首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated whether amyloid--peptide (A1–42) has an effect on the elevations of the intracellular concentration of Ca2+ ions ([Ca2+]i) induced by depolarizations of NG108-15 cells and on related Ca2+ channels. A1–42 (10-1000 nM) had no immediate effect on depolarization-induced [Ca2+]i elevations. [Ca2+]i increases were slightly diminished in cells grown in the presence of 100 or 1000 nM A1–42. Nifedipine (1 M) reduced these elevations equally in cells grown in the absence or presence of A1–42. In contrast, the ability of -conotoxin GVIA to diminish the depolarization-induced [Ca2+]i responses became lost in cells grown in the presence of 100 nM A1–42. This indicates that the influx of calcium through the N-type Ca2+ channels was compromised by the chronic exposure of cells to a submicromolar concentration of A1–42, presumably because of impairement of their function or diminished expression. This may be important in the pathogeny of Alzheimer's dementia in view of the pivotal role of N-type Ca2+ channels in neurotransmitter release.  相似文献   

2.
The light-induced Q A /QA FTIR difference spectra of Rb. sphaeroides and Rp. viridis show very broad positive bands of small amplitude peaking around 2750 cm–1. Upon 1H/2H exchange these bands shift to about 2150 cm–1. Similarly, the Q B /QB spectra exhibit broad continuum bands at 2600 and 2800 cm–1 shifting to 2100 and 2200 cm–1 in 2H2O for Rb. sphaeroides and Rp. viridis, respectively. These continuum bands are tentatively interpreted in terms of highly polarizable hydrogen bonds in a large web of polar bonds involving cofactors, amino acid residues, and structured water molecules. As a working hypothesis, we propose that the protons participating in this web redistribute upon quinone reduction, increasing their concentration around the newly formed charged species, and leading to net proton uptake. Assuming that the precise localization of the mobile protons is dependent on the local electrostatic, this model can explain the apparent discrepancies between some results of FTIR experiments and of electrostatic calculations. Notably, it could help rationalize the observation that mobile protons tend to localize on Glu L212 upon QB reduction in Rb. sphaeroides, while for QB reduction in Rp. viridis and for QA reduction in both Rb. sphaeroides and Rp. viridis, proton uptake by a small number of carboxylic residues is not supported by the FTIR data.  相似文献   

3.
Direct electrometry was used to study the light-induced voltage changes in the Rhodobacter sphaeroides chromatophores adsorbed to a phospholipid-impregnated nitrocellulose film. After the second laser flash, a fast increase in the voltage associated with charge separation was followed by a slower increase attributed to the proton uptake in the QB site of the photosynthetic reaction centers. Kinetics and relative amplitudes of these voltage changes attributed to the QA –. B –. QAQBH2 transition, were measured as a function of pH and temperature between +4 and +40 °C. The kinetics can be approximated by a single exponent above +23 °C (100 µs at +25 °C, pH 7.2), whereas below this temperature, it was a good fit of two exponential approximation (65 µs and 360 µs with similar contributions at +10 °C, pH 7.2). The faster component diminished with an apparent pK 8.5, whereas the slower one was maintained at a constant level until pH 9.5 and then decreased. The calculated activation energy from the temperature dependence of the slower component (55 – 65 kJ/mol) was much higher than that of the faster component (< 10 kJ/mol). The two voltage components can be attributed to the transfer of the first (faster component) and the second (slower component) proton from the reaction center surface to QB. We suggested that higher activation energy of the slower component was due to a conformational change in the reaction center kinetically coupled to the second proton transfer to QBH.The faster component diminished in the presence of 1 M KCl, with an apparent pK 7.5. To explain this observation, we assume that: (i) the midpoint potential of the QA/QA –. redox pair was higher in 1 M KCl because of the reduced surface potential of chromatophores; (ii) the midpoint potential of the QB –./QBH–. redox pair was insensitive to the surface potential change; (iii) the equilibrium constant of the reaction QA –.QB –. QAQBH decreased at high ionic strength.  相似文献   

4.
Summary The effects of divalent metals, metal chelators (EDTA, EGTA) and sodium dodecyl sulfate were investigated on the phosphatase activity of isolated bovine brain calcineurin assayed in the absence (called intrinsic) and presence of calmodulin. Intrinsic phosphatase was increased by Mn2+, was unaffected by Mg2+, Ca2–, and Ba+, and was markedly inhibited by Ni2–, Fe2+, Zn2+ and Cu2–. When assayed in the presence of calmodulin, many divalent metals (Ni2–, Zn2+, Pb2+, Cd2+), besides Mn2+, increased modestly the phosphatase activity at low concentrations (10–100 M) and inhibited it markedly at high concentrations. Ca2–-calmodulin stimulated phosphatase activity was antagonized by Ni2+, Zn2+, Fe2+, Cu2+, Pb2+, at low concentrations (50 M), and by Ba2+, Cd2+ at slightly higher concentrations (> 100 M); Mn2+ and Co2– (50 M to 1 mM) in fact augmented it. EDTA and EGTA in a concentration and time dependent fashion inhibited the intrinsic phosphatase activity, particularly that of trypsinized calcineurin. SDS in low concentrations (0.005%) augmented the phosphatase activity and inhibited it at high concentrations. Mn2+ (± calmodulin) and Ca2+ only with calmodulin present increased the phosphatase activity assayed with low concentrations of SDS. The EDTA dependent inhibition of intrinsic phosphatase was almost abolished in assays containing SDS. Prior exposure of calcineurin to Mn2+ led to a high activity conformation state of calcineurin that was long-lived or pseudo-irreversible. Such Mn2+-activated state of calcineurin exhibited no discerbible change in the affinity towards myelin basic protein or its inhibition by trifluoperazine. At alkaline pH, Mg2+ supported the intrinsic phosphatase activity, although to a lesser degree than Mn2+. The latter cation, compared to Mg2+ and Ni2+, was also a more powerful stimulator of the calcineurin phosphatase assayed with histone (III-S) and myosin light chain as substrates.  相似文献   

5.
Allen  J. P.  Williams  J. C.  Graige  M. S.  Paddock  M. L.  Labahn  A.  Feher  G.  Okamura  M. Y. 《Photosynthesis research》1998,55(2-3):227-233
The direct charge recombination rates from the primary quinone, k AD (D+Q A DQA) and the secondary quinone, k BD (D+Q B DQB), in reaction centers from Rhodobacter sphaeroides were measured as a function of the free energy differences for the processes, G AD 0 and G BD 0 , respectively. Measurements were performed at 21 °C on a series of mutant reaction centers that have a wide range of dimer midpoint potentials and consequently a large variation in G AD 0 and G BD 0 . As –G AD 0 varied from 0.43 to 0.78 eV, k AD varied from 4.6 to 28.6 s–1. The corresponding values for the wild type are 0.52 eV and 8.9 s–1. Observation of the direct charge recombination rate k BD was achieved by substitution of the primary quinone with naphthoquinones in samples in which ubiquinone was present at the secondary quinone site, resulting specifically in an increase in the free energy of the D+Q A state relative to the D+QAQ B state. As –G BD 0 varied from 0.37 to 0.67 eV, k BD varied from 0.03 to 1.4 s–1. The corresponding values for the wild type are 0.46 eV and 0.2 s–1. A fit of the two sets of data to the Marcus theory for electron transfer yielded significantly different reorganization energies of 0.82 and 1.3 eV for k AD and k BD, respectively. In contrast, the fitted values for the coupling matrix element, or equivalently the maximum possible rate, were comparable (25 s–1) for the two charge recombination processes. These results are in accord with QB having more interactions with dipoles, from both the surrounding protein and bound water molecules, than QA and with the primary determinant of the maximal rate being the quinone-donor distance.  相似文献   

6.
Summary Two endo--1,4-xylan xylanohydrolases (EC 3.2.1.8), XynA and XynB, from solid-state cultures ofPenicillium capsulatum, were purified to apparent homogeneity as judged by electrophoresis and isoelectric focusing. Each is a single subunit glycoprotein. XynA containing 97 mol carbohydrate·mol–1 protein, while XynB contains 63 mol·mol–1.M r and pI values are 28 500, 5.0–5.2 (XynA) and 29 500, 5.0–5.2 (XynB), respectively. Both enzymes are most active at pH 4 and 47–48°C, and have half-lives of 32 min (XynA) and 13 min (XynB) at pH 4, 60°C. Each form catalyzed the hydrolysis of a variety of xylans, albeit with different degrees of efficiency. In addition, XynB catalyzed extensive degradation of barley -glucan, CM-cellulose and, to a lesser extent, lichenan, but kinetic parameters indicate that it is primarily a xylanase. The products of hydrolysis of various xylans and xylopentaose differed for each enzyme and ranged from xylose to xyloheptaose depending on the substrate used. Each enzyme is endo-acting and has transferase as well as direct hydrolase activity. Inactivation byN-bromosuccinimide indicated the possible involvement of tryptophan in binding and/or catalysis.  相似文献   

7.
The energetics of the first stable charge separated state, P+QA– relative to that of P–QA was examined in isolated RC from Rhodobacter sphaeroides by delayed fluorescence. The temperature dependence of the delayed fluorescence indicates that the charge separation is a highly enthalpy-driven process (H = – 818 ± 20 meV at pH 8) and the free energy gap between P–QA and P+QA– drops with increasing pH (40 ± 4 meV between pH 6 and 10). The pH-dependence of the free energy change of the P+QA– state runs parallel to the (integrated) net proton uptake due to the PQA/P+QA– redox change in a wide pH range and under different ionic conditions. Elevation of the ionic strength increases the delayed fluorescence intensity and decreases the (dark and light) pKa values as well as the light-induced pKa changes of the protonatable groups of the protein. The observed dependence of the energetics of P+QA– on the concentration and composition of mobile ions is discussed in terms of binding and screening of protonatable groups and surface charges as dominant modes of electrostatic interaction between RC and salt.  相似文献   

8.
The FB iron-sulfur cluster is destroyed preferentially by treating Photosystem I complexes with HgCl2(Kojima Y, Niinomi Y, Tsuboi S, Hiyama T and Sakurai H (1987) Bot Mag 100: 243–53). When FB is 95% depleted but FAis quantitatively retained in cyanobacterial PS I complexes, the reduction potential of FA remains highly electronegative (Em=–530 mV, n=1), the EPR spectral and spin relaxation properties of FA and FXremain unchanged, but NADP+ photoreduction rates decline from 552 to 72 mol mg Chl–1 h–1.When FB is reconstituted with FeCl3, Na2S and -mercaptoethanol, NADP+photoreduction rates recover to 528 mol mg Chl–1 h–1. The correlation between the presence of FBand NADP+ photoreduction provides direct experimental evidence that this iron-sulfur cluster is required for electron throughput from cytochromec 6 to flavodoxin or ferredoxin in Photosystem I.Abbreviations Chl chlorophyll - DPIP dichlorophenolindophenol - PS I Photosystem I Published as Journal Series #11091 of the University of Nebraska Agricultural Research Division. This paper is dedicated to the memory of the late Professor Daniel Arnon, who is remembered for his gracious and generous encouragement of the senior author's early career.  相似文献   

9.
The effects of eight microelements (I, BO3 3–, MoO4 2–, Co2+, Cu2+, Mn2+, Fe2+, Zn2+) on the biosynthesis of camptothecin and the growth of suspension cultures of Camptotheca acuminata were studied. The increase of I to 25 M l–1, Cu2+ to 1 M l–1, Co2+ to 2 M l–1 and MoO4 2– to 10 M l–1 in Murashige and Skoog (MS) medium resulted in 1.66, 2.84, 2.53 and 2.04 times higher of camptothecin yield than that in standard MS medium respectively. Combined treatment of I (25 M l–1), Cu2+ (1 M l–1), Co2+ (2 M l–1) and MoO4 2– (10 M l–1) lead to improve cell dry weight, camptothecin content, and camptothecin yield to 30.56 g l–1, 0.0299%, and 9.15 mg l–1, respectively, which were 20.2, 208.9 and 273.8% increment respectively when compared with those of control.  相似文献   

10.
In isolated synaptosomes from rat brain, 100 M antimycin A and 10 M oxamic acid inhibit the32Pi-labeling of phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphatidylinositol-4-phosphate (PIP) by 90% and 95–99% respectively. 10 mM sodium fluoride inhibits the labeling by 50–60% and 10 mM A23187 inhibits the labeling by 63–70%. Phospholipase A2 inhibits the labeling of PIP2 and PIP by 93–94% and stimulates their degradation by 84–92%. Depolarization of synaptosomes with 75 mM K+ or 100 M veratrine decreases the labeling of PIP2 and PIP by 66–74%. The decreased labeling results in large part from the Ca2+-dependent degradation of32P-labeled PIP2 and PIP as shown by pulse-chase experiments in which PIP2 and PIP were prelabeled with32Pi. Depolarization of synaptosomes results in the stimulation of45Ca2+ uptake with the concomitant hydrolysis of PIP and PIP2. Addition of 1 mM Ca2+ accounts for 25% of the enhanced degradation whereas depolarization with 75 mM K+ accounts for 75% of the enhanced degradation of PIP2 and PIP. Depolarization with 100 mM veratrine results in a 223% increase in inositol trisphosphate as evidenced by stimulation of45Ca2+ uptake. EGTA (10mM) and Mg2+ (5–10 mM) inhibit the degradation of PIP and PIP2 and counteract the action of 1 mM Ca2+. Our data demonstrate that45Ca2+, Mg2+, and membrane depolarization play an important role in the turnover of membrane phosphatidylinositols.Abbreviations ATP adenosine triphosphate - Pi inorganic orthophosphate - PIP phosphatidylinositol-4-phosphate - PIP2 phosphatidylinositol-4,5,-bisphosphate - IP3 inositol-1,4,5-trisphosphate  相似文献   

11.
Summary ATP-dependent45Ca2+ uptake was investigated in purified plasma membranes from rat pancreatic acinar cells. Plasma membranes were purified by four subsequent precipitations with MgCl2 and characterized by marker enzyme distribution. When compared to the total homogenate, typical marker enzymes for the plasma membrane, (Na+,K+)-ATPase, basal adenylate cyclase and CCK-OP-stimulated adenylate cyclase were enriched by 43-fold, 44-fold, and 45-fold, respectively. The marker for the rough endoplasmic reticulum was decreased by fourfold compared to the total homogenate. Comparing plasma membranes with rough endoplasmic reticulum, Ca2+ uptake was maximal with 10 and 2 mol/liter free Ca2+, and half-maximal with 0.9 and 0.5 mol/liter free Ca2+. It was maximal at 3 and 0.2 mmol/liter free Mg2+ concentration, at an ATP concentration of 5 and 1 mmol/liter, respectively, and at pH 7 for both preparations. When Mg2+ was replaced by Mn2+ or Zn2+ ATP-dependent Ca2+ uptake was 63 and 11%, respectively, in plasma membranes; in rough endoplasmic reticulum only Mn2+ could replace Mg2+ for Ca2+ uptake by 20%. Other divalent cations such as Ba2+ and Sr2+ could not replace Mg2+ in Ca2+ uptake. Ca2+ uptake into plasma membranes was not enhanced by oxalate in contrast to Ca2+ uptake in rough endoplasmic reticulum which was stimulated by 7.3-fold. Both plasma membranes and rough endoplasmic reticulum showed cation and anion dependencies of Ca2+ uptake. The sequence was K+>Rb+>Na+>Li+>choline+ in plasma membranes and Rb+K+Na+>Li+>choline+ for rough endoplasmic reticulum. The anion sequence was ClBrI>SCN>NO 3 >isethionate >cyclamate>gluconate>SO 4 2– glutarate and Cl>Br>gluconate>SO 4 2– >NO 3 >I>cyclamateSCN, respectively. Ca2+ uptake into plasma membranes appeared to be electrogenic since it was stimulated by an inside-negative K+ and SCN diffusion potential and inhibited by an inside-positive diffusion potential. Ca2+ uptake into rough endoplasmic reticulum was not affected by diffusion potentials. We assume that the Ca2+ transport mechanism in plasma membranes as characterized in this study represents the extrusion system for Ca2+ from the cell that might be involved in the regulation of the cytosolic Ca2+ level.  相似文献   

12.
Amyloid beta-protein (A) is the major constituent of amyloid fibrils composing -amyloid plaques and cerebrovascular amyloid in Alzheimer's disease (AD). We studied the effect of metal cations on preformed fibrils of synthetic A by Thioflavin T (ThT) fluorescence spectroscopy and electronmicroscopy (EM) in negative staining. The amount of cross beta-pleated sheet structure of A 1–40 fibrils was found to decrease by metal cations in a concentration-dependent manner as measured by ThT fluorescence spectroscopy. The order of defibrillization of A 1–40 fibrils by metal cations was: Ca2+ and Zn2+ (IC50 = 100 M) > Mg2+ (IC50 = 300 M) > Al3+ (IC50 =1.1 mM). EM analysis in negative staining showed that A 1–40 fibrils in the absence of cations were organized in a fine network with a little or no amorphous material. The addition of Ca2+, Mg2+, and Zn2+ to preformed A 1–40 fibrils defibrillized the fibrils or converted them into short rods or to amorphous material. Al3+ was less effective, and reduced the fibril network by about 80 % of that in the absence of any metal cation. Studies with A 1–42 showed that this peptide forms more dense network of fibrils as compared to A 1–40. Both ThT fluorescence spectroscopy and EM showed that similar to A 1–40, A 1–42 fibrils are also defibrillized in the presence of millimolar concentrations of Ca2+. These studies suggest that metal cations can defibrillize the fibrils of synthetic A.  相似文献   

13.
In this work the effect of the neurotoxic amino acid sequence, A25–35, on brain mitochondrial permeability transition pore (PTP) was studied. For the purpose, the mitochondrial transmembrane potential (m), mitochondrial respiration and the calcium fluxes were examined. It was observed that A25–35, in the presence of Ca2+, decreased the m, the capacity of brain mitochondria to accumulate calcium and led to a complete uncoupling of the respiration. However, the reverse sequence of the peptide A25–35 (A35–25) did not promote the PTP. The alterations promoted by A35–25 and/or Ca2+ could be reversed when Ca2+ was removed by EGTA or when ADP plus oligomycin were present. The pre-treatment with CsA or ADP plus oligomycin prevented the m drop and preserved the capacity of mitochondria to accumulate Ca2+. These results suggest that A25–35 can promote the PTP induced by Ca2+.  相似文献   

14.
The effect of various metals and regucalcin, a calcium-binding protein isolated from rat liver cytosol, on (Ca2+–Mg2+)-ATPase activity in the plasma membranes of rat liver was investigated. Of various metals (Zn2+, Cu2+, Ni2+, Mn2+, Co2+ and Al3+; 100 M as a final concentration), Mn2+ and Co2+ increased markedly (Ca2+–Mg2+)-ATPase activity, while other metals had no effect. When Ca2+ was not added into enzyme reaction mixture, Mn2+ and Co2+ (25–100 M) did not significantly increase the enzyme activity, indicating that heavy metals act on Ca2+-stimulated phosphorylation of the enzyme. Meanwhile, regucalcin (0.25–1.0 M) caused a remarkable elevation of (Ca2+–Mg2+)-ATPase activity. This increase was not inhibited by the presence of 100 M vanadate, although the effects of Mn2+ and Co2+ (100 M) were inhibited by vanadate. Also, the inhibition of the Mn2+ and Co2+ effects by vanadate was not seen in the presence of regucalcin. Moreover, regucalcin (0.5 M) increased significantly the enzyme activity in the absence of Ca2+. This effect of regulcalcin was not altered by increasing concentrations of Ca2+ added, indicating that the regucalcin effect does not depend on Ca2+. The present results suggest that regucalcin activates directly (Ca2+–Mg2+)-ATPase in liver plasma membranes, and that the activation is not involved in the Ca2+-dependent phosphorylation of the enzyme.  相似文献   

15.
Nogueira  A.  Martinez  C.A.  Ferreira  L.L.  Prado  C.H.B.A. 《Photosynthetica》2004,42(3):351-356
Leaf gas exchange characteristics were measured in twenty woody species that differ in succession status ranging from pioneer species (PS) to late succession species (LS) in a Brazilian rain-reforestation ecosystem. Photon-saturated photosynthetic rate, calculated per either a leaf area (P NA) or a dry mass (P NM) basis, differed among species. P NA and P NM were highest in PS and lowest in LS. Variation among species was 3-fold (from 7 to 23 mol m–2 s–1) for P NA, and 5-fold (from 50 to 275 mol kg–2 s–1) for P NM. The highest P NA (23 mol m–2 s–1) and P NM (275 mol kg–2 s–1) values were recorded in PS Croton urucurana, while the lowest P NA (7 mol m–2 s–1) and P NM (50 mol kg–2 s–1) values were recorded in LS Aspidosperma cylindrocarpon. A considerable overlap was recorded between PS and LS in values of stomatal conductance (g s), transpiration rate (E), and leaf mass to area ratio (ALM). However, C. urucurana also showed highest g s and E. P NM was highly correlated with ALM in both PS and LS (r=–0.75 and –0.90, respectively). The high values of instantaneous transpiration efficiency (ITE) and intrinsic water use efficiency (WUEi) were also observed in the PS when compared with the LS.  相似文献   

16.
The suggestion that the electron acceptor A1 in plant photosystem I (PSI) is a quinone molecule is tested by comparisons with the bacterial photosystem. The electron spin polarized (ESP) EPR signal due to the oxidized donor and reduced quinone acceptor (P 870 + Q-) in iron-depleted bacterial reaction centers has similar spectral characteristics as the ESP EPR signal in PSI which is believed to be due to P 700 + A 1 - , the oxidized PSI donor and reduced A1. This is also true for better resolved spectra obtained at K-band (24 GHz). These same spectral characteristics can be simulated using a powder spectrum based on the known g-anisotropy of reduced quinones and with the same parameter set for Q- and A1 -. The best resolution of the ESP EPR signal has been obtained for deuterated PSI particles at K-band. Simulation of the A1 - contribution based on g-anisotropy yields the same parameters as for bacterial Q- (except for an overall shift in the anisotropic g-factors, which have previously been determined for Q-). These results provide evidence that A1 is a quinone molecule. The electron spin polarized signal of P700 + is part of the better resolved spectrum from the deuterated PSI particles. The nature of the P700 + ESP is not clear; however, it appears that it does not exhibit the polarization pattern required by mechanisms which have been used so far to explain the ESP in PSI.Abbreviations hf hyperfine - A0 A0 acceptor of photosystem I - A1 A1 acceptor of photosystem I - Brij-58 polyoxyethylene 20 cetyl ether - CP1 photosystem I particles which lack ferridoxin acceptors - ESP electron spin polarized - EPR electron paramagnetic resonance - I intermediary electron acceptor, bacteriopheophytin - LDAO lauryldimethylamine - N-oxide, P700 primary electron donor of photosystem I - PSI photosystem I - P700 T triplet state of primary donor of photosystem I - P870 primary donor in R. sphaeroides reaction center - Q quinore-acceptor in photosynthetic bacteria - RC reaction center  相似文献   

17.
The retention rate of the spin label 3-isothiocyanto methyl-2,2,5,5-tetramethyl-1-pyrrolidinyl oxyl spin label (proxyl) attached to the porcine N-acetyl-NPY peptide and the porcine N-acetyl-D-Trp32-NPY peptide at Lys4 was investigated using SK-N-MC neuroblastoma cell membranes containing the Y1 receptor. The release rate of the spin labeled peptides was monitored by electron spin resonance and the KD was determined by a direct radiolabeled NPY displacement binding assay. The analyses show that for the porcine [Ac-Tyr1N4-proxyl]-NPY, the KD was 8 × 10–10 M and koff was 2.7 × 10–4 sec–1 yielding a value for kon of 3.3 × 105 sec–1 M–1. The [Ac-Tyr1, N4-proxyl,-D-Trp32]-NPY antagonist ligand had a value of KD equal to 1.35 × 10–7 M and koff was 1.7 × 10–4 sec–1 leading to a value for kon of 1.2 × 103 sec–1 M–1. The difference in the kon rates of two orders of magnitude is interpreted as demonstrating the N-acetyl-N4 proxyl-D-Trp32-NPY ligand binding transition state to be of higher energy then for the unmodified NPY amino acid sequence.  相似文献   

18.
Mg2+, Ca2+, Mn2+, Zn2+, and Cu content of neurons from chick embryo cortex cultivated in chemically defined serum free growth medium was determined by energy dispersive X-ray fluorescence and atomic absorption spectroscopy. The intracellular volume of cultured neurons was determined to be 2.73 l/mg. Intracellular Mn2+, Fe2+, Zn2+, and Cu2+ in the cultivated neurons were 100–200 times the concentrations in the growth medium: Mg2+ and Ca2+ were 0.9 and 1.7 mM respectively, around 20 fold higher than in growth medium. Mg2+, Fe2+, Cu2+ and Zn2+ concentrations in neurons were in the range of ca. 300–600 M, approximately 2–3 times the values previously reported in glial cells; Ca2+ and Mn2+ content of the neurons were higher by 5 and 10 fold respectively compared to glial cells. In neurons, the subcellular distribution of Fe2+, Cu2+, and Mn2+ follows the rank order: cytosol>microsomes>mitochondria; for Zn2+ the distribution differs as following: cytosol >mitochondria>microsomes. Determination of the superoxide dismutase activities in the cultivated neurons indicated that the Mn2+ linked activity predominates whereas, the Cu-Zn dependent enzyme is dominant in glial cells. Enrichment of the culture medium with Mn2+ to 2.5 M enhanced the Mn-SOD by approximately 33% but Cu2+–Zn2+ enzyme activity was not modified. The high Mn2+ content, the capacity to accumulate Mn2+, and the predominancy of the Mn–SOD form observed in neurons is in accord with a fundamental functional role for this metal ion in this type of brain cells.  相似文献   

19.
Summary High levels of glutamine synthetase, detected using both a biosynthetic assay (P i release from ATP) and a -glutamyl transferase assay, are present in aerobically grown N2-fixing cultures of Anabaena cylindrica. The enzyme is soluble, has a pH optimum of 6.5–7.5, with a peak at 7.1–7.2 (biosynthetic activity) or 6.9 (transferase activity), and a temperature optimum at 30°C–40°C. Partially purified preparations are stable in air at 5°C for at least 3 days. Mg2+, Mn2+, Co2+ and Ca2+ support high rates of biosynthetic activity, Zn2+ is less effective and Cu2+ and Ba2+ are ineffective.Enzyme activity is regulated at several levels: possibly by repression and derepression of the enzyme in response to NH4 + level; by variation in the Mn2+: ATP ratio with optimum activity at a 1:1 ratio; by feed-back inhibition which may be of a cumulative type. The consensus of the evidence suggests the absence of a covalent enzyme modification of the type found in E. coli. Glutamine synthetase levels are almost twice as high on a protein basis in the heterocysts as in the vegetative cells. Apparent K m values for whole filaments for NH4 + and glutamate in the biosynthetic reactions are 1 mM and 2 mM respectively.  相似文献   

20.
The production of erythritol and the erythritol yield from glucose by Torula sp. were improved, in increasing order, by supplementing with 10 mg MnSO44H2O l–1, 2 mg CuSO45H2O l–1, and both 10 mg MnSO44H2O l–1 and 2 mg CuSO45H2O l–1. Mn2+ decreased the intracellular concentration of erythritol, whereas Cu2+ increased the activity of erythrose reductase in cells. These results suggest that Mn2+ altered the permeability of cells, whereas Cu2+ increased the activity of erythrose reductase in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号