首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of a study of hepatic organic anion transport, solubilized liver plasma membrane proteins were subjected to affinity chromatography on bilirubin- and sulfobromophthalein-labeled agarose columns. Both columns retained a Sudan Black and PAS negative protein of molecular weight 60,000 daltons, which cochromatographed with [35S]sulfobromophthalein on Sephadex G-75, and reversibly bound [35S]sulfobromophthalein in vitro with high affinity (Ka ? 107 M?1) and a valence of 2. Erythrocyte ghost membranes did not contain this protein. Sulfobromophthalein-agarose retained two additional smaller proteins which did not cochromatograph with [35S]sulfobromophthalein. Their significance is unclear. This study supports the hypothesis that liver cell plasma membranes participate in the hepatic transport of organic anions.  相似文献   

2.
Monoclonal antibodies raised against bilitranslocase, may display either inhibitory or enhancing activity on the electrogenic transport of sulfobromophthalein, evoked in rat liver plasma-membrane vesicles by the addition of valinomycin in the presence of K+. In both cases, the target protein is identified with a 37 kDa band in SDS-mercaptoethanol gel electrophoresis of solubilized membranes. The electrophoretically homogeneous protein isolated by ion-exchange chromatography, corresponds in all respects to the 37 kDa protein band of bilitranslocase, obtained in the past by different techniques. Using this protein as antigen, a polyclonal monospecific antibody preparation has been obtained. As expected, the antibody preparation inhibits the electrogenic movement of sulfobromophthalein in plasma membrane vesicles from rat liver. It is concluded that the 37 kDa protein of bilitranslocase is at least a necessary component of the transport system involved in the sulfobromophthalein movement in plasma membrane.  相似文献   

3.
4.
There is good evidence that high density lipoprotein (HDL) interacts with high affinity sites present on hepatocytes. The precise nature of the ligand recognized by putative HDL receptors remains controversial, although there is a consensus that apolipoprotein AI (apoAI) is involved. This suggestion would be strengthened if a biologically active site demonstrating a high affinity for the receptor could be isolated. Cyanogen bromide fragments (CF) of apoAI (CF1-CF4) were complexed with phospholipid, and their ability to associate with the receptor was compared in various binding studies. Careful analysis of the concentration-dependent association of 125I-labeled dimyristoyl phosphatidylcholine (DMPC) recombinants to rat liver plasma membranes revealed high and low affinity binding components. As all DMPC recombinants displayed the low affinity binding component, it was postulated that this interaction was independent of the protein present in the particle and may well represent a lipid-lipid or lipid-protein association with the membranes. Only 125I-labeled CF4.DMPC displayed a high affinity binding component with similar Kd and Bmax (8 x 10(-9) M, 1.6 x 10(-12) mol/mg plasma membrane protein) to that of 125I-labeled AI.DMPC (7 x 10(-9), 1.4 x 10(-12) mol/mg plasma membrane protein). Similarly, egg yolk phosphatidylcholine complexes containing CF4 (CF4.egg PC) showed higher affinity binding than CF1-egg yolk phosphatidylcholine complexes confirming the results obtained with DMPC complexes. Furthermore, ligand blotting studies showed that only 125I-labeled CF4.DMPC associated specifically with HB1 and HB2, two HDL binding proteins recently identified in rat liver plasma membranes. We conclude that a region within the carboxyl-terminus of apoAI is responsible for the interaction with putative HDL receptors present in rat liver plasma membranes.  相似文献   

5.
Unsaturated folate-binding proteins (i.e., apo forms) have been identified with the plasma membranes of rat liver by the binding of [3H]pteroylglutamic acid. Normal rat liver contains very little of the folate-binding apoproteins, but the folate-binding capacity increases substantially when the rats are made folate-deficient. This increase appears to be due to unsaturation of the folate-binding holoproteins rather than to synthesis of additional protein, because the binding capacity of the plasma membranes from normal rat liver following dissociation of the bound folate is equivalent to the binding capacity of the preparation from folate-deficient liver. Two molecular forms of folate-binding protein were identified by gel filtration of the solubilized plasma membrane fraction, a high-molecular-weight form (Mr less than 100,000), representing 25% of the binding capacity, and a smaller protein (Mr approximately equal to 55,000), representing 75% of the binding capacity. Whereas the larger species can be solubilized only with a detergent, the smaller form appears to be hydrophilic and dissociates spontaneously from the membrane preparation. The binding of [3H]pteroylglutamic acid by the membrane preparation was specific, saturable, and pH- and temperature-dependent. Scatchard analysis of the binding could be fitted to a curvo-linear plot, indicating at least two orders of binding sites which probably correspond to the two molecular forms identified by gel filtration. Competitive inhibition by folate analogues demonstrated that the apoproteins have higher affinity for oxidized folate than for N5-methyltetrahydrofolate and virtually no affinity for N5-formyltetrahydrofolate or methotrexate.  相似文献   

6.
Bilitranslocase, the protein responsible for the anion translocation at the sinusoidal plasma membrane level in liver, was shown to be able to reconstitute the transport of sulfobromophthalein in liposomes in the past. The protein preparation used in those experiments consisted of two subunits of 35.5 and 37 kDa. The isolated 37 kDa protein, when inserted in erythrocyte membrane vesicles, confers to the particles the ability to carry out an electrogenic transport of sulfobromophthalein. The effect is specific and can be inhibited by monospecific polyclonal antibodies raised against the protein. In may be concluded that the 37 kDa protein band, present in previous preparations of bilitranslocase, is not only a necessary but also a sufficient component of the transport system for bilirubin and functional analogues.  相似文献   

7.
A specific growth hormone (GH) binding protein of Mr approx. 100000 has been demonstrated in the cytosolic fraction (200000g supernatant) of pregnant-rabbit liver by gel filtration techniques. This binding species was detectable by a standard charcoal separation procedure but not by the widely used poly(ethylene glycol) precipitation method. The GH binding protein had similar binding characteristics to those of classical membrane-bound GH receptors. The kinetics of association and dissociation, binding affinity (2.56 X 10(9)1/mol) and hormonal specificity have been established. There appears to be equal or greater amounts of GH binding protein in the cytosol than in the membrane fraction. The presence of the GH binding protein in rabbit liver cytosol was substantiated by its selective purification on a GH-Affigel 15 affinity column. This technique has resulted in a 200-300-fold purification with no substantial change in binding affinity. The ability of a concanavalin A-Sepharose affinity column to also bind the cytosolic binding protein indicates that, like the membrane-bound GH receptor, it is a glycoprotein. This is the first report of a cytosolic binding protein for GH and raises important questions regarding its potential physiological role in the mechanism of action of GH.  相似文献   

8.
Pancreatic acinar cells have both high and low affinity receptors for cholecystokinin (CCK), yet their membranes appear to possess only a single class of binding sites. Recently, gallbladder membrane CCK receptors were shown to undergo inter-conversion between two affinity states dependent on G protein coupling. Keys for that observation were the differential binding affinities of CCK and a phenethyl ester analogue of CCK (OPE), with the high affinity state binding CCK with higher affinity than OPE, and the low affinity state binding OPE with higher affinity than CCK. Here, we performed analogous experiments using these ligands and both pancreatic membranes and a solubilized preparation. Both preparations were found to have only single affinity states of this receptor. However, the state on membranes had a higher affinity for CCK than for OPE, and that on the solubilized preparation had a higher affinity for OPE than for CCK. This supports the hypothesis that the ternary complex of ligand-receptor-G protein found in membranes represents the high affinity state of this receptor, while the uncoupled form of this receptor after solubilization represents its low affinity state. The high affinity of OPE for the solubilized receptor can be utilized in a purification strategy to follow receptor-bearing fractions and to provide an efficient and specific affinity-binding step.  相似文献   

9.
Estrogen binding proteins in mouse liver cytosol were characterized by separation on Sephadex G-75 columns, by Scatchard plot analysis, and by hormonal competition studies. A high affinity receptor (56-70 fmol/mg cytosolic protein) with a mol. wt greater than 75,000, Kd of 5.7-8.4 X 10(-10) M was identified in male and female C3H liver. A second high capacity low affinity (HCLA) binder (200-300 fmol/mg cytosolic protein) with a mol. wt of about 50,000, Kd of 1.7-7.2 X 10(-8) was also identified. Following partial purification of the estrogen binders by ammonium sulfate precipitation, Scatchard plot analysis revealed selective removal of HCLA. On Sephadex G-75 filtration, the purification also resulted in selective removal of the 17 beta-estradiol binding component with a mol. wt of 50,000. Comparison with rat cytosol separations show that the sexual dimorphism in HCLA binding proteins (5 times higher in male than female rat liver) was absent in the mouse liver. These studies document the presence of a specific high affinity estrogen binding protein in mouse liver and indicate that the sexual dimorphism in HCLA proteins is not a universal feature of all rodent species.  相似文献   

10.
Nuclear envelopes relatively free of plasma membrane contamination were isolated from the male rat liver. Equilibrium binding of T3 to nuclear envelopes occurred after incubation for 3 h at 20 degrees C. Scatchard analysis revealed two classes of binding sites; a high affinity site having a KD of 1.8 nM with a maximum binding capacity of 14.5 pmol/mg protein and a low affinity site having a KD of 152.1 nM with a maximum binding capacity of 346.8 pmol/mg protein. No degradation of the radioligand occurred during incubation with the nuclear envelope. T4, rT3 and Triac competed effectively for the binding of T3 to the high affinity site whereas only T4 competed well for binding to the lower affinity site. The binding site was protease sensitive but not salt extractable. Multiple T3 binding sites having similar affinities have been reported on plasma membranes. An intriguing possibility is that membrane binding sites may be involved in translocation of thyroid hormone across membrane barriers.  相似文献   

11.
LTB4-induced proinflammatory responses in PMN including chemotaxis, chemokinesis, aggregation and degranulation are thought to be initiated through the binding of LTB4 to membrane receptors. To explore further the nature of this binding, we have established a receptor binding assay to investigate the structural specificity requirements for agonist binding. Human PMN plasma membrane was enriched by homogenization and discontinuous sucrose density gradient purification. [3H]-LTB4 binding to the purified membrane was dependent on the concentration of membrane protein and the time of incubation. At 20 degrees C, binding of [3H]-LTB4 to the membrane receptor was rapid, required 8 to 10 min to reach a steady-state and remained stable for up to 50 min. Equilibrium saturation binding studies showed that [3H]-LTB4 bound to high affinity (dissociation constant, Kd = 1.5 nM), and low capacity (density, Bmax = 40 pmol/mg protein) receptor sites. Competition binding studies showed that LTB4, LTB4-epimers, 20-OH-LTB4, 2-nor-LTB4, 6-trans-epi-LTB4 and 6-trans-LTB4, in decreasing order of affinity, bound to the [3H]-LTB4 receptors. The mean binding affinities (Ki) of these analogs were 2, 34, 58, 80, 1075 and 1275 nM, respectively. Thus, optimal binding to the receptors requires stereospecific 5(S), 12(R) hydroxyl groups, a cis-double bond at C-6, and a full length eicosanoid backbone. The binding affinity and rank-order potency of these analogs correlated with their intrinsic agonistic activities in inducing PMN chemotaxis. These studies have demonstrated the existence of high affinity, stereoselective and specific receptors for LTB4 in human PMN plasma membrane.  相似文献   

12.
Purification and protein sequence analysis of rat liver prolactin receptor   总被引:4,自引:0,他引:4  
Prolactin receptors were purified from rat liver membranes by single-step immunoaffinity chromatography using a specific monoclonal antibody to the rat liver prolactin receptor. Scatchard analysis of 125I-human growth hormone binding to the purified receptor revealed two classes of specific binding sites with Ka = 18.5 x 10(9) and 1.2 x 10(9) M-1. Considering that both classes of binding sites are responsible for high affinity prolactin binding, the partially purified receptor preparation had a binding activity of 1.69 nmol/mg protein, representing 1000-fold purification over microsomal receptors with a recovery of 52%. From three separate purifications, 6 mg of partially purified prolactin receptor were obtained with a purity of approximately 4 to 6.5%. Thus, the use of monoclonal antibody for affinity chromatography resulted in a large improvement of prolactin receptor purification compared to previous hormone affinity chromatography (300-fold purification, 15% recovery). The purified receptor was run on preparative sodium dodecyl sulfate polyacrylamide gel electrophoresis, and a homogeneous preparation of prolactin receptor was obtained by electroelution from gel slices corresponding to Mr 38,000-43,000. Immunoblot analysis using a radiolabeled monoclonal antibody revealed two separate but closely located bands of Mr 42,000 and 40,000 in microsomal, partially purified, and electroeluted preparations. The homogeneous receptor protein was extensively digested with L-1-tosylamido-2-phenylethyl chloromethyl ketone trypsin, and 10 internal amino acid sequences of the rat liver prolactin receptor were determined by gas-phase sequence analysis. Oligonucleotide probes were prepared against two of these internal sequences, and a prolactin receptor cDNA was isolated from a rat liver library using one of these probes (Boutin, J. M., Jolicoeur, C., Okamura, H., Gagnon, J., Edery, M., Shirota, M., Banville, D., Dusanter-Fourt, I., Djiane, J., and Kelly, P. A. (1988) Cell 53, 69-77). The amino acid sequence deduced from the cDNA reveals three potential sites of N-linked glycosylation, two of which were confirmed during protein sequencing. The prolactin receptor was characterized by affinity labeling with 125I-human growth hormone. Cross-linking of microsomes revealed a single band for the hormone-receptor complex with Mr 62,000. On the other hand, cross-linking of Triton X-100-solubilized or partially purified receptor with labeled hormone resulted in the appearance of two bands with Mr 62,000 and 102,000, suggesting the existence of a subunit structure of the prolactin receptor, or alternatively, the existence of two types of prolactin receptor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
An atrial natriuretic factor (ANF) receptor from rat lung was solubilized with Lubrol-PX and purified by sequential chromatographic steps on GTP-agarose, DEAE-Sephacel, phenyl-agarose, and wheat germ agglutinin-agarose. The ANF receptor was enriched 19,000-fold. The purified receptor has a binding profile and properties that correspond to the affinity and specificity found in membranes and crude detergent extracts. Polyacrylamide gel electrophoresis of the purified preparation in the presence of sodium dodecyl sulfate and dithiothreitol showed the presence of one major protein band with a molecular mass of 120,000 daltons. When purified preparations were incubated with 125I-ANF, then cross-linked with disuccinimidyl suberate, the 120,000-dalton protein was specifically radiolabeled. This high affinity binding site for ANF co-purified with particulate guanylate cyclase. Particulate guanylate cyclase was purified to a specific activity of 19 mumol cyclic GMP produced/min/mg of protein utilizing Mn-GTP as substrate. This represented a 15,000-fold purification compared to the initial lung membrane preparation with Lubrol-PX. Gel permeation high performance liquid chromatography and glycerol density gradient sedimentation studies of the purified preparation also resulted in co-migration of specific ANF binding and guanylate cyclase activities. The co-purification of these activities suggests that both ANF binding and guanylate cyclase activities reside in the same macromolecular complex. Presumably ANF binding occurs at the external membrane surface and cyclic GMP synthesis at the internal membrane surface of this transmembrane glycoprotein.  相似文献   

14.
We have recently described the affinity chromatography purification of the turkey erythrocyte β-adrenergic receptor. The minute amounts obtained initially precluded extensive biochemical characterization. To improve the yield of the receptor, the erythrocyte membranes have been prepared by a new method. This procedure resulted in a 10-fold higher receptor density in comparison with the membrane preparation used previously. The new membranes also contained a catecholamine-sensitive guanine triphosphatase and an adenylate cyclase sensitive to Gpp(NH)p and l-epinephrine. Solubilization by a double digitonin extraction resulted in a preparation containing 4–6 pmoles of 3H-dihydroalprenolol binding sites per mg of membrane protein. A single step of affinity chromatography on alprenolol-sepharose of the soluble digitonin extract resulted in an additional 1,000-fold purification of the receptor. The overall purification factor was 20,000 relative to the binding activity of the crude membrane preparations. Electrophoresis in SDS-polacrylamide of iodinated purified β-receptors revealed, after autoradiography, the presence of four major components. Three of these, corresponding to molecular weights of 170,000, 33,000, and 30,000, respectively, were not affected by reduction with β-mercaptoethanol and were not observed when the digitonin extracts were loaded on the affinity gel in the presence of an excess of l-propranolol. A fourth 52,000-dalton component (60,000 daltons after reduction with β-mercaptoethanol) remained apparent even when affinity purification was prevented by addition of l-propranolol. Our results suggest that the β-adrenergic receptor is composed of at least three subunits that interact by noncovalent bonds.  相似文献   

15.
125I-Hemoglobin.haptoglobin injected intravenously into rats was incorporated into liver parenchymal cells as evidenced by a cell separation technique. A mixture of freshly isolated liver parenchymal and nonparenchymal cells failed to internalize and degrade the 125I-hemoglobin.haptoglobin added, although it retained the ability to bind the molecule. The liver parenchymal cells in primary culture also lacked the ability to degrade 125I-hemoglobin.haptoglobin, although they bound the molecule more extensively as compared with the freshly isolated liver cells. It was confirmed that the 125I-hemoglobin.haptoglobin which was bound to the freshly isolated liver parenchymal cells localized on the outer surface of liver plasma membranes. Scatchard plots revealed the existence of two binding sites for 125I-hemoglobin-haptoglobin on the isolated liver plasma membrane: an apparent high affinity binding site (Kd = 1.3 X 10(-7) M) and an apparent low affinity binding site (Kd = 4.0 X 10(-6) M) at 37 degrees C. In contrast, freshly isolated liver parenchymal cells had only an apparent low affinity binding site (Kd = 1.4 X 10(-6) M) at 37 degrees C. Impairment of the apparent high affinity binding site during the isolation procedure with collagenase seemed to be related to loss of the ability to internalize and degrade the 125I-hemoglobin.haptoglobin molecules into the freshly isolated liver parenchymal cells or liver parenchymal cells in primary culture.  相似文献   

16.
This report describes an efficient strategy for amplified functional purification of the human H1 receptor after heterologous expression in Sf9 cells. The cDNA encoding a C-terminally histidine-tagged (10xHis) human histamine H1 receptor was used to generate recombinant baculovirus in a Spodoptera frugiperda-derived cell line (IPLB-Sf9). As judged from its ligand affinity profile, functional receptor could be expressed at high levels (30-40 pmol per 10(6) cells). Rapid proteolysis in the cell culture led to limited fragmentation, without loss of ligand binding, but could be efficiently suppressed by including the protease inhibitor leupeptin during cell culture and all subsequent manipulations. Effective solubilization of functional receptor with optimal recovery and stability required the use of dodecylmaltoside as a detergent in the presence of a high concentration of NaCl and of a suitable inverse agonist. Efficient purification of solubilized receptor could be achieved by affinity chromatography over nickel(II) nitrilotriacetic acid resin. Functional membrane reconstitution of purified H1 receptor was accomplished in mixed soybean lipids (asolectin). The final proteoliposomic H1 receptor preparation has a purity greater than 90% on a protein basis and displays a ligand binding affinity profile very similar to the untagged receptor expressed in COS-7 cells. In conclusion, we are able to produce pharmacologically viable H1 receptor in a stable membrane environment allowing economic large-batch operation. This opens the way to detailed studies of structure-function relationships of this medically and biologically important receptor protein by 3D-crystallography, FT-IR spectroscopy and solid-state NMR spectroscopy.  相似文献   

17.
A crude nuclear thyroid-hormone-receptor protein preparation from chick liver (an ammonium sulfate fractionation of high-ionic-strength-solubilized chromatin proteins) binds both triiodothyronine and thyroxine with high affinity. This crude preparation has characteristics similar to preparations from a variety of animal tissues, reported by several different laboratories, and is used for the further purification of the receptor protein. For this purification an affinity chromatography medium, 4-[N-(3,5,3'-triiodothyronine)-2-amino-3-hydroxypropoxy]-butylpropoxy -Sepharose ether, is used to take advantage of the observation that hydroxymercuribenzoic acid causes a reversible dissociation of the complex between triiodothyronine and the receptor protein. The hydroxymercuribenzoate treatment greatly increases this rate of dissociation at low temperatures compared with other methods, such as free triiodothyronine competition or an increase in ionic strength or pH. This procedure results a in purified fraction (1000-10000-fold with respect to binding triiodothyronine), which has a molecular mass of approximately 65 kDa and which retains a high degree of the original thyroid-hormone-binding activity.  相似文献   

18.
Brief exposure to the protein neurotoxin, beta-bungarotoxin, is known to disrupt neuromuscular transmission irreversibly by blocking the release of transmitter from the nerve terminal. This neurotoxin also has a phospholipase A2 activity, although phospholipases in general are not very toxic. To determine if the toxicity of this molecule might result from specific binding to neural tissue, we have looked for high affinity, saturable binding using 125I-labelled toxin. At low membrane protein concentration 125I-labeled toxin binding was directly proportional to the amount of membrane; at fixed membrane concentration 125I-labeled toxin showed saturable binding. It was unlikely that iodination markedly changed the toxin's properties since the iodinated toxin had a comparable binding affinity to that of native toxin as judged by competition experiments. Comparison of toxin binding to brain, liver and red blood cell membranes showed that all had high affinity binding sites with dissociation constants between one and two nanomolar. This is comparable to the concentrations previously shown to inhibit mitochondrial function. However, the density of these sites showed marked variation such that the density of sites was 13.0 pmol/mg protein for a brain membrane preparation, 2.4 pmol/mg for liver and 0.25 pmol/mg for red blood cell membranes. In earlier work we had shown that calcium uptake by brain mitochondria is inhibited at much lower toxin concentrations than is liver mitochondrial uptake. Both liver and brain mitochondria bind toxin specifically, but the density of 125I-labeled toxin binding sites on brain mitochondrial preparations (3.3 +/- 0.3 pmol/mg) exceeded by a factor of ten the density on liver mitochondrial preparations (0.3 +/- 0.05 pmol/mg). It is also shown that labeled toxin does not cross synaptosomal membranes, suggesting that mitochondria may not be the site of action of the toxin in vivo. We conclude that beta-bungarotoxin is an enzyme which can bind specifically with high affinity to cell membranes.  相似文献   

19.
A specific binding site for somatotropin was solubilized by 1% (v/v) Triton X-100 from a crude particulate membrane fraction of pregnant rabbit liver, partially purified and characterized. The solubilized binding site retained many of the characteristics observed in the original particulate fraction, indicating that extraction of the binding site with Triton X-100 does not cause any major changes in its properties. The binding of human 125I-labelled-somatotropin to the solubilized binding site is a saturable and reversible process, depending on temperature, incubation time, pH and ionic environment. Analysis of the kinetic data revealed a finite number of binding sites with an affinity constant of 0.32 x 10(10)M-1. The binding activity for human 125I-labelled-somatotropin was adsorbed to a concanavalin-A-Sepharose column and was dissociated from the column with alpha-methyl-D-glucoside, suggesting that the binding protein may be a glycoprotein. Using affinity chromatography on concanavalin-A-Sepharose, ion-exchange chromatography on DEAE-cellulose and gel filtration on Sepharose 6B, the binding protein was purified 1000-4000-fold from the original liver homogenate. When the partially purified preparation was chromatographed on Sepharose 6B, the binding protein eluted as a molecule with an apparent molecular weight of 200000, with a Stokes' radius of 4.9 nm. Sucrose-density-gradient centrifugation of the preparation showed that the sedimentation coefficient of the binding protein was 7.2S. Isoelectric focusing experiments revealed that a major part of the protein has an acidic pI (4.2-4.5). Exposure of the protein to trypsin decreased the binding activity for human 125I-labelled-somatotropin or bovine 125I-labelled-somatotropin, whereas ribonuclease, deoxyribonuclease, phospholipase C or neuraminidase had little or no effect.  相似文献   

20.
Affinity purification and chemical analysis of the interleukin-1 receptor   总被引:10,自引:0,他引:10  
Interleukins-1 alpha and -1 beta regulate the metabolism of cells through a common plasma membrane receptor protein. In this study, it is demonstrated that the interleukin-1 (IL-1) receptor from detergent solutions of EL-4 cells can be stably adsorbed to nitrocellulose with full retention of IL-1 binding activity. This assay system was used to monitor the purification of the IL-1 receptor and to investigate the effects of several chemical modifications on receptor binding activity. IL-1 receptors extracted from EL-4 6.1 C10 cells can be bound to and specifically eluted from IL-1 alpha coupled to Sepharose. The affinity chromatography method resulted in the identification by polyacrylamide gel electrophoresis and silver staining of a protein of Mr 82,000 that was present in fractions exhibiting IL-1 binding activity. Experiments in which the cell-surface proteins of EL-4 cells were radiolabeled and 125I-labeled receptor was purified by affinity chromatography suggested that the Mr 82,000 protein was expressed on the plasma membrane. N-Glycanase treatment of this material showed that 23-35% of the total Mr (82,000) of the receptor is N-linked carbohydrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号