首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chalcone isomerase form soybean is inactivated by treatment with diethyl pyrocarbonate (DEP). The competitive inhibitor 4',4-dihydroxychalcone provides kinetic protection against inactivation by DEP with a binding constant at the site of protection in agreement with its binding constant at the active site. Very high concentrations of the competitive inhibitors 4',4-dihydroxychalcone or morin hydrate offer a 10- to 40-fold maximal protection, suggesting a second slower mechanism for inactivation which cannot be prevented by blockage of the active site. Blockage of the only cysteine residue in chalcone isomerase with p-mercuribenzoate does not affect the rate constant for DEP-dependent inactivation and indicates that the modification of the cysteine residue is not responsible for the activity loss observed in the presence of DEP. Treatment of inactivated enzyme with hydroxylamine does not restore catalytic activity, indicating that the modification of histidine or tyrosine residues is not responsible for the activity loss. All five histidines of chalcone isomerase are modified by DEP at pH 5.7 and ionic strength 1.0 M. The rate constant for the modification of the histidine residues of chalcone isomerase is close to that for the reaction of N-acetyl histidine with DEP, indicating that the histidine residues are quite accessible to the modifying reagent. The rate of histidine modification is the same in native enzyme, in urea-denatured enzyme, and in the presence of a competitive inhibitor. In the presence of the competitive inhibitor morin hydrate, all of the histidine residues of chalcone isomerase can be modified without significant loss in catalytic activity. These results demonstrate that the histidine residues of chalcone isomerase are not essential for catalysis and therefore cannot function as nucleophilic catalysts as previously proposed.  相似文献   

2.
H S Ahn  M Foster  C Foster  E Sybertz  J N Wells 《Biochemistry》1991,30(27):6754-6760
Ca/calmodulin-sensitive cyclic nucleotide phosphodiesterase (CaM-PDE) is an important enzyme regulating cGMP levels and relaxation of vascular smooth muscle. This modification study was conducted mostly with bovine brain CaM-PDE to identify essential functional groups involved in catalysis. The effect of pH on Vmax/Km indicates two essential residues with pKa values of 6.4 and 8.2. Diethyl pyrocarbonate (DEP), a histidine-modifying agent, inhibits CaM-PDE with a second-order rate constant of 130 M-1 min-1 at pH 7.0 and 30 degrees C. Activity is restored by NH2OH. The pH dependence of inactivation reveals that the essential residue modified by DEP has an apparent pKa of 6.5. The difference spectrum of the intact and DEP-treated enzyme shows a maximum between 230 and 240 nm, suggesting formation of carbethoxy derivatives of histidine. The enzyme is also inactivated by N-ethylmaleimide (NEM) and 5,5'-dithiobis-(2-nitrobenzoic acid), both sulfhydryl-modifying agents, with the latter effect reversed by dithiothreitol, which suggests inactivation resulting from modification of cysteine residue(s). Partial inactivation of the enzyme by DEP or NEM results in an apparent decrease in the Vmax without a change in the Km or the extent of CaM stimulation. The rate of inactivation by DEP is greater in the presence than in the absence of Ca/CaM. A substrate analogue, Br-cGMP, and the competitive inhibitor 3-isobutyl-1-methylxanthine partially protect the enzyme against inactivation by DEP or NEM, suggesting that the modification of histidine and cysteine residues occurs at or near the active site. DEP also inactivated porcine brain CaM-PDE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Alkaline phosphatase from Megalobatrachus japonicus was inactivated by diethyl pyrocarbonate (DEP). The inactivation followed pseudo-first-order kinetics with a second-order rate constant of 176 M(-1) x min(-1) at pH 6.2 and 25 degrees C. The loss of enzyme activity was accompanied with an increase in absorbance at 242 nm and the inactivated enzyme was re-activated by hydroxylamine, indicating the modification of histidine residues. This conclusion was also confirmed by the pH profiles of inactivation, which showed the involvement of a residue with pK(a) of 6.6. The presence of glycerol 3-phosphate, AMP and phosphate protected the enzyme against inactivation. The results revealed that the histidine residues modified by DEP were located at the active site. Spectrophotometric quantification of modified residues showed that modification of two histidine residues per active site led to complete inactivation, but kinetic stoichiometry indicated that one molecule of modifier reacted with one active site during inactivation, probably suggesting that two essential histidine residues per active site are necessary for complete activity whereas modification of a single histidine residue per active site is enough to result in inactivation.  相似文献   

4.
Treatment of the tonoplast H(+)-ATPase from mung bean seedlings (Vigna radiata L.) with histidine-specific modifier, diethyl pyrocarbonate (DEP), caused a marked loss of the ATP hydrolysis activity and the proton translocation in a concentration-dependent manner. The reaction order of inhibition was calculated to be 0.98, suggesting that at least one histidine residue of vacuolar H(+)-ATPase was modified by DEP. The absorbance of the vacuolar H(+)-ATPase at 240 nm was progressively increased after incubation with DEP, suggesting that N-carbethoxyhistidine had been formed. Hydroxylamine, which could break N-carbethoxyhistidine, reversed the absorbance change and partially restored the enzymic activity. The pK(a) of modified residues of vacuolar H(+)-ATPase was kinetically determined to be 6.73, a value close to that of histidine. Thus, it is assuredly concluded that histidine residues of the vacuolar H(+)-ATPase were modified by DEP. Kinetic analysis showed that V(max) but not K(m) of vacuolar H(+)-ATPase was decreased by DEP. This result is interpreted as that the residual activity after DEP inhibition was primarily due to the unmodified enzyme molecules. Moreover, simultaneous presence of DEP and DCCD (N,N'-dicyclohexyl-carbodiimide), an inhibitor modified at proteolipid subunit of vacuolar H(+)-ATPase, did not induce synergistic inhibition, indicating their independent effects. The stoichiometry studies further demonstrate that only one out of four histidine residues modified was involved in the inhibition of vacuolar H(+)-ATPase by DEP. Mg(2+)-ATP, the physiological substrate of vacuolar H(+)-ATPase, but not its analogs, exerted preferentially partial protection against DEP, indicating that the histidine residue involved in the inhibition of enzymatic activity may locate at/or near the active site and directly participate in the binding of the substrate.  相似文献   

5.
The Neurospora crassa plasma membrane H+-ATPase is rapidly inactivated in the presence of diethyl pyrocarbonate (DEP). The reaction is pseudo-first-order showing time- and concentration-dependent inactivation with a second-order rate constant of 385-420 M-1.min-1 at pH 6.9 and 25 degrees C. The difference spectrum of the native and modified enzyme has a maximum near 240 nm, characteristic of N-carbethoxyhistidine. No change in the absorbance of the inhibited ATPase at 278 nm or in the number of modifiable sulfhydryl groups is observed, indicating that the inhibition is not due to tyrosine or cysteine modification, and the inhibition is irreversible, ruling out serine residues. Furthermore, pretreatment of the ATPase with pyridoxal phosphate/NaBH4 under the conditions of the DEP treatment does not inhibit the ATPase and does not alter the DEP inhibition kinetics, indicating that the inactivation by DEP is not due to amino group modification. The pH dependence of the inactivation reaction indicates that the essential residue has a pKa near 7.5, and the activity lost as a result of H+-ATPase modification by DEP is partially recovered after hydroxylamine treatment at 4 degrees C. Taken together, these results strongly indicate that the inactivation of the H+-ATPase by DEP involves histidine modification. Analyses of the inhibition kinetics and the stoichiometry of modification indicate that among eight histidines modified per enzyme molecule, only one is essential for H+-ATPase activity. Finally, ADP protects against inactivation by DEP, indicating that the essential residue modified may be located at or near the nucleotide binding site.  相似文献   

6.
3-Ketovalidoxylamine A C-N lyase of Flavobacterium saccharophilum is a monomeric protein with a molecular weight of 36,000. Amino acid analysis revealed that the enzyme contains 5 histidine residues and no cysteine residue. The enzyme was inactivated by diethylpyrocarbonate (DEP) following pseudo-first order kinetics. Upon treatment of the inactivated enzyme with hydroxylamine, the enzyme activity was completely restored. The difference absorption spectrum of the modified versus native enzyme exhibited a prominent peak around 240 nm, but there was no absorbance change above 270 nm. The pH-dependence of inactivation suggested the involvement of an amino acid residue having a pKa of 6.8. These results indicate that the inactivation is due to the modification of histidine residues. Substrates of the lyase, p-nitrophenyl-3-ketovalidamine, p-nitrophenyl-alpha-D-3-ketoglucoside, and methyl-alpha-D-3-ketoglucoside, protected the enzyme against the inactivation, suggesting that the modification occurred at or near the active site. Although several histidine residues were modified by DEP, a plot of log (reciprocal of the half-time of inactivation) versus log (concentration of DEP) suggested that one histidine residue has an essential role in catalysis.  相似文献   

7.
o-Succinylbenzoyl coenzyme A (OSB-CoA) synthetase, when treated with diethylpyrocarbonate (DEP), showed a time-dependent loss of enzyme activity. The inactivation follows pseudo-first-order kinetics with a second-order rate constant of 9.2 x 10(-4) +/- 1.4 x 10(-4) microM(-1) min(-1). The difference spectrum of the modified enzyme versus the native enzyme showed an increase in A242 that is characteristic of N-carbethoxyhistidine and was reversed by treatment with hydroxylamine. Inactivation due to nonspecific secondary structural changes in the protein and modification of tyrosine, lysine, or cysteine residues was ruled out. Kinetics of enzyme inactivation and the stoichiometry of histidine modification indicate that of the eight histidine residues modified per subunit of the enzyme, a single residue is responsible for the enzyme activity. A plot of the log reciprocal of the half-time of inactivation against the log DEP concentration further suggests that one histidine residue is involved in the catalysis. Further, the enzyme was partially protected from inactivation by either o-succinylbenzoic acid (OSB), ATP, or ATP plus Mg2+ while inactivation was completely prevented by the presence of the combination of OSB, ATP, and Mg2+. Thus, it appears that a histidine residue located at or near the active site of the enzyme is essential for activity. When His341 present in the previously identified ATP binding motif was mutated to Ala, the enzyme lost 65% of its activity and the Km for ATP increased 5.4-fold. Thus, His341 of OSB-CoA synthetase plays an important role in catalysis since it is probably involved in the binding of ATP to the enzyme.  相似文献   

8.
Sarcosine oxidase [sarcosine: oxygen oxidoreductase (demethylating) EC 1.5.3.1] from Corynebacterium contained 8 sulfhydryl groups per mol of enzyme as determined with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in the presence of 0.2% SDS and by titration with p-chloromercuribenzoate (PMB). Among them, 2 groups were easily modified by iodoacetamide (IAA) and the modification resulted in complete loss of enzymatic activity. The inactivation by IAA followed first-order kinetics with respect to IAA concentration. The presence of acetate, a competitive inhibitor (I), protected the enzyme from inactivation by IAA. However, the protection was only approximately 50%. The enzyme was also inactivated by PMB, but in this case, there was practically no recovery of activity after treatment with thiol compounds. The enzyme was also rapidly inactivated by incubation with diethylpyrocarbonate (DEP). The absorbance change accompanying the inactivation showed that a single histidyl residue was modified by DEP, resulting in a complete loss of enzymatic activity. In the presence of acetate, the enzyme was completely protected from DEP-inactivation. Furthermore, DEP-inactivated enzyme recovered its enzymatic activity on treatment with hydroxylamine. These observations seem to imply that the modified histidine is essential for enzyme activity. In addition, modification by DEP changed the absorption spectrum in the visible region. This strongly suggests that the modified histidyl residue is present in the vicinity of the flavin moiety of the enzyme molecule.  相似文献   

9.
Counting of integral numbers of cysteine residues of the reduced and denaturated form of cyclomaltodextrin glucanotransferase (CGTase) from Bacillus circulans var. alkalophilus (ATCC 21783) showed two cysteine residues per enzyme molecule. Titrations of the enzyme with 5,5'-dithiobis-(2-nitrobenzoic acid) led to the same result. No free SH-group was detected in denatured form of CGTase, indicating that the two cysteine residues are linked by one disulfide bridge. Cyclizing activity of the GdmCl-denaturated and reduced enzyme was 13% of that of the native one. Incubation of CGTase with diethylpyrocarbonate (DEP) showed a pseudo-first-order inhibition with second-order rate constant of 3.2 M-1 s-1. Reaction with hydroxylamine and spectroscopic studies implied that inactivation of CGTase by DEP is due to modification of one histidine residue concomitantly with a 50% decrease in the cyclizing activity (t1/2 = 10.8 min). The inhibition was partially reversible. CGTase was protected against inactivation by alpha- and beta-cyclodextrins suggesting that the modified histidine residue is at or near the active site. Conversion of starch with DEP-modified enzyme resulted in a decreased formation of cyclodextrins while the relative amount of reducing sugars increased. Preliminary results on modification of CGTase with other reagents, e.g., Woodward's reagent K, 2,3-butanedione and carbodiimide are included.  相似文献   

10.
The shikimate pathway enzyme 3-dehydroquinase is very susceptible to inactivation by the group-specific reagent diethyl pyrocarbonate (DEP). Inactivation follows pseudo first-order kinetics and exhibits a second-order rate constant of 148.5 M-1 min-1. An equilibrium mixture of substrate and product substantially protects against inactivation by DEP, suggesting that residues within the active site are being modified. Complete inactivation of the enzyme correlates with the modification of 6 histidine residues/subunit as determined by difference spectroscopy at 240 nm. Enzymic activity can be restored by hydroxylamine treatment, which is also consistent with the modification occurring at histidine residues. Using the kinetic method of Tsou (Tsou, C.-L. (1962) Sci. Sin. 11, 1535-1558), it was shown that modification of a single histidine residue leads to inactivation. Ligand protection experiments also indicated that 1 histidine residue was protected from DEP modification. pH studies show that the pKa for this inactivation is 6.18, which is identical to the single pKa determined from the pH/log Vmax profile for the enzyme. A single active site peptide was identified by differential peptide mapping in the presence and absence of ligand. This peptide was found to comprise residues 141-158; of the 2 histidines in this peptide (His-143 and His-146), only one, His-143, is conserved among all type I dehydroquinases. We propose that His-143 is the active site histidine responsible for DEP-mediated inactivation of dehydroquinase and is a good candidate for the general base that has been postulated to participate in the mechanism of this enzyme.  相似文献   

11.
The relative importance of tyrosine and histidine residues for the catalytic action of Escherichia coli asparaginase (L-asparagine amidohydrolase, EC 3.5.1.1) was studied by chemical modification and 1H-NMR spectroscopy. We show that, under appropriate reaction conditions, N-bromosuccinimide (NBS) as well as diazonium-1H-tetrazole (DHT) inactivate by selectively modifying two tyrosine residues per asparaginase subunit without affecting histidyl moieties. We further show that diethyl pyrocarbonate (DEP), a reagent considered specific for histidine, also modifies tyrosine residues in asparaginase. Thus, inactivation of the enzyme by DEP is not indicative of histidine residues being involved in catalysis. In 1H-nuclear magnetic resonance (NMR) spectra of asparaginase signals from all three histidine residues were identified. By measuring the pH dependencies of these resonances, pKa values of 7.0 and 5.8 were derived for two of the histidines. Titration with aspartate which tightly binds to the enzyme at low pH strongly reduced the signal amplitude of the pKa 7 histidyl moiety as well as those of resonances of one or more tyrosine residues. This suggests that tyrosine and histidine are indeed constituents of the active site.  相似文献   

12.
Dihydrodiol dehydrogenase from pig liver was inactivated by diethylpyrocarbonate (DEP) and by rose bengal-sensitized photooxidation. The DEP inactivation was reversed by hydroxylamine and the absorption spectrum of the inactivated enzyme indicated that both histidine and tyrosine residues were carbethoxylated. The rates of inactivation by DEP and by photooxidation were dependent on pH, showing the involvement of a group with a pKa of 6.4. The kinetics of inactivation and spectrophotometric quantification of the modified residues suggested that complete inactivation was caused by modification of one histidine residue per active site. The inactivation by the two modifications was partially prevented by either NADP(H) or the combination of NADP+ and substrate, and completely prevented in the presence of both NADP+ and a competitive inhibitor which binds to the enzyme-NADP+ binary complex. The DEP-modified enzyme caused the same blue shift and enhancement of NADPH fluorescence as did the native enzyme, suggesting that the modified histidine is not in the coenzyme-binding site of the enzyme. The results suggest the presence of essential histidine residues in the catalytic region of the active site of pig liver dihydrodiol dehydrogenase.  相似文献   

13.
Photooxidation of bovine liver glutamate dehydrogenase (GDH, EC 1.4.1.3) in the presence of methylene blue at a low light intensity occurs in two stages. At the first stage, the duration of which depends on temperature and dye concentration, a slight activation is observed simultaneously with the oxidation of two histidine residues. At the second stage, the inactivation is concomitant with the oxidation of three histidine and one tryptophan residues. The inactivation is a first order reaction (k = 3,22 X 10(-2) min-1) and is correlated with changes in the circular dichroism spectra. These data testify to the structural role of histidine residues in the GDH molecule. The kinetic behaviour of GDH during its modification with diethylpyrocarbonate (DEP) depends on pH and the reagent concentration. Four histidine residues undergo carbethoxylation at pH 6.0 and 7.5, but the modification rate is much higher at pH 7.5. At low DEP concentrations, a remarkable activation is observed with a simultaneous modification of one histidine residue, which is independent of pH. At high DEP concentrations, a rapid inactivation takes place at pH 7.5. Treatment of the carbethoxylated inactive enzyme with hydroxylamine results in the deacylation of histidine residues without any noticeable reactivation. The data on the combined effect of DEP and pyridoxal-5'-phosphate suggest that GDH inactivation by DEP at pH 7.5 is a result of modification of an essential epsilon-NH2 group of lysine-126.  相似文献   

14.
Treatment of Leuconostoc mesenteroides B-512F dextransucrase with diethyl pyrocarbonate (DEP) at pH 6.0 and 25 degrees or photo-oxidation in the presence of Rose Bengal or Methylene Blue at pH 6.0 and 25 degrees, caused a rapid decrease of enzyme activity. Both types of inactivation followed pseudo-first-order kinetics. Enzyme partially inactivated by DEP could be completely reactivated by treatment with 100 mM hydroxylamine at pH 7 and 4 degrees. The presence of dextran partially protected the enzyme from inactivation. At pH 7 or below, DEP is relatively specific for the modification of histidine. DEP-modified enzyme showed an increased absorbance at 240 nm, indicating the presence of (ethoxyformyl)ated histidine residues. DEP modification of the sulfhydryl group of cysteine and of the phenolic group of tyrosine was ruled out by showing that native and DEP-modified enzyme had the same number of sulfhydryl and phenolic groups. DEP modification of the epsilon-amino group of lysine was ruled out by reaction at pH 6 and reactivation with hydroxylamine, which has no effect on DEP-modified epsilon-amino groups. The photo-oxidized enzyme showed a characteristic increase in absorbance at 250 nm, also indicating that histidine had been oxidized, and no decrease in the absorbance at 280 nm, indicating that tyrosine and tryptophan were not oxidized. A statistical, kinetic analysis of the data on inactivation by DEP showed that two histidine residues are essential for the enzyme activity. Previously, it was proposed that two nucleophiles at the active site attack bound sucrose, to give two covalent D-glucosyl-enzyme intermediates. We now propose that in addition, two imidazolium groups of histidine at the active site donate protons to the leaving, D-fructosyl moieties. The resulting imidazole groups then facilitate the formation of the alpha-(1----6)-glycosidic linkage by abstracting protons from the C-6-OH groups, and become reprotonated for the next series of reactions.  相似文献   

15.
Modification of maize δ-aminolevulinic acid dehydratase (ALAD) by diethylpyrocarbonate (DEP) caused rapid and complete inactivation of the enzyme. The inactivation showed saturation kinetics with a half inactivation time at saturating DEP equal to 0.3 min and KDEP  0.3 mM. Substrate δ-aminolevulinic acid (ALA) and competitive inhibitor levulinic acid protected against inactivation, thereby indicating that DEP modifies the active site. The modified enzyme showed an increase in absorbance at 240 nm which was lost upon treatment with 0.8 M hydroxylamine. Most of the activity lost by DEP treatment could be restored after treatment with 0.8 M hydroxylamine. The results suggest that DEP modifies 7.4 residues/mole of the enzyme. These histidine residues are essential for catalysis by ALAD.  相似文献   

16.
《Phytochemistry》1987,26(7):1859-1862
Modification of maize leaf NADP-malic enzyme by diethylpyrocarbonate (DEP) caused rapid and complete inactivation of the enzyme. The inactivation followed pseudo-first-order reaction kinetics. The inactivation of the enzyme showed saturation kinetics with a half inactivation time, at saturating DEP, equal to 0.15 min and KDEP = 20 mM. The rate of inactivation was faster at 25° as compared to 0° (t0.5 0.75 min at 25° as against 5.6 min at 4° at 5 mM DEP). The enzyme was partially protected against DEP inactivation by NADP and complete protection was seen in the presence of NADP + Mg2+ + malate or its analogues, thereby indicating that DEP modifies the active site. The modified enzyme showed an increase in absorbance at 240 nm which was lost upon treatment with 0.25 M NH2OH and almost complete recovery of the enzyme activity was also observed. The results suggest that DEP modifies 3.0 residues per subunit and of these at least two residue per subunit can be modified without loss of activity in the presence of substrate. Modification of about one histidine residue is correlated with the loss of enzyme activity.  相似文献   

17.
Aspartase purified from Escherichia coli W cells was inactivated by diethylpyrocarbonate following pseudo-first order kinetics. Upon treatment of the inactivated enzyme with NH2OH, the enzyme activity was completely restored. The difference absorption spectrum of the modified vs. native enzyme preparations exhibited a prominent peak around 240 nm. The pH-dependence of the inactivation rate suggested that an amino acid residue having a pK value of 6.6 was involved in the inactivation. These results indicate that the inactivation was due to the modification of histidine residues. L-Aspartate and fumarate, substrates for the enzyme, and the Cl- ion, an inhibitor, protected the enzyme against the inactivation. Inspection of the spectral change at 240 nm associated with the inactivation in the presence and absence of the Cl- ion revealed that the number of histidine residues essential for the enzyme activity was less than two. Partial inactivation did not result in an appreciable change in the substrate saturation profiles. These results suggest that one or two histidine residues are located at the active site of aspartase and participate in an essential step in the catalytic reaction.  相似文献   

18.
3 alpha-Hydroxysteroid dehydrogenase (EC 1.1.1.50) from Pseudomonas testosterone was inactivated by superoxide radicals generated by the aerobic xanthine oxidase reaction. Superoxide dismutase, NAD+, bovine serum albumin and histidine and cysteine as free amino acids partially protected the enzyme from inactivation. NADH-binding properties were determined by fluorescence spectroscopy, and no variation was found between native enzyme and the unmodified fraction of the partly inactivated one. The fluorescence emission maximum for the completely inactivated enzyme was shifted 10 nm to a longer wavelength when compared with the native one, and it seems possible that the modification of histidine and cysteine residues by superoxide radicals causes the conformational change of the enzyme and the consequent loss of catalytic activity.  相似文献   

19.
A. Martínez 《Amino acids》1995,9(3):285-292
Summary Recombinant human tyrosine hydroxylase isozyme 1 (hTH1) shows a time- and concentration-dependent loss of catalytic activity when incubated with diethylpyrocarbonate (DEP) after reconstitution with Fe(II). The inactivation follows pseudo-first order kinetics with a second order rate constant of 300 M–1 min–1 at pH 6.8 and 20°C and is partially reversed by hydroxylamine. The difference absorption spectrum of the DEP-modified vs native enzyme shows a peak at 244 nm, characteristic of mono-N-carbethoxy-histidine. Up to five histidine residues are modified per enzyme subunit by a five-fold excess of the reagent, and two of them are protected from inactivation by the active site inhibitor dopamine. However, derivatization of only one residue appears to be responsible for the inactivation. Thus, no inactivation by DEP was found when the apoenzyme was preincubated with this reagent prior to its reconstitution with Fe(II), modifying four histidine residues.Abbreviations BH4 (6R)-l-erythro-tetrahydrobiopterin - DEP diethylpyrocarbonate - DOPA 3,4-dihydroxyphenylalanine - hTH1 human tyrosine hydroxylase isoenzyme 1 - apo-hTH1 apoenzyme of hTH1 - Fe(II)-hTH1 holoenzyme (iron reconstituted) of hTH1 - dopamine-Fe(III)-hTH1 holoenzyme of hTH1 with dopamine bound - TH tyrosine hydroxylase  相似文献   

20.
1. The effect of diethylpyrocarbonate (DEP) (0.1-0.35 mM) on the purified pig liver amino-levulic acid dehydratase (ALA-D) containing 0.3 g-atoms Zn/subunit, under different pHs (6.0-7.5), temperature (0-18 degrees C) and time (0-60 min) was studied. 2. Three histidyl residues/subunit were modified by DEP (0.2 mM, pH 6.8), but activity was completely lost after the first one had reacted, indicating the presence of one histidine residue essential for ALA-D catalysis. Reactivation by treatment with hydroxylamine (0.7 mM, pH 7.0) confirmed that only histidine and no other nucleophile amino acids were directly involved in DEP inhibition. 3. Zn ions (0.5 mM) and the substrate ALA (5-10 mM) protected against DEP inactivation, protection was dependent on pH. 4. Sn, Se, Hg, Cd, Mn, Co and Pb (0.01-0.1 mM) did not significantly protect ALA-D against inactivation. 5. It is concluded that the substrate and Zn binding sites and the essential histidyl residues are in close proximity in the active center. It is proposed that in the catalytic synthesis of porphobilinogen from ALA, histidine groups have the specific role of transporting protons from the aqueous media to a hydrophobic active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号