首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initiating events that lead to the induction of apoptosis mediated by the chemopreventative agent beta-phenyethyl isothiocyanate (PEITC) have yet to be elucidated. In the present investigation, we examined the effects of PEITC on mitochondrial function and apoptotic signaling in hepatoma HepG2 cells and isolated rat hepatocyte mitochondria. PEITC induced a conformational change in Bax leading to its translocation to mitochondria in HepG2 cells. Bax accumulation was associated with a rapid loss of mitochondrial membrane potential (Deltapsim), impaired respiratory chain enzymatic activity, release of mitochondrial cytochrome c and the activation of caspase-dependent cell death. Caspase inhibition did not prevent Bax translocation, the release of cytochrome c or the loss of Deltapsim, but blocked caspase-mediated DNA fragmentation and cell death. To determine whether PEITC dependent Bax translocation caused loss of Deltapsim by the activation of the mitochondrial permeability transition (MPT), we examined the effects of PEITC in isolated rat hepatocyte mitochondria. Interestingly, PEITC did not induce MPT in isolated rat mitochondria. Accordingly, using pharmacological inhibitors of MPT namely cyclosporine A, trifluoperazine and Bongkrekic acid we were unable to block PEITC mediated apoptosis in HepG2 cells, this suggesting that mitochondrial permeablisation is a likely consequence of Bax dependent pore formation. Taken together, our data suggest that mitochondria are a key target in PEITC induced apoptosis in HepG2 cells via the pore forming ability of pro-apoptotic Bax.  相似文献   

2.
3.
4.
Proteome analysis of Jurkat T cells was performed in order to identify proteins that are modified during apoptosis. Subtractive analysis of two-dimensional gel patterns of apoptotic and nonapoptotic cells revealed differences in 45 protein spots. 37 protein spots of 21 different proteins were identified by peptide mass fingerprinting using matrix-assisted laser desorption/ionization mass spectrometry. The hnRNPs A0, A2/B1, A3, K, and R; the splicing factors p54(nrb), SRp30c, ASF-2, and KH-type splicing regulatory protein (FUSE-binding protein 2); and alpha NAC, NS1-associated protein 1, and poly(A)-binding protein 4 were hitherto unknown to be involved in apoptosis. The putative cleavage sites of the majority of the proteins could be calculated by the molecular masses and isoelectric points in the two-dimensional electrophoresis gel, the peptide mass fingerprints, and after translation by treatment with recombinant caspase-3. Remarkably, 15 of the 21 identified proteins contained the RNP or KH motif, the best characterized RNA-binding motifs.  相似文献   

5.
Protein arginine methylation is found in many nucleic acid binding proteins affecting numerous cellular functions. In this study we identified methylarginine-containing proteins in HeLa cell extracts by two-dimensional electrophoresis and immunoblotting with a methylarginine-specific antibody. Protein spots with matched protein stain and blotting signals were analyzed by mass spectrometry. The identities of 12 protein spots as 11 different proteins were suggested. Known methylarginine-containing proteins such as hnRNP A2/B1, hnRNP A1, hnRNP G and FUS were identified, indicating the feasibility of our approach. However, four highly abundant metabolic enzymes that might co-electrophorese with methylarginine-containing proteins were also identified. Other nucleic acid binding proteins hnRNP M, hnRNP I and NonO protein were identified. Recombinant hnRNP M and a peptide with the RGG sequence in hnRNP M could be further methylated in vitro. The immunoblotting results of immunoprecipitated hnRNP I and NonO protein are consistent with arginine methylation in both proteins. In this study we identified methylarginine-containing proteins in HeLa cells through proteomic approaches and the method is fast and robust for further applications.  相似文献   

6.
Granule exocytosis by cytotoxic lymphocytes is the key mechanism to eliminate virus-infected cells and tumor cells. These lytic granules contain the pore-forming protein perforin and a set of five serine proteases called granzymes. All human granzymes display distinct substrate specificities and induce cell death by cleaving critical intracellular death substrates. In the present study, we show that all human granzymes directly cleaved the DNA/RNA-binding protein heterogeneous nuclear ribonucleoprotein K (hnRNP K), designating hnRNP K as the first known pan-granzyme substrate. Cleavage of hnRNP K was more efficient in the presence of RNA and occurred in two apparent proteolysis-sensitive amino acid regions, thereby dissecting the functional DNA/RNA-binding hnRNP K domains. HnRNP K was cleaved under physiological conditions when purified granzymes were delivered into living tumor cells and during lymphokine-activated killer cell-mediated attack. HnRNP K is essential for tumor cell viability, since knockdown of hnRNP K resulted in spontaneous tumor cell apoptosis with caspase activation and reactive oxygen species production. This apoptosis was more pronounced at low tumor cell density where hnRNP K knockdown also triggered a caspase-independent apoptotic pathway. This suggests that hnRNP K promotes tumor cell survival in the absence of cell-cell contact. Silencing of hnRNP K protein expression rendered tumor cells more susceptible to cellular cytotoxicity. We conclude that hnRNP K is indispensable for tumor cell viability and our data suggest that targeting of hnRNP K by granzymes contributes to or reinforces the cell death mechanisms by which cytotoxic lymphocytes eliminate tumor cells.  相似文献   

7.
The growth and development of plant tissues is associated with an ordered succession of cellular processes that are reflected in the appearance and disappearance of proteins. The control of the kinetics of protein turnover is central to how plants can rapidly and specifically alter protein abundance and thus molecular function in response to environmental or developmental cues. However, the processes of turnover are largely hidden during periods of apparent steady-state protein abundance, and even when proteins accumulate it is unclear whether enhanced synthesis or decreased degradation is responsible. We have used a (15)N labeling strategy with inorganic nitrogen sources coupled to a two-dimensional fluorescence difference gel electrophoresis and mass spectrometry analysis of two-dimensional IEF/SDS-PAGE gel spots to define the rate of protein synthesis (K(S)) and degradation (K(D)) of Arabidopsis cell culture proteins. Through analysis of MALDI-TOF/TOF mass spectra from 120 protein spots, we were able to quantify K(S) and K(D) for 84 proteins across six functional groups and observe over 65-fold variation in protein degradation rates. K(S) and K(D) correlate with functional roles of the proteins in the cell and the time in the cell culture cycle. This approach is based on progressive (15)N labeling that is innocuous for the plant cells and, because it can be used to target analysis of proteins through the use of specific gel spots, it has broad applicability.  相似文献   

8.
9.
We reported previously that NSC606985, a camptothecin analogue, induces apoptosis of acute myeloid leukemia (AML) cells through proteolytic activation of protein kinase Cdelta. Here, we analyzed protein expression profiles of fractionated nuclei, mitochondria, raw endoplasmic reticula, and cytosols of NSC606985-induced apoptotic AML cell line NB4 cells by two-dimensional electrophoresis combined with MALDI-TOF/TOF tandem mass spectrometry. In total, 90 unique deregulated proteins, including 16 compartment-compartment translocated ones, were identified. They contributed to multiple functional activities such as DNA damage repairing, chromosome assembly, mRNA processing, biosynthesis, modification, and degradation of proteins. More interestingly, several increased oxidative stress-related proteins mainly presented in mitochondria, while upregulated glycolysis proteins mainly occurred in the nuclei. With their functional analyses, the possible roles of these deregulated proteins in NSC606985-induced apoptosis were discussed. Collectively, these discoveries would shed new insights for systematically understanding the mechanisms of the camptothecin-induced apoptosis.  相似文献   

10.
Isothiocyanates (ITCs) found in cruciferous vegetables, including benzyl-ITC (BITC), phenethyl-ITC (PEITC), and sulforaphane (SFN), inhibit carcinogenesis in animal models and induce apoptosis and cell cycle arrest in various cell types. The biochemical mechanisms of cell growth inhibition by ITCs are not fully understood. Our recent study showed that ITC binding to intracellular proteins may be an important initiating event for the induction of apoptosis. However, the specific protein target(s) and molecular mechanisms were not identified. In this study, two-dimensional gel electrophoresis of human lung cancer A549 cells treated with radiolabeled PEITC and SFN revealed that tubulin may be a major in vivo binding target for ITC. We examined whether binding to tubulin by ITCs could lead to cell growth arrest. The proliferation of A549 cells was significantly reduced by ITCs, with relative activities of BITC > PEITC > SFN. All three ITCs also induced mitotic arrest and apoptosis with the same order of activity. We found that ITCs disrupted microtubule polymerization in vitro and in vivo with the same order of potency. Mass spectrometry demonstrated that cysteines in tubulin were covalently modified by ITCs. Ellman assay results indicated that the modification levels follow the same order, BITC > PEITC > SFN. Together, these results support the notion that tubulin is a target of ITCs and that ITC-tubulin interaction can lead to downstream growth inhibition. This is the first study directly linking tubulin-ITC adduct formation to cell growth inhibition.  相似文献   

11.
Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. A double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.  相似文献   

12.
13.
The dinoflagellate metabolite yessotoxin (YTX) is produced by several species of algae and accumulates in marine food chains, leading to concerns about possible affects on aquaculture industries and human health. In mice used for toxicity testing, YTX is lethal by the intraperitoneal route, but is considerably less toxic when orally administered. The mode of action of YTX and its potential effect on humans is unclear and we therefore conducted the first proteomic analysis of the effects of this compound. We used 2‐DE to examine protein changes in HepG2 cell cultures exposed to 1.4 μM YTX for 3, 12.5, 18 and 24 h. After selecting proteins that changed more than three‐fold after YTX exposure, 55 spots were deemed significantly affected by the toxin (p<0.05). Major groups of affected proteins include members from the heterogeneous nuclear ribonucleoprotein (hnRNP), lamin, cathepsin and heat shock protein families that often are associated with apoptosis. We therefore confirmed apoptosis using Annexin‐V‐FLUOS staining of phosphatidylserine exposed at the surface of apoptotic cells. Ingenuity pathways analysis also indicated effects on pathways involved in protein processing, cell cycling and cell death.  相似文献   

14.
Thiede B  Siejak F  Dimmler C  Rudel T 《Proteomics》2002,2(8):996-1006
Jurkat T cells induced to undergo apoptosis by the CD95(Fas/Apo-1) pathway were investigated by proteome analysis. The most prominent differing protein spots of apoptotic and nonapoptotic cells were identified as various heterogeneous ribonuclear proteins (hnRNPs) and Rho guanin nucleotide dissociation inhibitor (GDI) 2. In apoptotic cells, four spots slightly differing in molecular mass and/or isoelectric point were identified as Rho GDI 2 with the mass and pI as expected after caspase-3 cleavage near the N-terminus. Subcellular proteome analysis revealed that Rho GDI 2 was highly enriched in the cytosolic fraction, present in minor amounts in the nuclear fraction and absent from the mitochondrial fraction. In apoptotic cells however, the spots representing processed and modified Rho GDI 2 were found in the cytosol, in the nucleus and also the mitochondria at different spot positions. In addition, twelve different hnRNPs were identified to be altered after induction of cell death of which hnRNPs A/B, D, F, H, I and L were hitherto unknown to be modified during apoptosis. Most of the hnRNP spots were found in the nucleus of nonapoptotic cells, whereas these proteins, either modified or unmodified, relocated to the cytosol and/or the mitochondria in apoptotic cells. Our results demonstrate that modification of proteins during apoptosis is often accompanied by their relocalisation between cellular compartments.  相似文献   

15.
We investigated the global distribution of methylaccepting proteins in lymphoblastoid cells by two-dimensional (2-D) gel electrophoresis. The 2-D electrophoreograms of normal and hypo-methylation (cells grown with a methyltransferase inhibitor adenosine dialdehyde) protein extracts did not exhibit significant differences. However, in vitro methylation of the hypomethylated extracts in the presence of the methyl-group donor S-adenosyl-[methyl-3H]-methionine revealed close to a hundred signals. Less than one-fifth of the signals could be correlated with protein stains, indicating that most of the methylaccepting proteins are low abundant ones. We analyzed six of the spots that can be correlated with protein stains and suggested their identities. Among these putative protein methylacceptors, three are heterogeneous nuclear ribonucleoproteins (hnRNPA2/B1 and hnRNP K) that are reportedly methylated in their arginine- and glycine-rich RGG motifs.  相似文献   

16.
Ormeloxifen is a nonsteroidal selective estrogen receptor modulator (SERM) and has been shown to possess anticancer activities in breast and uterine cancer. Here, we show that ormeloxifen induces apoptosis in dose-dependent manner in a variety of leukemia cells, more strikingly in K562. 2-DE-gel electrophoresis of K562 cells induced with ormeloxifen showed that 57 and 30% of proteins belong to apoptosis and cell-cycle pathways, respectively. Our data demonstrate that ormeloxifen-induced apoptosis in K562 cells involves activation of extracellular signal-regulated kinases (ERKs) and subsequent cytochrome c release, leading to mitochondria-mediated caspase-3 activation. Ormeloxifen-induced apoptosis via ERK activation was drastically inhibited by prior treatment of K562 cells with ERK inhibitor PD98059. Ormeloxifen also inhibits proliferation of K562 cells by blocking them in G0-G1 phase by inhibiting c-myc promoter via ormeloxifen-induced MBP-1 (c-myc promoter-binding protein) and upregulation of p21 expression. We further show that ormeloxifen-induced apoptosis in K562 is translatable to mononuclear cells isolated from chronic myeloid leukemia (CML) patients. Thus, ormeloxifen induces apoptosis in K562 cells via phosphorylation of ERK and arrests them in G0-G1 phase by reciprocal regulation of p21 and c-myc. Therefore, inclusion of ormeloxifen in the therapy of chronic myeloid leukemia can be of potential utility.  相似文献   

17.
18.
19.
The phosphorylation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) is thought to play an important role in cell regulation and signal transduction. However, the relationship between hnRNP K phosphorylation and cellular events has only been indirectly examined, and the phosphorylated forms of endogenous hnRNP K have not been biochemically characterized in detail. In this study, we extensively examined the phosphorylated forms of endogenous hnRNP K by direct protein-chemical characterization using phosphate-affinity electrophoresis followed by immunoblotting and MS. Phosphate-affinity electrophoresis enabled us to sensitively detect and separate the phosphorylated forms of hnRNP K. When we used 2-DE with phosphate-affinity SDS-PAGE in the second dimension, the nuclear fraction contained more than 20 spots of endogenous hnRNP K on the 2-D map. We determined that the multiple forms of hnRNP K were produced mainly by alternative splicing of the single hnRNP K gene and phosphorylation of Ser116 and/or Ser284. Furthermore, the subcellular localization of these proteins revealed by the 2-D gel correlated with their phosphorylation states and alternative splicing patterns. The results also indicated that the multiple forms of hnRNP K were differentially modulated in response to external stimulation with bacterial lipopolysaccharide or serum.  相似文献   

20.
To gain insight on the impart of high-grain diets on liver metabolism in ruminants, we employed a comparative proteomic approach to investigate the proteome-wide effects of diet in lactating dairy goats by conducting a proteomic analysis of the liver extracts of 10 lactating goats fed either a control diet or a high-grain diet. More than 500 protein spots were detected per condition by two-dimensional electrophoresis (2-DE). In total, 52 differentially expressed spots (≥2.0-fold changed) were excised and analyzed using MALDI TOF/TOF. Fifty-one protein spots were successfully identified. Of these, 29 proteins were upregulated, while 22 were downregulated in the high-grain fed vs. control animals. Differential expressions of proteins including alpha enolase, elongation factor 2, calreticulin, cytochrome b5, apolipoprotein A-I, catalase, was verified by mRNA analysis and/or Western blotting. Database searches combined with Gene Ontology (GO) analysis and KEGG pathway analysis revealed that the high-grain diet resulted in altered expression of proteins related to amino acids metabolism. These results suggest new candidate proteins that may contribute to a better understanding of the signaling pathways and mechanisms that mediate liver adaptation to high-grain diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号