首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alcohol and nicotine are coabused, and preclinical and clinical data suggest that common genes may influence responses to both drugs. A gene in a region of mouse chromosome 9 that includes a cluster of three nicotinic acetylcholine receptor (nAChR) subunit genes influences the locomotor stimulant response to ethanol. The current studies first used congenic mice to confirm the influential gene on chromosome 9. Congenic F2 mice were then used to more finely map the location. Gene expression of the three subunit genes was quantified in strains of mice that differ in response to ethanol. Finally, the locomotor response to ethanol was examined in mice heterozygous for a null mutation of the α3 nAChR subunit gene ( Chrna3 ). Congenic data indicate that a gene on chromosome 9, within a 46 cM region that contains the cluster of nAChR subunit genes, accounts for 41% of the genetic variation in the stimulant response to ethanol. Greater expression of Chrna3 was found in whole brain and dissected brain regions relevant to locomotor behavior in mice that were less sensitive to ethanol-induced stimulation compared to mice that were robustly stimulated; the other two nAChR subunit genes in the gene cluster (α5 and β4) were not differentially expressed. Locomotor stimulation was not expressed on the genetic background of Chrna3 heterozygous (+/−) and wild-type (+/+) mice; +/− mice were more sensitive than +/+ mice to the locomotor depressant effects of ethanol. Chrna3 is a candidate gene for the acute locomotor stimulant response to ethanol that deserves further examination.  相似文献   

2.
3.
The anthelmintic drug levamisole causes hypercontraction of body wall muscles and lethality in nematode worms. In the nematode Caenorhabditis elegans, a genetic screen for levamisole resistance has identified 12 genes, three of which (unc-38, unc-29, and lev-1) encode nicotinic acetylcholine receptor (nAChR) subunits. Here we describe the molecular and functional characterization of another levamisole-resistant gene, unc-63, encoding a nAChR alpha subunit with a predicted amino acid sequence most similar to that of UNC-38. Like UNC-38 and UNC-29, UNC-63 is expressed in body wall muscles. In addition, UNC-63 is expressed in vulval muscles and neurons. We also show that LEV-1 is expressed in body wall muscle, thus overlapping the cellular localization of UNC-63, UNC-38, and UNC-29 and suggesting possible association in vivo. This is supported by electrophysiological studies on body wall muscle, which demonstrate that a levamisole-sensitive nAChR present at the C. elegans neuromuscular junction requires both UNC-63 and LEV-1 subunits. Thus, at least four subunits, two alpha types (UNC-38 and UNC-63) and two non-alpha types (UNC-29 and LEV-1), can contribute to levamisole-sensitive muscle nAChRs in nematodes.  相似文献   

4.
5.
Expression of functional, recombinant alpha7 nicotinic acetylcholine receptors in several mammalian cell types, including HEK293 cells, has been problematic. We have isolated the recently described human ric-3 cDNA and co-expressed it in Xenopus oocytes and HEK293 cells with the human nicotinic acetylcholine receptor alpha7 subunit. In addition to confirming the previously reported effect on alpha7 receptor expression in Xenopus oocytes we demonstrate that ric-3 promotes the formation of functional alpha7 receptors in mammalian cells, as determined by whole cell patch clamp recording and surface alpha-bungarotoxin binding. Upon application of 1 mm nicotine, currents were undetectable in HEK293 cells expressing only the alpha7 subunit. In contrast, co-expression of alpha7 and ric-3 cDNAs resulted in currents that averaged 42 pA/pF with kinetics similar to those observed in cells expressing endogenous alpha7 receptors. Immunoprecipitation studies demonstrate that alpha7 and ric-3 proteins co-associate. Additionally, cell surface labeling with biotin revealed the presence of alpha7 protein on the plasma membrane of cells lacking ric-3, but surface alpha-bungarotoxin staining was only observed in cells co-expressing ric-3. Thus, ric-3 appears to be necessary for proper folding and/or assembly of alpha7 receptors in HEK293 cells.  相似文献   

6.
We report the isolation and sequence of a cDNA clone that encodes a locust (Schistocerca gregaria) nervous system nicotinic acetylcholine receptor (AChR) subunit (alpha L1). The calculated molecular weight of the unglycosylated polypeptide, which contains in the proposed extracellular domain two adjacent cysteine residues which are characteristic of alpha (ligand binding) subunits, is 60,641 daltons. Injection into Xenopus oocytes, of RNA synthesized from this clone in vitro, results in expression of functional nicotinic receptors in the oocyte membrane. In these, nicotine opens a cation channel; the receptors are blocked by both alpha-bungarotoxin (alpha-Bgt) and kappa-bungarotoxin (kappa-Bgt). Reversible block of the expressed insect AChR by mecamylamine, d-tubocurarine, tetraethylammonium, bicuculline and strychnine has also been observed. These data are entirely consistent with previously reported electrophysiological studies on in vivo insect nicotinic receptors and also with biochemical studies on an alpha-Bgt affinity purified locust AChR. Thus, a functional receptor exhibiting the characteristic pharmacology of an in vivo insect nicotinic AChR can be expressed in Xenopus oocytes by injection with a single subunit RNA.  相似文献   

7.
Attention-deficit hyperactivity disorder (ADHD) is a common childhood-onset psychiatric condition with a strong genetic component. Evidence from pharmacological, clinical and animal studies has suggested that the nicotinic system could be involved in the disorder. Previous studies have implicated the nicotinic acetylcholine receptor α4 subunit gene, CHRNA4 , in ADHD. Particularly, a polymorphism in the exon 2–intron 2 junction of CHRNA4 has been associated with severe inattention defined by latent class analysis. In the current study, we used the transmission disequilibrium test (TDT) to investigate four polymorphisms encompassing this region of CHRNA4 for association with ADHD in a sample of 264 nuclear families from Toronto. No significant evidence of biased transmission was observed for any of the marker alleles for ADHD defined as a categorical trait (all subtypes included), although one haplotype showed marginal evidence of under-transmission. No association was found with the ADHD predominantly inattentive subtype or with symptom dimension scores of inattention. On the contrary, nominally significant evidence of association of individual markers was obtained for the ADHD combined subtype and with teacher-rated hyperactivity–impulsivity scores, with the same haplotype being under-transmitted. Based on our results and others, CHRNA4 may be involved in ADHD; however, its role in ADHD symptomatology remains to be clarified.  相似文献   

8.
We have investigated the transmembrane topology of the amino-terminal domain of the alpha subunit of the mouse muscle nicotinic acetylcholine receptor synthesized in vitro and in vivo. Using oligonucleotide-directed mutagenesis we introduced new glycosylation consensus sequences at alpha 154 and at alpha 200. For each novel site, additional constructs were made in which the original site at alpha N141 was eliminated. Glycosylation at the new sites, as exhibited in a rabbit reticulocyte cell-free translation system supplemented with canine pancreatic microsomes and in a transient transfection system with COS cells, was taken as evidence of the transmembrane translocation of the new site. Each of the new sites was glycosylated in both systems. In separate experiments we found that an alpha subunit fragment terminating at alpha M207 could be extracted from microsomal membranes with sodium carbonate after in vitro translation, indicating that this fragment is not an integral membrane protein. Our results, taken together with previous experiments, indicate that the amino terminus of the alpha subunit up to at least residue alpha 207 is translocated across the membrane of the endoplasmic reticulum. This topology probably represents the orientation of the amino terminus of the alpha subunit in the assembled receptor.  相似文献   

9.
Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that rapidly convert a chemical signal into an electrical signal. Although the structure of the nAChR is quite well described, the coupling between agonist binding and channel gating is still under debate. In this study, we probed local conformational transitions on the neuronal α4β4 nAChR by specifically tethering a conformation-sensitive fluorescent dye on αG98C located on loop 5 (L5), and simultaneously monitoring fluorescence intensity and current after expression in Xenopus oocytes. The potency of acetylcholine (ACh) was significantly higher in the cysteine mutant and further increased upon tetramethylrhodamine-6-maleimide labeling, suggesting a role of L5 in binding or gating. Structural reorganizations of L5 were shown to occur upon activation, as revealed by the fluorescence intensity increase during ACh exposure. Fluorescence changes were also detected at ACh concentrations lower than needed for current activation, suggesting a movement of L5 for a closed, resting or desensitized state. The competitive antagonist dihydro-β-erythroidine also induced a movement of L5 although at concentrations significantly higher than needed for current inhibition. Consequently L5, located inside the lumen of the pentamer, plays a role in both activation and inhibition of the nAChR.  相似文献   

10.
Alpha4 and beta2 nicotinic acetylcholine (nACh) receptor subunits expressed heterologously in Xenopus oocytes assemble into a mixture of receptors with high and low agonist sensitivity whose relative abundance is influenced by the heteropentamer subunit ratio. We have found that inhibition of protein kinase A by KT5720 decreased maximal [3H]cytisine binding and acetylcholine (ACh)-induced current responses, and increased the relative proportion of alpha4beta2 receptors with high agonist sensitivity. Mutation of serine 467, a putative protein kinase A substrate in a chaperone protein binding motif within the large cytoplasmic domain of the alpha4 subunit, to alanine or asparate decreased or increased, respectively, maximal [3H]cytisine binding and ACh response amplitude. Expression of alpha4S467A mutant subunits decreased steady levels of alpha4 and the relative proportion of alpha4beta2 receptors with low agonist sensitivity, whilst expression of alpha4S467D increased steady levels of alpha4 and alpha4beta2 receptors with low agonist sensitivity. Difopein, an inhibitor of chaperone 14-3-3 proteins, decreased [3H]cytisine binding and ACh responses and increased the proportion of alpha4beta2 with high sensitivity to activation by ACh. Thus, post-translational modification affecting steady-state levels of alpha4 subunits provides a possible means for physiologically relevant, chaperone-mediated variation in the relative proportion of high and low agonist sensitivity alpha4beta2 nACh receptors.  相似文献   

11.
12.
The effect of salt and pH titration on the selectivity of spin-labeled analogues of phosphatidic acid, phosphatidylserine, phosphatidylcholine, and stearic acid for the nicotinic acetylcholine receptor (nAcChoR) reconstituted into dioleoylphosphatidylcholine was examined at 0 degrees C using electron spin resonance spectroscopy. The order of selectivity at pH 7.4 and 0 mM NaCl was phosphatidylserine > stearic acid > phosphatidic acid > phosphatidylcholine. The addition up to 2 M NaCl or titration of pH from 5.0 to > 9.0 did not alter the selectivity of the phospholipids for the nAcChoR. For stearic acid, conversely, titration of pH from 5.0 to 9.0 at 0 mM NaCl and titration of NaCl from 0 to 2 M at pH 9.0 both increased selectivity for the nAcChoR. It is concluded that electrostatic interactions do not account for the selectivity of the negatively charged phospholipids, phosphatidylserine, and phosphatidic acid for the nAcChoR. This is consistent with the known orientation of the transmembrane sequences M1 and M4, which predicts a balance in the number of negative and positive charges in the lipid-protein interface and suggests that the two positive charges on each M3 helix are not exposed to the lipid-protein interface.  相似文献   

13.
The nicotinic acetylcholine receptor (nAChR) is an oligomeric transmembrane glycoprotein consisting of four homologous subunits in stoichiometry of alpha 2, beta (gamma or epsilon). Recently the presence of a novel exon (P3A) in human alpha AChR gene has been reported. Two variants of the human alpha subunit arise from alternate RNA splicing, one with and one without the P3A exon. However, the evolutionary origin of the P3A exon and the regulation of the expression of the two variants in human muscle and non-human tissues is currently unknown. Examination of genomic DNA from various species shows that the P3A exon sequence is present only in hominoids, old world and new world primates species and is absent in the muscle cDNA or genomic DNA from rat, mouse or dog, indicating that P3A exon is evolutionary conserved for at least 50 million years. The P3A+ variant of alpha subunit was found to be constitutively expressed in skeletal muscle, brain, heart, kidney, liver, lung and thymus, while P3A-variant was differentially expressed only in skeletal muscle. Thus it appears that the P3A+ variant is generated by 'default' selection by the splicing machinery, while expression of the P3A- variant is regulated by tissue-specific factors in the skeletal muscle. Mechanisms regulating differential expression of the alpha subunit variants may be pertinent to the pathophysiology of myasthenia gravis.  相似文献   

14.
The binding site for an open-channel blocker, QX-222, at mouse muscle nicotinic acetylcholine receptors was probed using site-directed mutagenesis, oocyte expression, and electrophysiological analysis. The proposed cytoplasmic end of the M2 transmembrane helix is termed position 1'. At position 10' (alpha S252, beta T263, gamma A261, delta A266), Ala residues yield stronger and longer binding of QX-222 than Ser or Thr residues. These effects are opposite and roughly equal (30%-50% per mutation) to previously reported effects at position 6'. The polar end of an anesthetic molecule seems to bind to the position 6' OH groups, which provide a water-like region; the nonpolar moiety is near position 10' and binds more strongly in a nonpolar environment. Interactions with adjacent OH-rich turns of an amphiphilic helix may explain the widespread blocking effects of local anesthetics at the conduction pore of ion channels.  相似文献   

15.
16.
17.
18.
The alpha subunit of the nicotinic acetylcholine receptor (AChR) from Torpedo electric organ and mammalian muscle contains high affinity binding sites for alpha-bungarotoxin and for autoimmune antibodies in sera of patients with myasthenia gravis. To obtain sufficient materials for structural studies of the receptor-ligand complexes, we have expressed part of the mouse muscle alpha subunit as a soluble, secretory protein using the yeast Pichia pastoris. By testing a series of truncated fragments of the receptor protein, we show that alpha211, the entire amino-terminal extracellular domain of AChR alpha subunit (amino acids 1-211), is the minimal segment that could fold properly in yeast. The alpha211 protein was secreted into the culture medium at a concentration of >3 mg/liter. It migrated as a 31-kDa polypeptide with N-linked glycosylation on SDS-polyacrylamide gel. The protein was purified to homogeneity by isoelectric focusing electrophoresis (pI 5.8), and it appeared as a 4.5 S monomer on sucrose gradient at concentrations up to 1 mm ( approximately 30 mg/ml). The receptor domain bound monoclonal antibody mAb35, a conformation-specific antibody against the main immunogenic region of the AChR. In addition, it formed a high affinity complex with alpha-bungarotoxin (k(D) 0.2 nm) but showed relatively low affinity to the small cholinergic ligand acetylcholine. Circular dichroism spectroscopy of alpha211 revealed a composition of secondary structure corresponding to a folded protein. Furthermore, the receptor fragment was efficiently (15)N-labeled in P. pastoris, and proton cross-peaks were well dispersed in nuclear Overhauser effect and heteronuclear single quantum coherence spectra as measured by NMR spectroscopy. We conclude that the soluble AChR protein is useful for high resolution structural studies.  相似文献   

19.
A synthetic peptide corresponding to the C-terminus of the alpha 3 subunit of the rat neuronal nicotinic acetylcholine receptor (nAChR) was used to generate a rabbit polyclonal alpha 3 antibody. The specificity of this antibody was characterized by immunoblotting, immunohistochemical and immunoprecipitation techniques. Using this antibody, the relative densities of the alpha 3 subunit were quantitatively determined in different brain regions and in superior cervical ganglion (SCG). Among these regions, SCG, interpeduncular nucleus (IPN) and pineal gland showed the highest levels of alpha 3 protein expression. Habenula and superior colliculi had intermediate levels of expression. Low levels were found in cerebral cortex, hippocampus and cerebellum. The ontogenic profile of the alpha 3 subunit in the SCG was also determined. The alpha 3 protein level is low at postnatal day (P 1), but increases rapidly during the first seven postnatal days. This level then plateaus and remains stable through postnatal day 35. These findings suggest that neuronal nAChRs containing the alpha 3 subunit participate in important roles in specific regions of the rat brain and the SCG.  相似文献   

20.
Acetylcholine receptors (AChRs) with high affinity for nicotine but no affinity for alpha-bungarotoxin, which have been purified from rat and chicken brains by immuno-affinity chromatography, consist of two types of subunits, alpha and beta. The beta-subunits form the ACh binding sites. Putative nicotinic AChR subunit cDNAs alpha 3 and alpha 4 have been identified by screening cDNA libraries prepared from rat PC12 cells and rat brain with cDNA probes encoding the mouse muscle AChR alpha-subunit. Here we determine the amino-terminal amino acid sequence of the rat brain AChR beta-subunit by protein microsequencing to be the same as amino acid residues 27-43 of the protein which could be coded by alpha 4. Further, we present evidence consistent with a subunit stoichiometry of alpha 3 beta 2 for this neuronal nicotinic AChR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号