首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mitochondrial myopathies and encephalopathies can be caused by nucleotide substitutions, deletions or duplications of the mitochondrial DNA (mtDNA). In one such disorder, Kearns-Sayre Syndrome (KSS), large-scale hetero-plasmic mtDNA deletions are often found. We describe a 14-year-old boy with clinical features of KSS, plus some additional features. Analysis of the entire mitochondrial genome by the polymerase chain reaction and Southern blotting revealed a 7864-bp mtDNA deletion, heteroplasmic in its tissue distribution. DNA sequencing established that the deletion was between nucleotides 6238 and 14103, and flanked by a 4-bp (TCCT) direct repeat sequence. Deletions between direct repeats have been hypothesised to occur by a slipped-mismatching or illegitimate recombination event, or following the DNA cleavage action of topoisomerase II. Analysis of the gene sequence in the region surrounding the mtDNA deletion breakpoint in this patient revealed the presence of putative vertebrate topoisomerase II sites. We suggest that direct repeat sequences, together with putative topoisomerase II sites, may predispose certain regions of the mitochondrial genome to deletions.  相似文献   

2.
Kearns–Sayre syndrome is a mitochondrial disorder characterized by the emergence before the age of 20 years of progressive external ophthalmoplegia, pigmentary retinopathy, with other heterogeneous clinical manifestations. Generally, mitochondrial DNA deletions were associated with KSS but the size and position of these deletions differ among patients. This study reported a Tunisian patient with typical features of KSS. Long-range PCR amplification of the mtDNA in different tissues from this patient showed multiple mitochondrial deletions: two novel 9.768 and 7.253 kb deletions spanning respectively nucleotides 6124–15,893 and 8572–15,826 associated with the common 4.977 kb deletion.  相似文献   

3.
4.
5.
We have sequenced the deletion borders of the muscle mitochondrial DNA from 24 patients with heteroplasmic deletions. The length of these deletions varies from 2.310 bp to 8.476 bp and spans from position 5.786 to 15.925 of the human mitochondrial genome preserving the heavy chain and light chain origins of replication. 12 cases are common deletions identical to the mutation already described by other workers and characterized by 13 bp repeats at the deletion boundaries, one of these repeats being retained during the deletion process. The other cases (10 out of 12) have shown deletions which have not been previously described. All these deletions are located in the H strand DNA region which is potentially single stranded during mitochondrial DNA replication. In two cases, the retained Adenosine from repeat closed to the heavy strand origin of replication would indicate slippage mispairing. Furthermore in one patient two mt DNA molecules have been cloned and their sequences showed the difference of four nucleotides in the breakpoint of the deletion, possibly dued to slippage mispairing. Taken together our results suggest that deletions occur either by slippage mispairing or by internal recombination at the direct repeat level. They also suggest that different mechanisms account for the deletions since similarly located deletions may display different motives at the boundaries including the absence of any direct repeat.  相似文献   

6.
Rearranged mitochondrial genomes are present in human oocytes.   总被引:20,自引:6,他引:14       下载免费PDF全文
Using quantitative PCR, we have determined that a human oocyte contains approximately 100,000 mitochondrial genomes (mtDNAs). We have also found that some oocytes harbor measurable levels (up to 0.1%) of the so-called common deletion, an mtDNA molecule containing a 4,977-bp rearrangement that is present in high amounts in many patients with "sporadic" Kearns-Sayre syndrome (KSS) and progressive external ophthalmoplegia (PEO). This is the first demonstration that rearranged mtDNAs are present in human oocytes, and it provides experimental support for the supposition that pathogenic deletions associated with the ontogeny of sporadic KSS and PEO can be transmitted in the female germ line, from mother to child. The relevance of these finding to the accumulation of extremely low levels of deleted mtDNAs in both somatic and germ-line tissues during normal human aging is also discussed.  相似文献   

7.
Point mutations and deletions in mitochondrial DNA (mtDNA) accumulate as a result of oxidative stress, including ionizing radiation. As a result, dysfunctional mitochondria suffer from a decline in oxidative phosphorylation and increased release of superoxides and other reactive oxygen species (ROS). Through this mechanism, mitochondria have been implicated in a host of degenerative diseases. Associated with this type of damage, and serving as a marker of total mtDNA mutations and deletions, the accumulation of a specific 4977-bp deletion, known as the common deletion (Delta-mtDNA(4977)), takes place. The Delta-mtDNA(4977) has been reported to increase with age and during the progression of mitochondrial degeneration. The purpose of this study was to investigate whether ionizing radiation induces the formation of the common deletion in a variety of human cell lines and to determine if it is associated with cellular radiosensitivity. Cell lines used included eight normal human skin fibroblast lines, a radiosensitive non-transformed and an SV40 transformed ataxia telangiectasia (AT) homozygous fibroblast line, a Kearns Sayre Syndrome (KSS) line known to contain mitochondrial deletions, and five human tumor lines. The Delta-mtDNA(4977) was assessed by polymerase chain reaction (PCR). Significant levels of Delta-mtDNA(4977) accumulated 72 h after irradiation doses of 2, 5, 10 or 20 Gy in all of the normal lines with lower response in tumor cell lines, but the absolute amounts of the induced deletion were variable. There was no consistent dose-response relationship. SV40 transformed and non-transformed AT cell lines both showed significant induction of the deletion. However, the five tumor cell lines showed only a modest induction of the deletion, including the one line that was deficient in DNA damage repair. No relationship was found between sensitivity to radiation-induced deletions and sensitivity to cell killing by radiation.  相似文献   

8.
We used a strategy based on long PCR (polymerase chain reaction) for detection and characterization of mitochondrial DNA (mtDNA) rearrangements in two patients with clinical signs suggesting Pearson syndrome and Kearns-Sayre syndrome (KSS), respectively, and one patient with myopathic symptoms of unidentified origin. Mitochondrial DNA rearrangements were detected by amplification of the complete mitochondrial genome (16.6 kb) using long PCR with primers located in essential regions of the mitochondrial genome and quantified by three-primer PCR. Long PCR with deletion-specific primers was used for identification and quantitative estimation of the different forms of rearranged molecules, such as deletions and duplications. We detected significant amounts of a common 7.4-kb deletion flanked by a 12-bp direct repeat in all tissues tested from the patient with Pearson syndrome. In skeletal muscle from the patient with clinical signs of KSS we found significant amounts of a novel 3.7-kb rearrangement flanked by a 4-bp inverted repeat that was present in the form of deletions as well as duplications. In the patient suffering from myopathic symptoms of unidentified origin we did not detect rearranged mtDNA in blood but found low levels of two rearranged mtDNA populations in skeletal muscle, a previously described 7-kb deletion flanked by a 7-bp direct repeat and a novel 6.6-kb deletion with no repeat. These two populations, however, were unlikely to be the cause of the myopathic symptoms as they were present at low levels (10–40 ppm). Using a strategy based on screening with long PCR we were able to detect and characterize high as well as low levels of mtDNA rearrangements in three patients. Received: 10 March 1997 / Accepted: 20 May 1997  相似文献   

9.
Mitochondrial DNA (mtDNA) deletions are a common cause of mitochondrial disorders. Large mtDNA deletions can lead to a broad spectrum of clinical features with different age of onset, ranging from mild mitochondrial myopathies (MM), progressive external ophthalmoplegia (PEO), and Kearns-Sayre syndrome (KSS), to severe Pearson syndrome. The aim of this study is to investigate the molecular signatures surrounding the deletion breakpoints and their association with the clinical phenotype and age at onset. MtDNA deletions in 67 patients were characterized using array comparative genomic hybridization (aCGH) followed by PCR-sequencing of the deletion junctions. Sequence homology including both perfect and imperfect short repeats flanking the deletion regions were analyzed and correlated with clinical features and patients' age group. In all age groups, there was a significant increase in sequence homology flanking the deletion compared to mtDNA background. The youngest patient group (<6 years old) showed a diffused pattern of deletion distribution in size and locations, with a significantly lower sequence homology flanking the deletion, and the highest percentage of deletion mutant heteroplasmy. The older age groups showed rather discrete pattern of deletions with 44% of all patients over 6 years old carrying the most common 5 kb mtDNA deletion, which was found mostly in muscle specimens (22/41). Only 15% (3/20) of the young patients (<6 years old) carry the 5 kb common deletion, which is usually present in blood rather than muscle. This group of patients predominantly (16 out of 17) exhibit multisystem disorder and/or Pearson syndrome, while older patients had predominantly neuromuscular manifestations including KSS, PEO, and MM. In conclusion, sequence homology at the deletion flanking regions is a consistent feature of mtDNA deletions. Decreased levels of sequence homology and increased levels of deletion mutant heteroplasmy appear to correlate with earlier onset and more severe disease with multisystem involvement.  相似文献   

10.
Multiple mitochondrial DNA deletions in an elderly human individual.   总被引:15,自引:0,他引:15  
We have used the polymerase chain reaction (PCR) to study deletions in the mitochondrial DNA (mtDNA) of an elderly human individual. An extended set of PCR primers has been utilised to identify 10 mitochondrial DNA deletions in a 69-year-old female subject with no known mitochondrial disease. The particular deletions visualised as PCR products depended on the primer pairs used, such that the more distantly separated PCR primers enabled visualisation of larger deletions. Some deletions were common to the heart, brain and skeletal muscle, whereas others were apparently specific to individual tissues. DNA sequencing analysis of PCR products showed that short direct repeat sequences (5 to 13 bp) flanked all deletion breakpoints; in most cases one copy of the repeat was deleted. It is proposed that the accumulation of such multiple deletions is a general phenomenon during the ageing process.  相似文献   

11.
Phadnis N  Sia RA  Sia EA 《Genetics》2005,171(4):1549-1559
Mitochondrial DNA deletions and point mutations accumulate in an age-dependent manner in mammals. The mitochondrial genome in aging humans often displays a 4977-bp deletion flanked by short direct repeats. Additionally, direct repeats flank two-thirds of the reported mitochondrial DNA deletions. The mechanism by which these deletions arise is unknown, but direct-repeat-mediated deletions involving polymerase slippage, homologous recombination, and nonhomologous end joining have been proposed. We have developed a genetic reporter to measure the rate at which direct-repeat-mediated deletions arise in the mitochondrial genome of Saccharomyces cerevisiae. Here we analyze the effect of repeat size and heterology between repeats on the rate of deletions. We find that the dependence on homology for repeat-mediated deletions is linear down to 33 bp. Heterology between repeats does not affect the deletion rate substantially. Analysis of recombination products suggests that the deletions are produced by at least two different pathways, one that generates only deletions and one that appears to generate both deletions and reciprocal products of recombination. We discuss how this reporter may be used to identify the proteins in yeast that have an impact on the generation of direct-repeat-mediated deletions.  相似文献   

12.
Mitochondrial DNA (mtDNA) deletions are associated with various mitochondrial disorders. The deletions identified in humans are flanked by short, directly repeated mitochondrial DNA sequences; however, the mechanism of such DNA rearrangements has yet to be elucidated. In contrast to nuclear DNA (nDNA), mtDNA is more exposed to oxidative damage, which may result in double-strand breaks (DSBs). Although DSB repair in nDNA is well studied, repair mechanisms in mitochondria are not characterized. In the present study, we investigate the mechanisms of DSB repair in mitochondria using in vitro and ex vivo assays. Whereas classical NHEJ (C-NHEJ) is undetectable, microhomology-mediated alternative NHEJ efficiently repairs DSBs in mitochondria. Of interest, robust microhomology-mediated end joining (MMEJ) was observed with DNA substrates bearing 5-, 8-, 10-, 13-, 16-, 19-, and 22-nt microhomology. Furthermore, MMEJ efficiency was enhanced with an increase in the length of homology. Western blotting, immunoprecipitation, and protein inhibition assays suggest the involvement of CtIP, FEN1, MRE11, and PARP1 in mitochondrial MMEJ. Knockdown studies, in conjunction with other experiments, demonstrated that DNA ligase III, but not ligase IV or ligase I, is primarily responsible for the final sealing of DSBs during mitochondrial MMEJ. These observations highlight the central role of MMEJ in maintenance of mammalian mitochondrial genome integrity and is likely relevant for deletions observed in many human mitochondrial disorders.  相似文献   

13.
In eukaryotes, nuclear genomes are subject to an influx of DNA from mitochondria and plastids. The nuclear insertion of organellar sequences can occur during the illegitimate repair of double-stranded breaks. After integration, nuclear organelle DNA is modified by point mutations, and by deletions. Insertion of organelle DNA into nuclear genes is not rare and can potentially have harmful effects. In humans, some insertions of nuclear mitochondrial DNA are associated with heritable diseases. It remains to be determined whether nuclear organelle DNA can contribute beneficially to gene evolution.  相似文献   

14.
Multiple deletions of mtDNA remove the light strand origin of replication   总被引:3,自引:0,他引:3  
Idiopathic inflammatory myopathies are progressive, debilitating muscle diseases. The pathogenesis of these disorders is multifactorial and appears to include mutations of the mitochondrial genome, which are usually indicated by morphological changes of mitochondria. The vast majority of all mitochondrial DNA deletions found are located between the origins of replication in the "major region" between nt5760-nt190. Using long distance PCR and sequencing techniques, we detected deletions which were unusually large (ca. 10500-12800 bp) and show uncommon 5'-breakpoints between nt800 and nt3326. Unlike most other deletions, their breakpoints are far upstream of the "major region." The atypical location of these deletions suggests a different pathomechanism. The impact of the mitochondrial DNA deletions in the pathogenetic cascade remains uncertain.  相似文献   

15.
Forty per cent of patients with mitochondrial myopathies, a diverse group of multisystem diseases predominantly affecting skeletal muscle and the brain, have large deletions of a proportion of muscle mitochondrial DNA (mt DNA). These appeared to be identical in 13 of 28 cases, contained within the region 8286-13595 bp. Analysis of the deletion junction in two cases showed a 13 nucleotide sequence which occurred in the normal genome as a direct repeat flanking the region deleted in the mutant mt DNAs. Mt DNA deletions may arise from recombination or slippage between short sequence repeats during replication.  相似文献   

16.
A variety of degenerative diseases involving deficiencies in mitochondrial bioenergetics have been associated with mitochondrial DNA (mtDNA) mutations. Maternally inherited mtDNA nucleotide substitutions range from neutral polymorphisms to lethal mutations. Neutral polymorphisms are ancient, having accumulated along mtDNA lineages, and thus correlate with ethnic and geographic origin. Mildly deleterious base substitutions have also occurred along mtDNA lineages and have been associated with familial deafness and some cases of Alzheimer's Disease and Parkinson's Disease. Moderately deleterious nucleotide substitutions are more recent and cause maternally-inherited diseases such as Leber's Hereditary Optic Neuropathy (LHON) and Myoclonic Epilepsy and Ragged-Red Fiber Disease (MERRF). Severe nucleotide substitutions are generally new mutations that cause pediatric diseases such as Leigh's Syndrome and dystonia. MtDNA rearrangements also cause a variety of phenotypes. The milder rearrangements generally involve duplications and can cause maternally-inherited adult-onset diabetes and deafness. More severe rearrangements frequently involving detetions have been associated with adult-onset Chronic Progressive External Ophthalmoplegia (CPEO) and Kearns-Sayre Syndrome (KSS) or the lethal childhood disorder, Pearson's Marrow/Pancreas Syndrome. Defects in nuclear-cytoplasmic interaction have also been observed, and include an autosomal dominant mutation causing multiple muscle mtDNA deletions and a genetically complex disease resulting in the tissue depletion of mtDNAs. MtDNA nucleotide substitution and rearrangement mutations also accumulate with age in quiescent tissues. These somatic mutations appear to degrade cellular bioenergetic capacity, exacerbate inherited mitochondrial defects and contribute to tissue senescence. Thus, bioenergetic defects resulting from mtDNA mutations may be a common cause of human degenerative disease.  相似文献   

17.
Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the “Pattern Finder” G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase.  相似文献   

18.
19.
Mitochondrial phenotypic alterations, mitochondrial DNA content and mitochondrial DNA deletions in a slow, Soleus, and a fast, Extensor Digitorum Longus, skeletal muscle of 3- and 15-month-old hindlimb suspended rats have been studied. Cytochrome c oxidase-negative fibers appeared after unloading in all examined animals and their percentage increased with increasing unloading time. After 14 days of suspension the mitochondrial DNA content did not change in 3-month-old but decreased significantly in 15-month-old rats. Soleus was much more affected by unloading than Extensor Digitorum Longus. The mitochondrial DNA deletion of 4834 bp as well as other mtDNA deletions, researched with Long Distance-PCR, were absent in both studied muscles before and after unloading.  相似文献   

20.
Insertions and deletions are responsible for gaps in aligned nucleotide sequences, but they have been usually ignored when the number of nucleotide substitutions was estimated. We compared six sets of nuclear and mitochondrial noncoding DNA sequences of primates and obtained the estimates of the evolutionary rate of insertion and deletion. The maximum-parsimony principle was applied to locate insertions and deletions on a given phylogenetic tree. Deletions were about twice as frequent as insertions for nuclear DNA, and single-nucleotide insertions and deletions were the most frequent in all events. The rate of insertion and deletion was found to be rather constant among branches of the phylogenetic tree, and the rate (approximately 2.0/kb/Myr) for mitochondrial DNA was found to be much higher than that (approximately 0.2/kb/Myr) for nuclear DNA. The rates of nucleotide substitution were about 10 times higher than the rate of insertion and deletion for both nuclear and mitochondrial DNA.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号