首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress is one of the hypotheses involved in the etiology of Alzheimer's disease (AD). Considerable attention has been focused on increasing the intracellular glutathione (GSH) levels in many neurodegenerative diseases, including AD. Pycnogenol (PYC) has antioxidant properties and stabilizes intracellular antioxidant defense systems including glutathione levels. The present study investigated the protective effects of PYC on acrolein-induced oxidative cell toxicity in cultured SH-SY5Y neuroblastoma cells. Decreased cell survival in SH-SY5Y cultures treated with acrolein correlated with oxidative stress, increased NADPH oxidase activity, free radical production, protein oxidation/nitration (protein carbonyl, 3-nitrotyrosine), and lipid peroxidation (4-hydroxy-2-nonenal). Pretreatment with PYC significantly attenuated acrolein-induced cytotoxicity, protein damage, lipid peroxidation, and cell death. A dose-response study suggested that PYC showed protective effects against acrolein toxicity by modulating oxidative stress and increasing GSH. These findings provide support that PYC may provide a promising approach for the treatment of oxidative stress-related neurodegenerative diseases such as AD.  相似文献   

2.
Oxidative stress is increasingly implicated in neurodegenerative disorders including Alzheimer's, Parkinson's, Huntington's, and Creutzfeld-Jakob diseases or amyotrophic lateral sclerosis. Reactive oxygen species seem to play a significant role in neuronal cell death in that they generate reactive aldehydes from membrane lipid peroxidation. Several neuronal diseases are associated with increased accumulation of abnormal protein adducts of reactive aldehydes, which mediate oxidative stress-linked pathological events, including cellular growth inhibition and apoptosis induction. Combining findings on neurodegeneration and oxidative stress in Drosophila with studies on the metabolic characteristics of the human enzyme carbonyl reductase (CR), it is clear now that CR has a potential physiological role for neuroprotection in humans. Several lines of evidence suggest that CR represents a significant pathway for the detoxification of reactive aldehydes derived from lipid peroxidation and that CR in humans is essential for neuronal cell survival and to confer protection against oxidative stress-induced brain degeneration.  相似文献   

3.
铁死亡是一种由脂质过氧化驱动的铁依赖性的新的细胞死亡方式,越来越多的证据表明,铁死亡与各种病理状态有关,如神经退行性疾病、糖尿病肾病、癌症等,脂质过氧化驱动的铁死亡可能促进或抑制这些疾病的发生发展,细胞中抗氧化系统通过抑制脂质过氧化在抵抗铁死亡过程中发挥着重要作用。铁死亡的关键通路有以SLC7A11-GPX4为关键分子的氨基酸代谢通路、以铁蛋白或转铁蛋白为主的铁代谢通路,以及脂质代谢通路。铁死亡的发生受到细胞内蛋白质的调节,这些蛋白质会发生各种翻译后修饰,包括泛素化修饰。泛素-蛋白酶体系统(ubiquitin-proteasome system,UPS)是细胞内主要降解系统之一,通过酶促级联反应催化泛素分子标记待降解蛋白,随后由蛋白酶体识别并降解目标蛋白质。UPS根据其降解底物的不同在调节铁死亡的反应中发挥双重作用。UPS通过促进铁死亡关键分子(如SLC7A11、GPX4、GSH)以及抗氧化系统成分(如NRF2)的泛素化降解从而促进铁死亡,也可以通过促进脂质代谢通路中相关分子(如ACSL4、ALOX15)的泛素化降解从而抑制铁死亡。本综述介绍泛素化修饰在调控铁死亡进程中作用的最新研究进展,总结了已发表的关于E3泛素连接酶和去泛素酶调控铁死亡的研究,归纳了泛素连接酶、去泛素酶调控铁死亡的作用靶点,有助于确定人类疾病中新的预后指标,为这些疾病提供潜在的治疗策略。  相似文献   

4.
Nitric oxide (NO) is a gaseous signaling molecule in the biological system. It mediates its function through the direct modification of various cellular targets, such as through S-nitrosylation. The process of S-nitrosylation involves the attachment of NO to the cysteine residues of proteins. Interestingly, an increasing number of cellular pathways are found to be regulated by S-nitrosylation, and it has been proposed that this redox signaling pathway is comparable to phosphorylation in cells. However, imbalance of NO metabolism has also been linked to a number of human diseases. For instance, NO is known to contribute to neurodegeneration by causing protein nitration, lipid peroxidation and DNA damage. Moreover, recent studies show that NO can also contribute to the process of neurodegeneration through the impairment of pro-survival proteins by S-nitroyslation. Thus, further understanding of how NO, through S-nitrosylation, can compromise neuronal survival will provide potential therapeutic targets for neurodegenerative diseases.  相似文献   

5.
Parkinson's disease (PD) is a common neurodegenerative disorder marked by movement impairment caused by a selective degeneration of dopaminergic neurons. The mechanism for dopaminergic neuronal degeneration in PD is not completely clear, but it is believed that oxidative and nitrosative stress plays an important role during the pathogenesis of PD. This notion is supported by various studies that several indices of oxidative and nitrosative stress are increased in PD patients. In recent years, different pathways that are known to be important for neuronal survival have been shown to be affected by oxidative and nitrosative stress. Apart from the well-known oxidative free radicals induced protein nitration, lipid peroxidation and DNA damage, increasing evidence also suggests that some neuroprotective pathways can be affected by nitric oxide through S-nitrosylation. In addition, the selective dopaminergic neurodegeneration suggests that generation of oxidative stress associated with the metabolism of dopamine is an important contributor. Thorough understanding of how oxidative stress can contribute to the pathogenesis of PD will help formulate potential therapy for the treatment of this neurodegenerative disorder in the future.  相似文献   

6.
The prion protein is a membrane tethered glycoprotein that binds copper. Conversion to an abnormal isoform is associated with neurodegenerative diseases known as prion diseases. Expression of the prion protein has been suggested to prevent cell death caused by oxidative stress. Using cell based models we investigated the potential of the prion protein to protect against copper toxicity. Although prion protein expression effectively protected neurones from copper toxicity, this protection was not necessarily associated with reduction in oxidative damage. We also showed that glycine and the prion protein could both protect neuronal cells from oxidative stress. Only the prion protein could protect these cells from the toxicity of copper. In contrast glycine increased copper toxicity without any apparent oxidative stress or lipid peroxidation. Mutational analysis showed that protection by the prion protein was dependent upon the copper binding octameric repeat region. Our findings demonstrate that copper toxicity can be independent of measured oxidative stress and that prion protein expression primarily protects against copper toxicity independently of the mechanism of cell death.  相似文献   

7.
Protein tyrosine nitration, protein oxidation and lipid peroxidation are nitrative/oxidative modification of protein and lipids. In this paper, a BSA (bovine serum albumin)-lecithin liposome system was used to study the nature of different forms of iron, including methemoglobin, hemin and ferric citrate, in catalyzing H2O2-nitrite system to oxidize protein and lipid as well as nitrate protein. It was found that in pH range of 5.0-9.0, in pure BSA solution or pure liposome solution, hemin and methemoglobin catalyzed protein tyrosine nitration and lipid peroxidation were decreased with the increasing of pH, while hemin and methemoglobin catalyzed protein oxidation was significantly and moderately increased, respectively. Lipid completely inhibited hemin catalyzed protein tyrosine nitration but only partially inhibited methemoglobin catalyzed protein tyrosine nitration, and its inhibitory effect on hemin induced protein oxidation was also more pronounced. In addition, BSA showed more efficient in inhibiting hemin and ferric citrate induced lipid peroxidation. At the same condition, ferric citrate was relatively ineffective in all tests. Considering protein tyrosine nitration, protein oxidation and lipid oxidation as overall oxidative damage, these results indicated that methemoglobin is more toxic than hemin and ferric citrate, the degradation procedure of heme containing macromolecules, e.g. hemoglobin to hemin and finally to low molecular weight bounded iron, is step by step detoxification. These results provide fundamental knowledge on oxidative/nitrative of biomolecules in lipid-protein coexistence system.  相似文献   

8.
Lipid peroxidation is a complex process involving the interaction of oxygen-derived free radicals with polyunsaturated fatty acids, resulting in a variety of highly reactive electrophilic aldehydes. Since 1975, lipid peroxidation has been extensively studied in a variety of organisms. As neurodegenerative diseases became better understood, research establishing a link between this form of oxidative damage, neurodegeneration, and disease has provided a wealth of knowledge to the scientific community. With the advent of proteomics in 1995, the identification of biomarkers for neurodegenerative disorders became of paramount importance to better understand disease pathogenesis and develop potential therapeutic strategies. This review focuses on the relationship between lipid peroxidation and neurodegenerative diseases. It also demonstrates how findings in current research support the common themes of altered energy metabolism and mitochondrial dysfunction in neurodegenerative disorders.  相似文献   

9.
Reactive alpha,beta-unsaturated aldehydes such as acrolein are major components of common environmental pollutants. As a toxic by-product of lipid peroxidation, acrolein has been implicated as a possible mediator of oxidative damage to cells and tissues in a wide variety of disease states, including atherosclerosis and neurodegenerative and pulmonary diseases. Although acrolein can induce apoptotic cell death in various cell types, the biochemical mechanisms are not understood. This study investigates the implication of the death receptor pathway in acrolein-induced apoptosis. Exposure of Chinese hamster ovary cells to acrolein caused translocation of adaptor protein Fas associated with death domain to the cytoplasmic membrane and caspase-8 activation. Kp7-6, an antagonist of Fas receptor activation, blocked apoptotic events downstream of caspase-8, such as caspase-7 activation and nuclear chromatin condensation. Acrolein activated the cross-talk pathway between the death receptor and mitochondrial pathways. Bid was cleaved to truncated-Bid, which was translocated to mitochondria. Activation of the mitochondrial pathway by acrolein was confirmed by caspase-9 activation. Inhibition of activation of either the Fas receptor or caspase-8 partially decreased acrolein-induced caspase-9 activation. These findings indicate that acrolein activates the Fas receptor pathway, which occurs upstream of the mitochondrial pathway. Caspase-9 activation still occurred despite inhibition of the Fas receptor pathway, suggesting that acrolein could also trigger the mitochondrial pathway independent of the receptor pathway. These findings improve our understanding of mechanisms of toxicity of the reactive aldehyde acrolein, which has widespread implications in multiple disease states which seem to be mediated by oxidative stress and lipid peroxidation.  相似文献   

10.
Zhao Y  Gao Z  Li H  Xu H 《Biochimica et biophysica acta》2004,1675(1-3):105-112
Oxidative injury has been implicated in the pathogenesis of numerous neurodegenerative diseases. Recently, it has been found that with the existence of hydrogen peroxide and nitrite, hemin catalyzes protein nitration. We hypothesize under certain pathological conditions, hemin catalyzed protein nitration may happen in the brain. In this paper, the effects of three flavonoids, i.e. quercetin, catachin and baicalein on hemin/nitrite/H2O2 induced brain homogenate oxidation and nitration were studied. The results showed that hemin/nitrite/H2O2 system could effectively induce brain homogenate protein oxidation and nitration. Quercetin, catachin and baicalein dose-dependently inhibited hemin/nitrite/H2O2 system-induced protein nitration in a dose-dependent manner, the inhibition of protein nitration was in the order of quercetin>catachin>baicalein. These compounds also inhibited hemin/H2O2 system-induced lipid peroxidation, the inhibition order was baicalein >quercetin>catachin. However, these flavonoids showed marginal effect on hemin/nitrite/H2O2 system caused protein oxidation and thiol oxidation. The inhibition activities of flavonoids on hemin/nitrite/H2O2 system-induced protein nitration may closely relate to their radical scavenging activities, since the inhibition order of protein nitration is the same as the radical scavenging order. These results indicate hemin/nitrite/H2O2 system induces different types of oxidative assault on bio-molecules. Flavonoids could act as antioxidants inhibiting ROS and RNS caused brain damage.  相似文献   

11.
Peroxiredoxin 2 (Prdx2) is a ubiquitous antioxidant enzyme in mammalian brain. Although a protective role of Prdx2 has been established in cerebral ischemia and several neurodegenerative diseases, its contribution against iron-induced neurocytotoxicity still remains to be determined. Accordingly, in this study, we aimed to investigate the effects of Prdx2 on iron-induced cytotoxicity using an in vitro model in which PC12 cells are exposed to ferrous sulfate (FS). The FS treatment increased Prdx2 expression, and promoted lactate dehydrogenase (LDH) release and cell apoptosis in PC12 cells, accompanied by the increase in the Bax/Bcl2 ratio, cytochrome c release, and caspase-3 cleavage. FS exposure also increased the malondialdehyde content (lipid peroxidation), 3′-nitrotyrosine expression (protein nitration), γ-H2A.X formation (DNA oxidation), and promoted nuclear factor kappa B nuclear translocation, cyclooxygenase-2 expression, and release of tumor necrosis factor-α and interleukin-1β. Lentivirus-mediated Prdx2 knockdown intensified the FS-induced LDH release and cell apoptosis by aggravating the oxidative and inflammatory damage. In conclusion, our findings demonstrated that Prdx2 played a vital role in the protection against iron-induced cytotoxicity in PC12 cells.  相似文献   

12.
Lipid peroxidation in neurodegeneration: new insights into Alzheimer's disease   总被引:10,自引:0,他引:10  
Imbalances of oxidative homeostasis and lipid peroxidation have been revealed as important factors involved in neurodegenerative disorders such as Alzheimer's disease. The brains of patients with Alzheimer's disease contain increased levels of lipid-peroxidation products such as 4-hydroxy-2-nonenal or acrolein, and enhanced lipid peroxidation can also be detected in cerebrospinal fluid and plasma from such patients. Recent research revealed that the interplay of transition metals, amyloid-beta peptide and lipid peroxidation might be responsible for increased oxidative stress and cell damage in this disease. In particular, the contrasting roles of amyloid-beta peptide, as a possible transition metal-chelating antioxidant for lipoproteins and a pro-oxidant when aggregated in brain tissue, has been the focus of discussion recently. In this context, lipid peroxidation has to be seen as an important part of the pathophysiological cascade in Alzheimer's disease, and its measurement in body fluids might serve as a therapy control for Alzheimer's disease and other neurodegenerative diseases.  相似文献   

13.
Past studies have shown the protective effects of tea catechins on oxidative cell damage induced by 6-OHDA in PC12 cells. In this study we verified whether or not catechin prevents 6-OHDA-induced oxidative cell damage in primary cultures of rat mesencephalic cells. On exposure to 6-OHDA (200 microM), the cultures showed a marked decrease in cell viability, disturbances in lipid peroxidation, and an increased generation of NO, as assayed by MTT, TBARS and nitrite assays, respectively. Introduction of catechin significantly attenuated the cell death caused by 6-OHDA at concentrations of 3.4, 34 and 340 microM in a dose-related manner. Catechin produced no marked changes on 6-OHDA-induced increases in NO, but caused a significant inhibition of lipid peroxidation. These results suggest that catechins offer similar cytoprotection against 6-OHDA-induced oxidative cell damage in mesencephalic cell cultures, as previously described in PC12 cells. The cytoprotective function of catechin results from its antioxidant property and is not due to the inhibition of nitric oxide synthase. These findings further support and substantiate traditional consumption of catechin rich green/black tea as protection against neurodegenerative diseases like Parkinsonism.  相似文献   

14.
In many neurodegenerative disorders, aggregates of ubiquitinated proteins are detected in neuronal inclusions, but their role in neurodegeneration remains to be defined. To identify intracellular mechanisms associated with the appearance of ubiquitin-protein aggregates, mouse neuronal HT4 cells were treated with cadmium. This heavy metal is a potent cell poison that mediates oxidative stress and disrupts the ubiquitin/proteasome pathway. In the current studies, the following intracellular events were found to be also induced by cadmium: (i) a specific rise in cyclooxygenase-2 (COX-2) gene expression but not COX-1; (ii) an increase in the extracellular levels of the proinflammatory prostaglandin E2, a product of COX-2; and (iii) production of 4-hydroxy-2-nonenal-protein adducts, which result from lipid peroxidation. In addition, cadmium treatment led to the accumulation of high molecular weight ubiquitin-COX-2 conjugates and perturbed COX-2 glycosylation. The thiol-reducing antioxidant N-acetylcysteine, and, to a lesser extent, the COX-2 inhibitor celecoxib, attenuated the loss of cell viability induced by cadmium demonstrating that oxidative stress and COX-2 activation contribute to cadmium cytotoxicity. These findings establish that disruption of the ubiquitin/proteasome pathway is not the only event triggered by cadmium. This oxidative stressor also activates COX-2 function. Both events could be triggered by formation of 4-hydroxy-2-nonenal as a result of cadmium-induced lipid peroxidation. Proinflammatory responses stimulated by oxidative stressors that mimic the cadmium effects may, therefore, be important initiators of the neurodegenerative process and exacerbate its progress.  相似文献   

15.
Oxidative stress is strongly implicated in the progressive decline of cognition associated with aging and neurodegenerative disorders. In the brain, free radical-mediated oxidative stress plays a critical role in the age-related decline of cellular function as a result of the oxidation of proteins, lipids, and nucleic acids. A number of studies indicate that an increase in protein oxidation and lipid peroxidation is associated with age-related neurodegenerative diseases and cellular dysfunction observed in aging brains. Oxidative stress is one of the important factors contributing to Alzheimer's disease (AD), one of whose major hallmarks includes brain depositions of amyloid beta-peptide (Abeta) derived from amyloid precursor protein (APP). Mutation in APP and PS-1 genes, which increases production of the highly amyloidogenic amyloid beta-peptide (Abeta42), is the major cause of familial AD. In the present study, protein oxidation and lipid peroxidation in the brain from knock-in mice expressing human mutant APP and PS-1 were compared with brain from wild type, as a function of age. The results suggest that there is an increased oxidative stress in the brain of wild-type mice as a function of age. In APP/PS-1 mouse brain, there is a basal increase (at 1 month) in oxidative stress compared to the wild type (1 month), as measured by protein oxidation and lipid peroxidation. In addition, age-related elevation of oxidative damage was observed in APP/PS-1 mice brain compared to that of wild-type mice brain. These results are discussed with reference to the importance of Abeta42-associated oxidative stress in the pathogenesis of AD.  相似文献   

16.
Oxidative stress and neurodegeneration: where are we now?   总被引:1,自引:0,他引:1  
The brain and nervous system are prone to oxidative stress, and are inadequately equipped with antioxidant defense systems to prevent 'ongoing' oxidative damage, let alone the extra oxidative damage imposed by the neurodegenerative diseases. Indeed, increased oxidative damage, mitochondrial dysfunction, accumulation of oxidized aggregated proteins, inflammation, and defects in protein clearance constitute complex intertwined pathologies that conspire to kill neurons. After a long lag period, therapeutic and other interventions based on a knowledge of redox biology are on the horizon for at least some of the neurodegenerative diseases.  相似文献   

17.
Oxidative stress is involved in the development of aging-related diseases, such as neurodegenerative diseases. Dietary antioxidants that can protect neuronal cells from oxidative damage play an important role in preventing such diseases. Previously, we reported that water-soluble fractions purified from defatted sesame seed flour exhibit good antioxidant activity in vitro. In the present study, we investigated the protective effects of white and gold sesame seed water-soluble fractions (WS-wsf and GS-wsf, respectively) against 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) and hydrogen peroxide (H2O2) induced oxidative stress in human neuroblast SH-SY5Y cells. Pretreatment with WS-wsf and GS-wsf did not protect cells against AAPH-induced cytotoxicity, while simultaneous co-treatment with AAPH significantly improved cell viability and inhibited membrane lipid peroxidation. These results suggest that WS-wsf and GS-wsf protect cells from AAPH-induced extracellular oxidative damage via direct scavenging of peroxyl radicals. When oxidative stress was induced by H2O2, pretreatment WS-wsf and GS-wsf significantly enhanced cell viability. These results suggest that in addition to radical scavenging, WS-wsf and GS-wsf enhance cellular resistance to intracellular oxidative stress by activation of the Nrf-2/ARE pathway as confirmed by the increased Nrf2 protein level in the nucleus and increased heme oxygenase 1 (HO-1) mRNA expression. The roles of ferulic and vanillic acids as bioactive antioxidants in these fractions were also confirmed. In conclusion, our results indicated that WS-wsf and GS-wsf, which showed antioxidant activity in vitro, are also efficient antioxidants in a cell system protecting SH-SY5Y cells against both extracellular and intracellular oxidative stress.  相似文献   

18.
Oxidative damage increases with age in a canine model of human brain aging   总被引:12,自引:0,他引:12  
We assayed levels of lipid peroxidation, protein carbonyl formation, glutamine synthetase (GS) activity and both oxidized and reduced glutathione to study the link between oxidative damage, aging and beta-amyloid (Abeta) in the canine brain. The aged canine brain, a model of human brain aging, naturally develops extensive diffuse deposits of human-type Abeta. Abeta was measured in immunostained prefrontal cortex from 19 beagle dogs (4-15 years). Increased malondialdehyde (MDA), which indicates increased lipid peroxidation, was observed in the prefrontal cortex and serum but not in cerebrospinal fluid (CSF). Oxidative damage to proteins (carbonyl formation) also increased in brain. An age-dependent decline in GS activity, an enzyme vulnerable to oxidative damage, and in the level of glutathione (GSH) was observed in the prefrontal cortex. MDA level in serum correlated with MDA accumulation in the prefrontal cortex. Although 11/19 animals exhibited Abeta, the extent of deposition did not correlate with any of the oxidative damage measures, suggesting that each form of neuropathology accumulates in parallel with age. This evidence of widespread oxidative damage and Abeta deposition is further justification for using the canine model for studying human brain aging and neurodegenerative diseases.  相似文献   

19.
Protein tyrosine nitration is an important post-translational modification mediated by nitric oxide (NO) associated oxidative stress, occurring in a variety of neurodegenerative diseases. In our previous study, an elevated level of dimethylarginine dimethylaminohydrolase 1 (DDAH1) protein was observed in different brain regions of acute methamphetamine (METH) treated rats, indicating the possibility of an enhanced expression of protein nitration that is mediated by excess NO through the DDAH1/ADMA (Asymmetric Dimethylated l-arginine)/NOS (Nitric Oxide Synthase) pathway. In the present study, proteomic methods, including stable isotope labeling with amino acids in cell culture (SILAC) and two dimensional electrophoresis, were used to determine the relationship between protein nitration and METH induced neurotoxicity in acute METH treated rats and PC12 cells. We found that acute METH administration evokes a positive activation of DDAH1/ADMA/NOS pathway and results in an over-production of NO in different brain regions of rat and PC12 cells, whereas the whole signaling could be repressed by DDAH1 inhibitor Nω-(2-methoxyethyl)-arginine (l-257). In addition, enhanced expressions of 3 nitroproteins were identified in rat striatum and increased levels of 27 nitroproteins were observed in PC12 cells. These nitrated proteins are key factors for Cdk5 activation, cytoskeletal structure, ribosomes function, etc. l-257 also displayed significant protective effects against METH-induced protein nitration, apoptosis and cell death. The overall results illustrate that protein nitration plays a significant role in the acute METH induced neurotoxicity via the activation of DDAH1/ADMA/NOS pathway.  相似文献   

20.
In crude synaptosomal fractions from rat brain exposed to iron and ascorbate, enhanced lipid peroxidation (more than 3-fold compared to control), loss of protein thiols up to the extent of 40% compared to control, increased incorporation of carbonyl groups into proteins (more than 4.5-fold compared to control) and non-disulphide covalent cross-linking of membrane proteins have been observed. The phenomena are not inhibited by catalase or hydroxyl radical scavengers like mannitol or dimethyl sulphoxide. However, chain breaking antioxidants like alpha-tocopherol and butylated hydroxytoluene prevent both lipid peroxidation and accompanying protein oxidation. It is suggested that in this system lipid peroxidation propagated by the decomposition of preformed lipid hydroperoxides by iron and ascorbate is the primary event and products of the peroxidation process cause secondary protein damage. In view of high ascorbate content of brain and availability of several transition metals, such ascorbate mediated oxidative damage may be relevant in the aetiopathogenesis of several neurodegenerative disorders as well as ageing of brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号