首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We discovered that an Au(III)-DNA coordinate complex, Au(III)(DNA-base)2(amine)l, are formed by laser ablation of Au nanoparticles in an aqueous solution containing DNA molecules in the presence of amines and multi-valent cations, where l represents an unknown ligand (either amine or water). Optical absorption spectrum of the solution after laser ablation exhibited a 360 nm absorption peak assigned to ligand→Au(III) charge transfer (LMCT) band of the coordinate complex. The complex is considered to be formed as follows: 1) the DNA molecules are neutralized by binding the multi-valent cations to their negatively charged phosphate groups, and adsorbed on the surface of the Au nanoparticles by a hydrophobic interaction, 2) Au(III) ions are liberated from the Au nanoparticles by laser ablation, and 3) an Au(III) ion reacts with amine and two DNA bases of a DNA molecule into an Au(III)(DNA-base)2(amine)l.  相似文献   

2.
Chen  Xiaojuan  Wen  Rui  Zhang  Lisheng  Lahiri  Abhishek  Wang  Peijie  Fang  Yan 《Plasmonics (Norwell, Mass.)》2014,9(4):945-949

In this paper, we highlight the formation of Ag/Au core-shell nanoparticles at room temperature by using a low-power laser. We have investigated the plasmon-induced reduction of Ag+ ions on bare Au nanoparticles synthesized by laser ablation technique, and citrate-capped Au nanoparticles synthesized by chemical method. It is demonstrated that citrate plays an important role for the reduction of silver ions. The citrate gets oxidized by the ‘hot’ holes produced due to the surface plasmon resonance (SPR) of the Au nanoparticles which then reduces the Ag+ ions to Ag. The importance of excitation laser wavelength is also demonstrated to facilitate the reduction process.

  相似文献   

3.
Lou X  Wang C  He L 《Biomacromolecules》2007,8(5):1385-1390
We report here a direct surface-grafting approach to forming DNA-containing polymer shells outside of Au nanoparticles using aqueous atom transfer radical polymerization (ATRP). In this approach, DNA molecules were immobilized on Au particles to introduce ATRP initiators on the surface. The same DNA molecules also acted as particle stabilizers through electrostatic repulsion and allowed particles to stay suspended in water. The immobilized ATRP initiators prompted polymer chain growth under certain conditions to form thick polymer shells outside of the particles. The formation of DNA-polymer hybrids outside of Au nanoparticles was characterized using absorption spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), and gel electrophoresis. The presence of thick polymer shells improved particle stability in high ionic strength media, whereas particles with the DNA coating only aggregated. A visible color difference between these two particle solutions was clearly observed, providing the basis for DNA sensing in homogeneous solutions.  相似文献   

4.
DNA represents the primary target for platinum antitumor metal complexes and is the probable target for newly developed cytotoxic gold(III) complexes. To test this hypothesis the reactions with calf thymus DNA of five representative gold(III) complexes--namely [Au(en)(2)]Cl(3), [Au(dien)Cl]Cl(2), [Au(cyclam)](ClO(4))(2)Cl, [Au(terpy)Cl]Cl(2) and [Au(phen)Cl(2)]Cl--were analyzed in vitro through various physicochemical techniques including circular dichroism, absorption spectroscopy, DNA melting, and ultradialysis. It is shown that all tested complexes interact with DNA and modify significantly its solution behavior. The solution conformation of DNA is affected to variable extents by the individual complexes as shown by CD titration experiments. Notably, in all cases, the gold(III) chromophore is not largely perturbed by addition of calf thymus DNA ruling out occurrence of gold(III) reduction. Ultradialysis experiments point out that the binding affinity of the various complexes for the DNA double helix is relatively low; in most cases the gold(III)/DNA interaction is electrostatic in nature and reversible. The implications of these findings for the mechanism of action of antitumor gold(III) complexes are discussed.  相似文献   

5.
6.
Oxidative DNA damage was investigated by free radicals generated from HEPES (2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid) buffer, which is widely used in biochemical or biological studies, in the presence of Au(III). The effect of free radicals on the DNA damage was ascertained by gel electrophoresis, electron spin resonance (ESR) spectroscopy and circular dichroism (CD) spectroscopy. ESR results indicated the generation of nitrogen-centered cationic free radicals from the HEPES in the presence of Au(III) which cause the DNA damage. No ESR spectra were observed for phosphate, tris(hydroxymethyl)aminomethane (Tris-HCl) and acetate buffers in the presence of Au(III) or for HEPES buffer in the presence of other metal ions such as Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) or [Au(III)(TMPyP)](5+) and [Pd(II)(TMPyP)](4+), where [H(2)(TMPyP)](4+) denotes tetrakis(1-methylpyridium-4-yl)porphyrin. Consequently, no DNA damage was observed for these buffer agents (e.g., phosphate, Tris-HCl or acetate) in the presence of Au(III) or for HEPES in the presence of other metal ions or the metalloporphyrins mentioned above. No detectable inhibitory effect on the DNA damage was observed by using the typical scavengers of reactive oxygen species (ROS) ()OH, O(2)(-) and H(2)O(2). This non-inhibitory effect indicated that no reactive oxygen species were generated during the incubation of DNA with HEPES and Au(III). The drastic change in CD spectra from positive ellipticity to negative ellipticity approximately at 270 nm with increasing concentration of Au(III) also indicated the significant damage of DNA. Only HEPES or Au(III) itself did not damage DNA. A mechanism for the damaging of DNA is proposed.  相似文献   

7.
Au/Ag core/shell nanoparticles are fabricated by laser-ablating Ag plates in Au colloid solution. The absorption band is found to blue shift with increasing ablation time. Mie theory calculations show that the shift is caused by the increase of the Ag shell thickness. The average Ag shell thickness can be determined from the measured absorption peak. Using the plasmon hybridization approach, we show that the absorption band around 510 nm originates from an anti-bonding mode ω ?+ caused by the interaction between a bonding Ag shell mode ω ?? and Au sphere mode ω S-Au. The blue shift of the ω ?+ mode with the increase of Ag shell thickness is also well predicted by the hybridization theory.  相似文献   

8.
The digold complex [Au(2)(micro-G)(micro-dmpe)](KBr)(0.75) x 2H(2)O (dmpe=1,2-bis(dimethylphosphino)ethane (1)) has been prepared by nucleophilic attack of the guaninate dianion on the gold(I) atoms of [(AuBr)(2)(micro-dmpe)] and has been characterised by X-ray crystallography and spectroscopic studies. The structure of 1 consists of dinuclear nine-membered ring molecules, K(+) cations, Br(-) anions and water molecules, all of them involved in either weak K....O or hydrogen bonding interactions. Within the cyclic dinuclear molecules, gold(I) atoms are bridged on one side by the diphosphine ligand and on the other side by a doubly deprotonated guaninate anion coordinated through neighbouring N3 and N9 nitrogen atoms, with gold(I)....gold(I) interactions of 3.030(2) A. This is the first X-ray example showing an N3,N9-bridging mode for guanine. There are two types of K(+) cations in the structure, K1 and K2. The former interacts with water molecules to form a unique [K(H(2)O)(3)(micro-H(2)O)(2)K(H(2)O)(3)](2+) dipotassium unit whereas K2 interact with the O6 atom of the guaninate ligands and oxygen atoms of the dipotassium unit leading to a chain running along the c-axis. Each chain is interdigitated with four neighbouring ones to give rise to an intricate network in which Br1, Br2 and [K(H(2)O)(3)(micro-H(2)O)(2)K(H(2)O)(3)](2+) fit snugly into cavities defined by digold molecules. Complex 1 luminescence at room temperature and 77 K in the solid state with excitation maxima at 385 nm and emission maxima at 451.8 and 448.7 nm, respectively. The emission spectrum of a saturated solution of 1 in DMSO (dimethyl sulfoxide) shows the maximum at about 440 nm.  相似文献   

9.
[Au(dppz)(2)]Cl(3) was synthesized by the reaction of HAuCl(4) in excess of the dypirido[3,2-a: 2,3-c]phenazine (dppz) ligand. This complex was characterized by elemental analysis, fast atom bombardment (FAB) mass, NMR, UV-visible and IR spectroscopies. DNA-gold complex interactions were studied by spectroscopic titrations, viscosity measurements and electrophoretical assays. These studies showed that the gold complex interacts with DNA by intercalation mode. These observations, led us to carry out biological tests on cultures of promastigotes of Leishmania (L) mexicana. [Au(dppz)(2)]Cl(3) induced a dose dependent antiproliferative activity with minimal inhibitory concentration (MIC) of 3.4nM and lethal doses LD(26) of 17nM for 48h. These findings suggest that a very potent leishmanicidal activity could be associated to the cellular processes involving parasite DNA, constituting a new promising chemotherapeutic alternative in the search for definitive leishmaniasis cure.  相似文献   

10.
11.
The hydroxamate-type artificial siderophore, tris[2-{3-(N-acetyl-N-hydroxamino)propylamido}propyl]aminomethane (TAPPA) and its Fe(III) complex, Fe(III)-TAPPA were prepared and characterized by several spectroscopic methods. Fe(III)-TAPPA exhibits biological activity for the hydroxamate-type siderophore auxotrophic microorganism, Microbacterium flavescens, suggesting that Fe(III)-TAPPA can permeate the cell membrane of the microorganism. The adsorption of the Fe(III)-siderophore complex onto a deposited Au substrate was achieved by a stepwise self-assembling method. The modification of Fe(III)-TAPPA on the surface was confirmed from the cyclic voltammogram of the resultant Au electrode, Fe(III)-TAPPA/Au. The adsorption experiments of M. flavescens with Fe(III)-TAPPA/Au were monitored by optical, scanning electron, and atomic force microscopy and quartz crystal microbalance (QCM) measurements. These results clearly indicate that Fe(III)-TAPPA/Au can immobilize M. flavescens. This adsorption characteristic is due to the interaction between Fe(III)-TAPPA on an Au electrode and a receptor/binding protein within the cell membrane.  相似文献   

12.
Programmed cell death‐ligand 1 (PD‐L1) is an important predictive biomarker. The detection of PD‐L1 can be crucial for patients with advanced cancer where the use of immunotherapy is considered. Here, we demonstrate the use of immuno‐SERS microscopy (iSERS) for localizing PD‐L1 on single cancer SkBr‐3 cells. A central advantage of iSERS is that the disturbing autofluorescence from cells and tissues can be efficiently minimized by red to near‐infrared laser excitation. In this study we employed Au/Au core/satellite nanoparticles as SERS nanotags because of their remarkable signal brightness and colloidal stability upon red laser excitation. False‐color iSERS images of the positive and negative controls clearly reveal the specific localization of PD‐L1 with SERS nanotag‐labeled antibodies.   相似文献   

13.
Water-soluble gold nanoparticles with an average diameter of 5 nm were prepared with carboxylic acid terminated thiol ligands. These ligands contain zero to eight methylene moieties. CdTe nanocrystals with an average diameter of 5 nm were synthesized with aminoethanethiol capping. These nanocrystals displayed characteristic absorption and emission spectra of quantum dots. The amine terminated CdTe nanocrystals and carboxylic-acid-terminated gold nanoparticles were conjugated in aqueous solution at pH 5.0 by electrostatic interaction, and the conjugation was monitored with fluorescence spectroscopy. The CdTe nanocrystals were significantly quenched upon binding with gold nanoparticles. The quenching efficiency was affected by both the concentration of gold nanoparticles in the complex and the length of spacer between the CdTe nanocrystal and Au nanoparticle. The observed quenching was explained using Förster resonance energy transfer (FRET) mechanism, and the Förster distance was estimated to be 3.8 nm between the donor–acceptor pair.  相似文献   

14.
The partially hydrophilic and hydrophobic tripodal ligands, tris(hydroxy-2-benzimidazolylmethyl)amine L1h and tris(2-benzimidazolyl)amine L1 were used for the preparation of biomimetic complex of carbonic anhydrase. The CO(2) hydration using [L1hZn(OH)]ClO(4).1.5H(2)O provided the zinc-bound and free HCO(3)(-)s, which were formed by nucleophilic attack of Zn-OH toward CO(2) in dimethyl sulfoxide (DMSO). The phenolic OH in L1h can recognize water molecules through hydrogen bonds to facilitate the collection of the water molecules around a biomimetic zinc compound; the molecular structure of [L1hZn(OH)](+) was revealed. The packing diagram has demonstrated the all the water molecules are hydrogen bonded to each phenolic OH. The nucleophilic attack of zinc-bound OH(-) to substrate is used to catalyze the CO(2) hydration and phosphoester hydrolysis. The carbonic anhydrase model compound [L1Zn(OH(2))](2+) was applied for the hydrolysis of phosphoesters, parathion and bis(p-nitrophenyl)phosphate (BNPP(-)). The low reactivity of [L1Zn(OH)](+) for parathion hydrolysis is attributed to the stability of the intermediate [L1Zn(OP(S)(OEt)(2))](+). Since the structures of the intermediates [L1Zn(OH(2))](BNPP)(2) (1) and [L1Zn(OP(S)(OEt)(2))]ClO(4) (2) formed on the way of hydrolysis are too stable to realize the catalytic cycle and are not active for hydrolysis, carbonic anhydrase model compound [L1Zn(OH(2))](2+) was not suitable for phosphoester hydrolysis; the zinc model compound surrounded by three benzimidazolyl groups is used to have the steric hindrance for bulky substrate, such as parathion and BNPP(-).  相似文献   

15.
This study reports on the capability of the desert plant Chilopsis linearis (Cav.) Sweet (desert willow) to uptake gold (Au) from gold-enriched media at different plant-growth stages. Plants were exposed to 20, 40, 80, 160, and 320 mg Au L(-1) in agar-based growing media for 13, 18, 23, and 35 d. The Au content and oxidation state of Au in the plants were determined using an inductively coupled plasma/optical emission spectrometer (ICP/OES) and X-ray absorption spectroscopy (XAS), respectively. Gold concentrations ranging from 20 to 80 mg Au L(-1) did not significantly affect Chilopsis linearis plant growth. The concentration of gold in the plants increased as the age of the plant increased. The Au concentrations in leaves for the 20, 40, 80, and 160 mg Au L(-1) treatments were 32, 60, 62, and 179 mg Au kg(-1) dry weight mass, respectively, demonstrating the gold uptake capability of desert willow. The XAS data indicated that desert willow produced gold nanoparticles within plant tissues. Plants exposed to 160 mg Au L(-1) formed nanoparticles that averaged approximately 8, 35, and 18 A in root, stem, and leaves, respectively. It was observed that the average size of the Au nanoparticles formed by the plants is related to the total Au concentration in tissues and their location in the plant  相似文献   

16.
The recently developed laser‐induced cell transfection mediated by Au nanoparticles is a promising alternative to the well‐established lipid‐based transfection or to electroporation. Optoporation is based on the laser plasmonic heating of nanoparticles located near the cell membrane. However, the uncontrollable cell damage from intense laser pulses and from random attachment of nanoparticles may be crucial for transfection. We present a novel plasmonic optoporation technique that uses Au nanostar layers immobilized in culture microplate wells. HeLa cells were grown directly on Au nanostar layers, after which they were subjected to continuous‐wave 808 nm laser irradiation. An Au monolayer density ~15 μg/cm2 and an absorbed energy of about 15 to 30 J were found to be optimal for optoporation. Propidium iodide molecules were used as model penetrating agent. The transfection efficiency evaluated using fluorescence microscopy for HeLa cells transfected with pGFP under optimized optoporation conditions (95% ± 5%) was similar to the efficiency of TurboFect. The technique's efficiency (295 ± 10 relative light units, RLU), demonstrated by transfecting HeLa cells with the pCMV‐GLuc 2 control plasmid, was greater than that obtained by transfection of HeLa cells with the TurboFect agent (220 ± 10 RLU). The cell viability in plasmonic optoporation (92% ± 7%), too, was greater than that in transfection with TurboFect (75% ± 7%).   相似文献   

17.
Bacteria–Au interactions control the fate of Au in a variety of geologic systems. Although previous studies have determined that non-metabolizing Bacillus subtilis cells can remove Au(III) from solution via cell surface adsorption reactions, and that upon removal Au(III) is rapidly reduced to Au(I) and remains bound to the cell surface, the mechanism of Au(III) removal by B. subtilis is poorly understood. This study provides further constraints on the mechanisms responsible for Au(III) removal by B. subtilis by conducting batch Au(III) removal experiments as a function of pH and Au loading (Au:biomass ratio) using biomass with and without two different types of treatment: (1) a treatment to remove extracellular polymeric substances (EPS) from the biomass, and (2) a treatment to irreversibly block surface sulfhydryl sites from Au binding. The experimental results suggest that Au(III) removal can be attributed primarily to Au complexation with bacterial sulfhydryl sites, but that Au–amino binding is also important under some conditions. Our experiments also suggest that Au–sulfhydryl binding occurs predominantly on EPS molecules produced by B. subtilis, and that Au–amino binding is also important and is located within the bacterial cell envelope. These findings are the first to constrain the location of sulfhydryl-binding sites for B. subtilis biomass, and they are the first to demonstrate the important role played by bacterial EPS in the process of Au adsorption and reduction by bacteria.  相似文献   

18.
This paper reports the creation of Au nanoparticles (AuNP) that are soluble in aqueous solution over a broad range of pH and ionic strength values and that are capable of selective uptake by folate receptor positive (FR+) cancer cells. A novel poly(ethylene glycol) (PEG) construct with thioctic acid and folic acid coupled on opposite ends of the polymer chain was synthesized for targeting the AuNP to FR+ tumor cells via receptor-mediated endocytosis. These folic acid-PEG-thioctic acid conjugates were grafted onto 10-nm-diameter Au particles in aqueous solution. The resulting folate-PEG-coated nanoparticles do not aggregate over a pH range of from 2 to 12 and at electrolyte concentrations of up to 0.5 M NaCl with particle concentrations as high as 1.5 x 10(13) particles/mL. Transmission electron microscopy was used to document the performance of these coated nanoparticles in cell culture. Selective uptake of folate-PEG grafted AuNPs by KB cells, a FR+ cell line that overexpress the folate receptor, was observed. AuNP uptake was minimal in cells that (1) do not overexpress the folate receptor, (2) were exposed to AuNP lacking the folate-PEG conjugate, or (3) were co-incubated with free folic acid in large excess relative to the folate-PEG grafted AuNP. Understanding this process is an important step in the development of methods that use targeted metal nanoparticles for tumor imaging and ablation.  相似文献   

19.
The direct attachment and growth of gold or silver nanoparticles (NPs) on indium tin oxide (ITO) surfaces was demonstrated using a simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method by chemical reduction of the precursor metal salts with dopamine aqueous solution. Ag NPs on ITO substrate were approximately spherical with an average particle size of about 57 nm, but had a wide particle size distribution. Compared with Ag NPs, under the same 10 SILAR cycles, Au NPs have higher density packing and smaller average particle size of about 36 nm. XRD characterization and surface chemistry analysis confirmed the formation of Ag and Au NPs on ITO substrate with small amounts of dopamine-quinone adsorbed on the surface of them. Although Au NPs showed characteristic plasmon absorption, this did not result in performance enhancement in solar cell with the structure of ITO/ZnO/PCPDTBT:[6,6]-phenyl C71/MoO3/Ag because of the energy level mismatch between ZnO and dopamine molecules adsorbed on the surface of metal NPs.  相似文献   

20.
Kang J  Li X  Wu G  Wang Z  Lu X 《Analytical biochemistry》2007,364(2):165-170
DNA hybridization on the Au(nano)-DNA modified glassy carbon electrode (GCE) was investigated. The thiol modified probe oligonucleotides (SH-ssDNA) at the 5' phosphate end were assembled on the Au(nano)-DNA modified GCE surface. The electrochemical response of the probe immobilization and hybridization with target DNA was measured by differential pulse voltammetry (DPV) using methylene blue (MB) as the electroactive indicator. Gold nanoparticles can be dispersed effectively on the GCE surface in the presence of calf thymus DNA. Au(nano)-DNA modified GCE could greatly increase the active sites and enhance the response signal during immobilization and hybridization. The hybridization amount of target DNA could be greatly increased. The linear detection range of Au(nano)-DNA electrode for the complementary 21-mer oligonucleotide (cDNA) was achieved from 1.52 x 10(-10) to 4.05 x 10(-8) mol L(-1). The detection limit could reach the concentration of 10(-10) mol/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号