果表明:(1)黄瓜属异源四倍体与种间杂种F1相比,其叶片厚度、主蔓直径等性状随基因组剂量的增加而增大,而果实大小、主蔓节间长以及果瘤果刺的大小随基因组剂量的增加而减小。(2)在异源三倍体中,叶片厚度和主蔓直径等表型性状也表现出一定的基因组剂量效应。(3)基因组剂量的变化会引起黄瓜属异源多倍体中叶绿素含量、POD活性以及IAAi、PA和ZR等内源激素的变化。  相似文献   

18.
Genome modifications that occur at the initial interspecific hybridization event are dynamic and can be consolidated during the process of stabilization in successive generations of allopolyploids. This study identifies the number and chromosomal location of ribosomal DNA (rDNA) sites between Secale cereale, Dasypyrum villosum, and their allotetraploid S. cereale × D. villosum hybrids. For the first time, we show the advantages of FISH to reveal chromosome rearrangements in the tetraploid Secale × Dasypyrum hybrids. Based on the specific hybridization patterns of ribosomal 5S, 35S DNA and rye species-specific pSc200 DNA probes, a set of genotypes with numerous Secale/Dasypyrum translocations of 1R/1V chromosomes were identified in successive generations of allotetraploid S. cereale × D. villosum hybrids. In addition we analyse rye chromosome pairs using FISH with chromosome-specific DNA sequences on S. cereale × D. villosum hybrids.  相似文献   

19.
Zhang X  Shiu SH  Shiu S  Cal A  Borevitz JO 《PLoS genetics》2008,4(3):e1000032
Whole genome tiling arrays provide a high resolution platform for profiling of genetic, epigenetic, and gene expression polymorphisms. In this study we surveyed natural genomic variation in cytosine methylation among Arabidopsis thaliana wild accessions Columbia (Col) and Vancouver (Van) by comparing hybridization intensity difference between genomic DNA digested with either methylation-sensitive (HpaII) or -insensitive (MspI) restriction enzyme. Single Feature Polymorphisms (SFPs) were assayed on a full set of 1,683,620 unique features of Arabidopsis Tiling Array 1.0F (Affymetrix), while constitutive and polymorphic CG methylation were assayed on a subset of 54,519 features, which contain a 5'CCGG3' restriction site. 138,552 SFPs (1% FDR) were identified across enzyme treatments, which preferentially accumulated in pericentromeric regions. Our study also demonstrates that at least 8% of all analyzed CCGG sites were constitutively methylated across the two strains, while about 10% of all analyzed CCGG sites were differentially methylated between the two strains. Within euchromatin arms, both constitutive and polymorphic CG methylation accumulated in central regions of genes but under-represented toward the 5' and 3' ends of the coding sequences. Nevertheless, polymorphic methylation occurred much more frequently in gene ends than constitutive methylation. Inheritance of methylation polymorphisms in reciprocal F1 hybrids was predominantly additive, with F1 plants generally showing levels of methylation intermediate between the parents. By comparing gene expression profiles, using matched tissue samples, we found that magnitude of methylation polymorphism immediately upstream or downstream of the gene was inversely correlated with the degree of expression variation for that gene. In contrast, methylation polymorphism within genic region showed weak positive correlation with expression variation. Our results demonstrated extensive genetic and epigenetic polymorphisms between Arabidopsis accessions and suggested a possible relationship between natural CG methylation variation and gene expression variation.  相似文献   

20.
Ribosomal RNA genes originating from one parent are often suppressed in interspecific hybrids. We show that treatments during germination with the cytosine analogue 5-azacytidine stably reactivate the expression of the suppressed rRNA genes of rye origin in the wheat x rye amphiploid, triticale, by preventing methylation of sites in the rye rDNA. When 5-azacytidine is applied to embryos of triticale and wheat x rye F1 hybrids nine, or more, days after fertilization, rye rRNA gene expression is stably reactivated in the resulting seedling. Earlier treatments have no effect on rye rRNA gene expression, indicating that undermethylation of DNA early in embryo development is reversible. After 9 days, the methylation status of rRNA genes in maintained throughout development. Since the change in expression follows a methylation change at particular restriction-enzyme sites, the data establish a clear correlation between gene activity and methylation in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号