首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From eluates of F-actin affinity chromatography of chicken brain, we identified a novel actin-binding protein (lasp-2) whose gene was predicted in silico. We cloned cDNA of chicken lasp-2 and analyzed its structure, expression, activity, and localization with lasp-1 (LIM and SH3 protein 1), a previously identified actin-binding protein closely related to lasp-2. Chicken lasp-2 showed high homology to mammalian putative lasp-2. Both chicken lasp-1 and chicken lasp-2 have N-terminal LIM domains, C-terminal SH3 domains, and internal nebulin repeats. However, lasp-2 is greatly different from lasp-1 in the sequence between the second nebulin repeat and a SH3 domain, and the region is conserved in chicken, mouse, and human. As expected from its structural similarity to lasp-1, lasp-2 possessed actin-binding activity and localized with actin filament in filopodia of neuroblastoma. In contrast to lasp-1, which is widely distributed in non-muscle tissues, lasp-2 was highly expressed in brain.  相似文献   

2.
Lasp-1 (LIM and SH3 domain protein 1) is a multidomain actin-binding protein that is differentially expressed within epithelial tissues and brain. In the gastric mucosa, Lasp-1 is highly expressed in the HCl-secreting parietal cell, where it is prominently localized within the F-actin-rich subcellular regions. Histamine-induced elevation of parietal cell [cAMP]i increases Lasp-1 phosphorylation, which is correlated with activation of HCl secretion. To determine whether Lasp-1 is involved in the regulation of HCl secretion in vivo, we generated a murine model with a targeted disruption of the Lasp-1 gene. Lasp-1-null mice had slightly lower body weights but developed normally and had no overt phenotypic abnormalities. Basal HCl secretion was unaffected by loss of Lasp-1, but histamine stimulation induced a more robust acid secretory response in Lasp-1-null mice compared with wild-type littermates. A similar effect of histamine was observed in isolated gastric glands on the basis of measurements of accumulation of the weak base [14C]aminopyrine. In addition, inhibition of the acid secretory response to histamine by H2 receptor blockade with ranitidine proceeded more slowly in glands from Lasp-1-null mice. These findings support the conclusion that Lasp-1 is involved in the regulation of parietal HCl secretion. We speculate that cAMP-dependent phosphorylation of Lasp-1 alters interactions with F-actin and/or endocytic proteins that interact with Lasp-1, thereby regulating the trafficking/activation of the H+, K+-ATPase (proton pump).  相似文献   

3.
Proper regulation of the cAMP-dependent protein kinase (protein kinase A, PKA) is necessary for cellular homeostasis, and dysregulation of this kinase is crucial in human disease. Mouse embryonic fibroblasts (MEFs) lacking the PKA regulatory subunit Prkar1a show altered cell morphology and enhanced migration. At the molecular level, these cells showed increased phosphorylation of cofilin, a crucial modulator of actin dynamics, and these changes could be mimicked by stimulating the activity of PKA. Previous studies of cofilin have shown that it is phosphorylated primarily by the LIM domain kinases Limk1 and Limk2, which are under the control of the Rho GTPases and their downstream effectors. In Prkar1a−/− MEFs, neither Rho nor Rac was activated; rather, we showed that PKA could directly phosphorylate Limk1 and thus enhance the phosphorylation of cofilin. These data indicate that PKA is crucial in cell morphology and migration through its ability to modulate directly the activity of LIM kinase.  相似文献   

4.
5.
cAMP-dependent protein kinase A (PKA) can modulate synaptic transmission by acting directly on unknown targets in the neurotransmitter secretory machinery. Here we identify Snapin, a protein of relative molecular mass 15,000 that is implicated in neurotransmission by binding to SNAP-25, as a possible target. Deletion mutation and site-directed mutagenetic experiments pinpoint the phosphorylation site to serine 50. PKA-phosphorylation of Snapin significantly increases its binding to synaptosomal-associated protein-25 (SNAP-25). Mutation of Snapin serine 50 to aspartic acid (S50D) mimics this effect of PKA phosphorylation and enhances the association of synaptotagmin with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. Furthermore, treatment of rat hippocampal slices with nonhydrolysable cAMP analogue induces in vivo phosphorylation of Snapin and enhances the interaction of both Snapin and synaptotagmin with the SNARE complex. In adrenal chromaffin cells, overexpression of the Snapin S50D mutant leads to an increase in the number of release-competent vesicles. Our results indicate that Snapin may be a PKA target for modulating transmitter release through the cAMP-dependent signal-transduction pathway.  相似文献   

6.
Previous studies identified proline-directed protein kinase (PDPK) as a growth factor-sensitive serine/threonine protein kinase that is active in the cytosol of proliferative cells and tissues during interphase. In this communication, we report that the regulatory subunit (RII) of bovine cardiac muscle cAMP-dependent protein kinase (PKA) is a putative substrate for the multifunctional PDPK. Purified RII is readily phosphorylated by PDPK in vitro in a time-dependent, enzyme-dependent manner to a stoichiometry approaching 0.7 mol phosphate/mol RII subunit protein. The major RII phosphorylation site is identified as a threonine residue located within a large hydrophobic tryptic peptide that is predicted to contain the cAMP binding domains. In contrast to the reported effects of RII autophosphorylation, kinetic analysis of RII function following phosphorylation by PDPK indicates that the inhibitory potency of RII toward the catalytic subunit of PKA in a reassociation assay is increased in proportion to the degree of phosphorylation. Further studies indicate that the cAMP-dependent activation of the RII2C2 holoenzyme is inhibited by PDPK phosphorylation. Taken together, the results of these studies indicate that phosphorylation of RII by PDPK attenuates the activity of PKA. This antagonistic interaction suggests a biochemical mechanism by which a growth factor-activated signaling system may function to modulate cAMP-dependent cellular responses.  相似文献   

7.
The PKD1-encoded protein, "polycystin-1", has a large N-terminal extracellular portion, multiple transmembrane domains, and a short intracellular C-terminal tail with four tyrosine residues and two putative sites for serine phosphorylation. Its function in kidney development and autosomal dominant polycystic kidney disease (ADPKD) is still unknown. We have subcloned the cDNA encoding the polycystin-1 C-terminal domain (PKD1-CTD) into a prokaryotic expression vector, and site-directed mutagenesis was performed to target the four tyrosine residues and four serine residues in two putative phosphorylation sites. In vitro phosphorylation assays were conducted on both wild type and mutant PKD1-CTD fusion proteins. It was found that the wild type PKD1-CTD and all mutant fusion proteins, except S4251G/S4252G, could be phosphorylated by lysates from cultured normal human renal collecting tubule (NHCT) cells, as well as by commercially purified cAMP-dependent protein kinase (PKA). The phosphorylation of the PKD1-CTD fusion protein by NHCT lysates was greatly enhanced by cAMP and its analog 8-Br-cAMP, and inhibited by the specific PKA inhibitors PKI(6-22) and H-89. Activators and inhibitors of protein kinase C (PKC) had no effects on the phosphorylation of the PKD1-CTD fusion protein. Using commercially purified pp60(c-src) (c-src) it was also shown that the PKD1-CTD fusion protein could be phosphorylated by c-src in vitro, and that this phosphorylation could be abolished by a mutation Y4237F. By comparing the amino acid sequence at 4249-4253 (RRSSR) with the consensus sequence for PKA phosphorylation (RRXSX), we suggest that the serine residue at 4252 is the target of phosphorylation by a cAMP-dependent protein kinase in NHCT cell lysates. In addition, we suggest that Y4237 might be phosphorylated by c-src in living cells.  相似文献   

8.
9.
The digestive function of the stomach depends on acidification of the gastric lumen. Acid secretion into the lumen is triggered by activation of the PKA cascade, which ultimately results in the insertion of gastric H,K-ATPases into the apical plasma membranes of parietal cells. A coupling protein is ezrin, whose phosphorylation at Ser-66 by PKA is required for parietal cell activation. However, little is known regarding the molecular mechanism(s) by which this signaling pathway operates in gastric acid secretion. Here we show that PKA cooperates with MST4 to orchestrate histamine-elicited acid secretion by phosphorylating ezrin at Ser-66 and Thr-567. Histamine stimulation activates PKA, which phosphorylates MST4 at Thr-178 and then promotes MST4 kinase activity. Interestingly, activated MST4 then phosphorylates ezrin prephosphorylated by PKA. Importantly, MST4 is important for acid secretion in parietal cells because either suppression of MST4 or overexpression of non-phosphorylatable MST4 prevents the apical membrane reorganization and proton pump translocation elicited by histamine stimulation. In addition, overexpressing MST4 phosphorylation-deficient ezrin results in an inhibition of gastric acid secretion. Taken together, these results define a novel molecular mechanism linking the PKA-MST4-ezrin signaling cascade to polarized epithelial secretion in gastric parietal cells.  相似文献   

10.
Lasp-2 binds to actin filaments and concentrates in the actin bundles of filopodia and lamellipodia in neural cells and focal adhesions in fibroblastic cells. Lasp-2 has three structural regions: a LIM domain, a nebulin-repeat region, and an SH3 domain; however, the region(s) responsible for its interactions with actin filaments and focal adhesions are still unclear. In this study, we revealed that the N-terminal fragment from the LIM domain to the first nebulin-repeat module (LIM-n1) retained actin-binding activity and showed a similar subcellular localization to full-length lasp-2 in neural cells. The LIM domain fragment did not interact with actin filaments or localize to actin filament bundles. In contrast, LIM-n1 showed a clear subcellular localization to filopodial actin bundles. Although truncation of the LIM domain caused the loss of F-actin binding activity and the accumulation of filopodial actin bundles, these truncated fragments localized to focal adhesions. These results suggest that lasp-2 interactions with actin filaments are mediated through the cooperation of the LIM domain and the first nebulin-repeat module in vitro and in vivo. Actin filament binding activity may be a major contributor to the subcellular localization of lasp-2 to filopodia but is not crucial for lasp-2 recruitment to focal adhesions.  相似文献   

11.
12.
13.
14.
Lasp-1 and lasp-2 are actin-binding proteins that contain a LIM domain, two nebulin repeats and an SH3 domain with significant identity. We determined the chromosomal locations of the LASP1 and LASP2 genes in chicken by fluorescence in situ hybridization. The LASP1 gene was localized to a pair of microchromosomes and the LASP2 gene was localized to chromosome 2p3.1, indicating that the chromosomal locations of the LASP1 and LASP2 genes are highly conserved between chicken and human. The comparison of genomic and cDNA sequences of chicken lasp-2 and nebulette, a nebulin-related protein in muscle, suggested that both the corresponding mRNAs shared exons in the same manner as their human homologues. When compared with the domain structure of nebulette, another nebulin repeat was predicted for lasp-2, and all the nebulin repeats of lasp-2 were better conserved than those in nebulette. We also found the exon boundaries in nebulin repeats of lasp-2 were similar to those of other nebulin-related proteins.  相似文献   

15.
The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed intracellular calcium (Ca(2+)) release channel on the endoplasmic reticulum. IP3Rs play key roles in controlling Ca(2+) signals that activate numerous cellular functions including T cell activation, neurotransmitter release, oocyte fertilization and apoptosis. There are three forms of IP3R, all of which are ligand-gated channels activated by the second messenger inositol 1,4,5-trisphosphate. Channel function is modulated via cross-talk with other signaling pathways including those mediated by kinases and phosphatases. In particular IP3Rs are known to be regulated by cAMP-dependent protein kinase (PKA) phosphorylation. In the present study we show that PKA and the protein phosphatases PP1 and PP2A are components of the IP3R1 macromolecular signaling complex. PKA phosphorylation of IP3R1 increases channel activity in planar lipid bilayers. These studies indicate that regulation of IP3R1 function via PKA phosphorylation involves components of a macromolecular signaling complex.  相似文献   

16.
The DNA damage checkpoint maintains genome stability by arresting the cell cycle and promoting DNA repair under genotoxic stress. Cells must downregulate the checkpoint signaling pathways in order to resume cell division after completing DNA repair. While the mechanisms of checkpoint activation have been well-characterized, the process of checkpoint recovery, and the signals regulating it, has only recently been investigated. We have identified a new role for the Ras signaling pathway as a regulator of DNA damage checkpoint recovery. Here we report that in budding yeast, deletion of the IRA1 and IRA2 genes encoding negative regulators of Ras prevents cellular recovery from a DNA damage induced arrest. the checkpoint kinase Rad53 is dephosphorylated in an IRA-deficient strain, indicating that recovery failure is not caused by constitutive checkpoint pathway activation. the ira1Δ ira2Δ recovery defect requires the checkpoint kinase Chk1 and the cAMP-dependent protein kinase (PKA) catalytic subunit Tpk2. Furthermore, PKA phosphorylation sites on the anaphase promoting complex specificity factor Cdc20 are required for the recovery defect, indicating a link between the recovery defect and PKA regulation of mitosis. This work identifies a new signaling pathway that can regulate DNA damage checkpoint recovery and implicates the Ras signaling pathway as an important regulator of mitotic events.Key words: DNA damage checkpoint, Ras signaling, budding yeast, cAMP-dependent protein kinase, anaphase promoting complex, neurofibromatosis type 1  相似文献   

17.
The RET receptor tyrosine kinase plays a critical role in the development of the enteric nervous system (ENS) and the kidney. Upon glial-cell-line-derived neurotrophic factor (GDNF) stimulation, RET can activate a variety of intracellular signals, including the Ras/mitogen-activated protein kinase, phosphatidylinositol 3-kinase (PI3K)/AKT, and RAC1/JUN NH(2)-terminal kinase (JNK) pathways. We recently demonstrated that the RAC1/JNK pathway is regulated by serine phosphorylation at the juxtamembrane region of RET in a cAMP-dependent manner. To determine the importance of cAMP-dependent modification of the RET signal in vivo, we generated mutant mice in which serine residue 697, a putative protein kinase A (PKA) phosphorylation site, was replaced with alanine (designated S697A mice). Homozygous S697A mutant mice lacked the ENS in the distal colon, resulting from a migration defect of enteric neural crest cells (ENCCs). In vitro organ culture showed an impaired chemoattractant response of the mutant ENCCs to GDNF. JNK activation by GDNF but not ERK, AKT and SRC activation was markedly reduced in neurons derived from the mutant mice. The JNK inhibitor SP600125 and the PKA inhibitor KT5720 suppressed migration of the ENCCs in cultured guts from wild-type mice to comparable degrees. Thus, these findings indicated that cAMP-dependent modification of RET function regulates the JNK signaling responsible for proper migration of the ENCCs in the developing gut.  相似文献   

18.
Ezrin is localized to the apical membrane of parietal cells and couples the cAMP-dependent protein kinase (PKA) activation cascade to the regulated HCl secretion in gastric parietal cells. Our recent studies demonstrate the functional relevance of PKA-mediated phosphorylation of ezrin in parietal cell secretion [R. Zhou, X. Cao, C. Watson, Y. Miao, Z. Guo, J.G. Forte, X. Yao, Characterization of protein kinase A-mediated phosphorylation of ezrin in gastric parietal cell activation, J. Biol. Chem. 278 (2003) 35651]. Here we show that activation of PKA protects ezrin from calpain I-mediated proteolysis without alteration of calpain I activation and fodrin breakdown. To determine whether phosphorylation of Ser66 by PKA affects the insensitivity to the calpain I-mediated cleavage, recombinant proteins of ezrin, both wild type and S66A/D mutants, were incubated with the purified calpain I. Indeed, phosphorylation-like S66D mutant ezrin is resistant to calpain I-mediated proteolysis while wild type and S66A mutant were sensitive. In fact, expression of phosphorylation-like S66D, but not S66A, mutant in parietal cells confers its resistance to calpain I-mediated proteolysis. Taken together, these results indicate that phosphorylation of ezrin by PKA modulates its sensitivity to calpain I cleavage.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号