首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of high throughput systems for purification and analysis of proteins is essential for the success of today's proteomic research. We have developed an affinity chromatography technology that allows the customization of high capacity/high throughput chromatographic separation of proteins. This technology utilizes selected chromatography media that are dehydrated to form uniform SwellGel discs. Unlike wet resin slurries, these discs are easily adaptable to a variety of custom formats, eliminating problems associated with resin dispensing, equilibration, or leakage. Discs can be made in assorted sizes (resin volume 15 microl-3 ml) dispensed in various formats (384-, 96-, 48-, and 24-well microplates or columns) and different ligands can be attached to the matrix. SwellGel discs rapidly hydrate upon addition of either water or the protein sample, providing dramatically increased capacity compared to coated plates. At the same time, the discs offer greater stability, reproducibility, and ease of handling than standard wet chromatography resins. We previously reported the development of SwellGel for the purification of 6x His- and glutathione-S-transferase (GST)-tagged fusion proteins [Prot. Exp. Purif. 22 (2001) 359-366]. In this paper, we discuss an expanded list of SwellGel stabilized chromatographic methods that have been adapted to high throughput formats for processing protein samples ranging from 10 microl to 10 ml (1 microg to 50 mg protein). Data are presented applying SwellGel discs to high throughput proteomic applications such as affinity tag purification, protein desalting, the removal of abundant proteins from serum including albumin and immunoglobulin, and the isolation of phosphorylated peptides for mass spectrometry.  相似文献   

2.
One of the key steps in high-throughput protein production is protein purification. A newly developed high-yield protein purification and isolation method for laboratory scale use is presented. This procedure allows fully automated purification of up to 60 cell lysates with milligram yields of pure recombinant protein in 18.5h. The method is based on affinity chromatography and has been set up on an instrument that utilizes positive pressure for liquid transfer through columns. A protocol is presented that includes all steps of equilibration of the chromatography resin, load of sample, wash, and elution without any manual handling steps. In contrast to most existing high-throughput protein purification procedures, positive pressure is used for liquid transfer rather than vacuum. Positive pressure and individual pumps for each liquid channel contribute to controlled flow rates and eliminate the risk of introducing air in the chromatography resin and therefore ensure stable chromatography conditions. The procedure is highly reproducible and allows for high protein yield and purity.  相似文献   

3.
One major bottleneck in protein production in Escherichia coli for structural genomics projects is the formation of insoluble protein aggregates (inclusion bodies). The efficient refolding of proteins from inclusion bodies is becoming an important tool that can provide soluble native proteins for structural and functional studies. Here we report an on-column refolding method established at the Berkeley Structural Genomics Center (BSGC). Our method is a combination of an ‘artificial chaperone-assisted refolding’ method previously proposed and affinity chromatography to take advantage of a chromatographic step: less time-consuming, no filtration or concentration, with the additional benefit of protein purification. It can be easily automated and formatted for high-throughput process.  相似文献   

4.
Clearance of aggregates during protein purification is increasingly paramount as protein aggregates represent one of the major impurities in biopharmaceutical products. Aggregates, especially dimer species, represent a significant challenge for purification processing since aggregate separation coupled with high purity protein recovery can be difficult to accomplish. Biochemical characterization of the aggregate species from the hydrophobic interaction and cation exchange chromatography elution peaks revealed two different charged populations, i.e. heterogeneous charged aggregates, which led to further challenges for chromatographic removal. This paper compares multimodal versus conventional cation exchange or hydrophobic chromatography methodologies to remove heterogeneous aggregates. A full, mixed level factorial design of experiment strategy together with high throughput experimentation was employed to rapidly evaluate chromatographic parameters such as pH, conductivity, and loading. A variety of operating conditions were identified for the multimodal chromatography step, which lead to effective removal of two different charged populations of aggregate species. This multimodal chromatography step was incorporated into a monoclonal antibody purification process and successfully implemented at commercial manufacturing scale. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:636–645, 2014  相似文献   

5.
A new armoury of protein purification tools is required to support rapid advances in high-throughput genomics and proteomics, which are predicted to lead to the discovery, isolation, characterisation and manufacture of a number of new biopharmaceutical proteins. Computer-aided molecular design, combinatorial (bio)chemistry and high-throughput screening techniques are now being exploited to identify highly selective ligands for use in the purification of these proteins by affinity chromatography.  相似文献   

6.
Methods have been developed aimed at applying at high-throughput technology for expression of cloned cDNAs in yeast. Yeast is a eukaryotic host, which produces soluble recombinant proteins and is capable of introducing post-translational modifications of protein. It is, thus, an appropriate expression system both for the routine expression of various cDNAs or protein domains and for the expression of proteins, which are not correctly expressed in Escherichia coli. Here, we describe a standard system in Saccharomyces cerevisiae, based on a vector for intracellular protein expression, where the gene products are fused to specific peptide sequences (tags). These epitope tags, the N-terminal His(6) tag and the C-terminal StrepII tag, allow subsequent immunological identification and purification of the gene products by a two-step affinity chromatography. This method of dual-tagged recombinant protein purification eliminates contamination by degraded protein products. A miniaturization of the procedures for cloning, expression, and detection was performed to allow all steps to be carried out in 96-well microtiter plates. The system is, thus, suitable for automation. We were able to analyze the simultaneous protein expression of a large number of cDNA clones due to the highly parallel approach of protein production and purification. The microtiter plate technology format was extended to quantitative analysis. An ELISA-based assay was developed that detects StrepII-tagged proteins. The application of this high-throughput expression system for protein production will be a useful tool for functional and structural analyses of novel genes, identified by the Human Genome Project and other large-scale sequencing projects.  相似文献   

7.
A high-throughput protein purification strategy using the polycationic Z(basic) tag has been developed. In order for the strategy to be useful both for soluble and less soluble proteins, a denaturating agent, urea, was used in all purification steps. First, four target proteins were genetically fused to the purification tag, Z(basic). These protein constructs were purified by cation exchange chromatography and eluted using a salt gradient. From the data achieved, a purification strategy was planned including stepwise elution to enable parallel protein purification using a laboratory robot. A protocol that includes all steps, equilibration of the chromatography resin, load of sample, wash, and elution, all without any manual handling steps, was handled by the laboratory robot. The program allows automated purification giving milligram amounts of pure recombinant protein of up to 60 cell lysates. In this study 22 different protein constructs, with different characteristics regarding pI and solubility, were successfully purified by the laboratory robot. The data show that Z(basic) can be used as a general purification tag also under denaturating conditions. Moreover, the strategy enables purification of proteins with different pI and solubility using ion exchange chromatography (IEXC). The procedure is highly reproducible and allows for high protein yield and purity and is therefore a good complement to the commonly used His(6)-tag.  相似文献   

8.
Automation of protein purification for structural genomics   总被引:4,自引:0,他引:4  
A critical issue in structural genomics, and in structural biology in general, is the availability of high-quality samples. The additional challenge in structural genomics is the need to produce high numbers of proteins with low sequence similarities and poorly characterized or unknown properties. 'Structural-biology-grade' proteins must be generated in a quantity and quality suitable for structure determination experiments using X-ray crystallography or nuclear magnetic resonance (NMR). The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. The purification procedure must yield a homogeneous protein and must be highly reproducible in order to supply milligram quantities of protein and/or its derivative containing marker atom(s). At the Midwest Center for Structural Genomics we have developed protocols for high-throughput protein purification. These protocols have been implemented on AKTA EXPLORER 3D and AKTA FPLC 3D workstations capable of performing multidimensional chromatography. The automated chromatography has been successfully applied to many soluble proteins of microbial origin. Various MCSG purification strategies, their implementation, and their success rates are discussed in this paper.  相似文献   

9.
蛋白质层析用离子交换和疏水作用层析介质的发展概况   总被引:2,自引:0,他引:2  
浦宇  王芝祥   《生物工程学报》2004,20(6):975-982
层析是蛋白质纯化的关键技术之一 ,作为层析技术的核心———层析介质一直以来是层析技术研究的一个热点。近年来 ,越来越多的新型层析介质被开发出来 ,如粒度均匀的交联多糖、人工合成的大孔聚合物、触角型吸附剂、软胶包裹在硬胶表面等介质。主要介绍应用较为广泛的IEC和HIC介质的组成、特性及其在蛋白质纯化中的应用 ,还研究了与HIC技术相关的两种新技术 :亲硫层析和疏水电荷诱导层析 (HCIC) ,重点介绍了HCIC的介质及其应用 ,同时也讨论了在蛋白质纯化中应用的三相纯化策略 (富集、中间纯化和精制 )。结合我国的实际情况 ,就当前蛋白质纯化的离子交换和疏水层析介质面临的挑战和未来的发展进行讨论并提出了建议  相似文献   

10.
Monoclonal antibodies (mAbs) produced from mammalian cell culture may contain significant amounts of dimers and higher order aggregates. Quantitation of soluble aggregates in the cell culture is time-consuming and labor-intensive, usually involving a purification step to remove the impurities that interfere with the subsequent size exclusion chromatography (SEC) analysis. We have developed a novel pH-gradient protein A chromatography for rapid, non-size based separation of the aggregates in mAb cell culture samples. Our results demonstrate that this method has excellent correlation with SEC and can be applied to both human immunoglobulin gamma 1 (IgG1) and IgG2 antibodies. This approach can be useful in the quantitation of soluble aggregates in crude cell culture samples.  相似文献   

11.
The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches.  相似文献   

12.
Downstream purification processes for monoclonal antibody production typically involve multiple steps; some of them are conventionally performed by bead-based column chromatography. Affinity chromatography with Protein A is the most selective method for protein purification and is conventionally used for the initial capturing step to facilitate rapid volume reduction as well as separation of the antibody. However, conventional affinity chromatography has some limitations that are inherent with the method, it exhibits slow intraparticle diffusion and high pressure drop within the column. Membrane-based separation processes can be used in order to overcome these mass transfer limitations. The ligand is immobilized in the membrane pores and the convective flow brings the solute molecules very close to the ligand and hence minimizes the diffusional limitations associated with the beads. Nonetheless, the adoption of this technology has been slow because membrane chromatography has been limited by a lower binding capacity than that of conventional columns, even though the high flux advantages provided by membrane adsorbers would lead to higher productivity. This review considers the use of membrane adsorbers as an alternative technology for capture and polishing steps for the purification of monoclonal antibodies. Promising industrial applications as well as new trends in research will be addressed.  相似文献   

13.
结构基因组学研究与核磁共振   总被引:4,自引:0,他引:4  
各种生物的基因组DNA测序计划的完成,将结构生物学带入了结构基因组学时代.结构基因组学是对所有基因组产物结构的系统性测定,它运用高通量的选择、表达、纯化以及结构测定和计算分析手段,为基因组的每个蛋白质产物提供实验测定的结构或较好的理论模型,这将加速生命科学各个领域的研究.生物信息学、基因工程、结构测定技术等的发展为结构基因组学研究提供了保证.近年来核磁共振在技术方法上的进展,使其成为结构基因组学高通量结构分析中的一个关键方法.  相似文献   

14.
为应对治疗性抗体快速增长的市场需求,抗体上游细胞培养规模和表达量水平已显著提高,而下游纯化工艺的生产效率则相对落后,下游处理能力已成为限制抗体产能的瓶颈。本研究以单克隆抗体mab-X为实验材料,优化了细胞培养液、低pH病毒灭活收集液2种模式的正辛酸(caprylic acid,CA)沉淀工艺条件,并研究了CA处理去除聚体、CA处理灭活病毒等2种应用,在小试的基础上,采用低pH病毒灭活收集液CA沉淀的模式进行了500 L细胞培养规模生产放大研究,对沉淀前后的产品质量和收率进行了检测和对比。结果显示,两种模式的CA沉淀均可显著降低宿主细胞蛋白(host cell protein,HCP)残留和聚体含量,在聚体去除实验中CA沉淀可去除约15%的聚体,病毒灭活研究显示CA对逆转录模型病毒具有完全的病毒灭活能力。在放大生产规模中,下游依次进行了深层过滤收获、亲和层析、低pH病毒灭活、CA沉淀及深层过滤、阳离子交换层析,CA沉淀过程中混合时间和搅拌速度显著影响CA沉淀效果,CA沉淀处理后低pH病毒灭活液中的HCP残留量降低了895倍,沉淀后产品纯度和HCP残留均已控制在单克隆抗体质量要求范围内,CA沉淀可以减少传统纯化工艺中的一个精纯步骤。总之,下游工艺中采用CA沉淀,能够精简传统纯化工艺,并完全满足mab-X的纯化质量要求,而且能提高生产效率、降低生产成本。本研究结果将推动CA沉淀在单克隆抗体下游纯化生产中的应用,为解决目前传统纯化工艺的问题提供参考。  相似文献   

15.
膜蛋白是一类与生物膜相互作用、具有重要功能和独特结构的蛋白质。异源表达纯化一直是了解膜蛋白结构和功能的重要瓶颈。结核分枝杆菌作为典型的胞内致病菌,其膜蛋白的研究具有很好的代表性以及重要意义。目前用于表达膜蛋白的有大肠杆菌、酵母、哺乳动物细胞等表达系统,但结核菌膜蛋白的表达宿主还往往局限于大肠杆菌。异源表达需要综合考虑蛋白的来源、疏水性、跨膜区等特性。低温、加入共表达因子以及改变培养条件有助于结核菌膜蛋白的可溶性表达。另外,包涵体复性也是获得结核菌目的膜蛋白的重要途径。随着新的表达系统,新的促可溶表达策略,新的包涵体复性手段,新的纯化方法的应用,将有更多的膜蛋白异源表达纯化成功,为蛋白质功能研究奠定基础。  相似文献   

16.
A general procedure for the purification of histidine-tagged proteins has been developed using immobilized metal-ion affinity chromatography. This two-step purification method can be used for proteins containing a hexahistidine tag and a thrombin cleavage site, yielding high amounts of purified protein. The advantage of this method is that thrombin is used instead of imidazole in the final purification step. Imidazole can influence NMR experiments, competition studies, or crystallographic trials, and the presence of imidazole often results in protein aggregates. Removal of the His-tag results in a form of the protein of interest in which no additional tags are present, resembling the native form of the protein, with only three additional amino acids at the N-terminal side. Our method is compared with a more conventional method for the purification of the Azotobacter vinelandii NIFL PAS domain, overexpressed in Escherichia coli. It also proves to be successful for three different His-tagged proteins, the Klebsiella pneumoniae NTRC protein, and the A. vinelandii NIFA and NIFL proteins, and therefore it is a general method for the purification of His-tagged proteins.  相似文献   

17.
We describe a method for high-throughput, parallel purification of secreted proteins to analyse large numbers of protein samples in cell-based assays for the discovery of protein therapeutics. The procedure is generic and capable of 96 parallel purifications and compatible, in both yield and purity, with a wide assay range. By optimising expression and purification steps as well as using novel hardware, in particular a chromatography press capable to purify target proteins from viscous media, we exemplify the process for the generation of single-chain Fv antibody fragments (scFv) and the purification of full-length IgG. The described process can operate robustly with a throughput of over 2,000 samples per month.  相似文献   

18.
Membrane chromatography has been established as a viable alternative to packed-bed column chromatography for the purification of therapeutic proteins. Purification via membrane chromatography offers key advantages, including higher productivity and reduced buffer usage. Unlike column chromatography purification, the utilization of high-throughput screening in order to reduce development times and material requirements has been a challenge for membrane chromatography. This research focused on the development of a new, high-throughput screening technique for use in screening membrane chromatography conditions for monoclonal antibody purification. The developed screen utilizes a 96-well plate format, thereby allowing for the screening of multiple different membrane conditions at once. For this study, four mixed-mode cation exchange membranes and one cation exchange membrane were evaluated on the plate. The screen is performed in a similar manner to that of a resin slurry plate screen, however, instead of a single loading step, the antibody feed was loaded in 50 mg/ml increments up to a maximum loading of 450 mg/ml. Performing a similar, incremental loading on a resin plate would be impractical, as mixing times are substantially longer due to pore diffusion limitations. However, due to the significantly faster rate of mass transfer for membranes relative to resin, mixing times could be reduced by up to a factor of sixty on the membrane plate. Additional optimization showed that higher hydrophobicity can potentially lead to slower kinetics and mixing times that may need to be adjusted accordingly. The end result is a screen that has been proven to provide results comparable to those obtained on larger-scale membrane purification runs while also enabling exploration of a much greater operating space and significantly reducing the feed materials required.  相似文献   

19.
Biotherapeutics are often produced in non-human host cells like Escherichia coli, yeast, and various mammalian cell lines. A major focus of any therapeutic protein purification process is to reduce host cell proteins to an acceptable low level. In this study, various E. coli host cell proteins were identified at different purifications steps by HPLC fractionation, SDS-PAGE analysis, and tryptic peptide mapping combined with online liquid chromatography mass spectrometry (LC-MS). However, no host cell proteins could be verified by direct LC-MS analysis of final drug substance material. In contrast, the application of affinity enrichment chromatography prior to comprehensive LC-MS was adequate to identify several low abundant host cell proteins at the final drug substance level. Bacterial alkaline phosphatase (BAP) was identified as being the most abundant host cell protein at several purification steps. Thus, we firstly established two different assays for enzymatic and immunological BAP monitoring using the cobas® technology. By using this strategy we were able to demonstrate an almost complete removal of BAP enzymatic activity by the established therapeutic protein purification process. In summary, the impact of fermentation, purification, and formulation conditions on host cell protein removal and biological activity can be conducted by monitoring process-specific host cell proteins in a GMP-compatible and high-throughput (> 1000 samples/day) manner.  相似文献   

20.
The human voltage‐gated proton channel (Hv1) is a membrane protein consisting of four transmembrane domains and intracellular amino‐ and carboxy‐termini. The protein is activated by membrane depolarization, similar to other voltage‐sensitive proteins. However, the Hv1 proton channel lacks a traditional ion pore. The human Hv1 proton channel has been implicated in mediating sperm capacitance, stroke, and most recently as a biomarker/mediator of cancer metastasis. Recently, the three‐dimensional structures for homologues of this voltage‐gated proton channel were reported. However, it is not clear what artificial environment is needed to facilitate the isolation and purification of the human Hv1 proton channel for structural study. In the present study, we generated a chimeric protein that placed an enhanced green fluorescent protein (EGFP) to the amino‐terminus of the human Hv1 proton channel (termed EGFP‐Hv1). The chimeric protein was expressed in a baculovirus expression system using Sf9 cells and subjected to detergent screening using fluorescence‐detection size‐exclusion chromatography. The EGFP‐Hv1 proton channel can be solubilized in the zwitterionic detergent Anzergent 3–12 and the nonionic n‐dodecyl‐β‐d ‐maltoside (DDM) with little protein aggregation and a prominent monomeric protein peak at 48 h postinfection. Furthermore, we demonstrate that the chimeric protein exhibits a monomeric protein peak, which is distinguishable from protein aggregates, at the final size‐exclusion chromatography purification step. Taken together, we can conclude that solubilization in DDM will provide a useable final product for further structural characterization of the full‐length human Hv1 proton channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号