首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genetic control of tumorigenicity in interspecific mammalian cell hybrids.   总被引:5,自引:0,他引:5  
R Kucherlapati  S I Shin 《Cell》1979,16(3):639-648
The nature of genetic control of cellular malignancy was investigated by examining the tumorigenicity of a series of interspecific mouse-human cell hybrids in the athymic nude mouse. Two highly malignant but genetically distinct mouse cell lines, A9 and PG19, were hybridized with three normal human diploid fibroblast strains, and 19 independently arising hybrid clones were isolated. Each of these clones was capable of forming progressive lethal tumors in the nude mouse, and thus resembled the malignant parental mouse cells rather than the nonmalignant parental human cells. We failed to obtain any evidence for complete suppression of tumorigenicity in these cell hybrids. The absence of suppression was observed regardless of the extent and composition of the human chromosome complements retained in the hybrid clones; the results of detailed cytological and isoenzyme analyses would make it highly improbable that the observed lack of suppression was due to cellular selection in vivo for a more tumorigenic subpopulation in the injected hybrid cells. These data demonstrate that at least for the parental cell combinations used in this study, no human chromosome, when present singly in the mouse-human cell hybrids, can suppress the tumorigenic phenotype of the mouse cells. Our results are consistent with the view that the suppression of cellular malignancy previously demonstrated in intraspecific (mouse × mouse) somatic cell hybrids does not occur in interspecific (mouse-human) cell hybrids, or alternatively, genetic determinants located on two or more human chromosomes are required simultaneously to suppress the malignancy of the mouse cells in cell hybrids derived from malignant mouse cell and nonmalignant human cells.  相似文献   

3.
The effect of a normal mouse X chromosome on the chromosome segregation of mouse-Chinese hamster somatic cell hybrids was determined by (i) producing hybrids between the mouse sarcoma line CMS4 and a microcell hybrid (mfe4) of the hamster line E36, containing a mouse X chromosome from a normal cell; (ii) isolating hybrids between CMS4 and a 6-thioguanine selected (X minus) mfe4 subpopulation; (iii) comparing the direction of segregation in the two sets of hybrids. It was found that the normal X chromosome, like the X chromosomes from two MCA-transformed sarcoma lines reported previously [9], has the ability to switch the chromosome segregation of mouse-Chinese hamster somatic cell hybrids. We conclude that the reversal in chromosome segregation is mediated by factors located on the X chromosome. We designate these genetic elements as segregation reversal genes or sr genes.  相似文献   

4.
The direction of chromosome loss in two sets of mouse-Chinese hamster hybrids was compared with the direction of segregation of the same hybrids, to which an additional X chromosome derived from either of the mouse sarcoma lines MethAa, MethAs, or CMS4, was introduced at the time of the fusion. The addition of the X chromosome was carried out by substituting in place of the Chinese hamster parent a mouse X containing microcell hybrid of the latter. It was found that the addition of an X chromosome reverses the direction of chromosome segregation, but it can do so only if the mouse parent in the hybridization is different from the line from which the X originated. The possible reasons for recognition by the cells of a native and a foreign X are discussed. The existence of a multigene family on the X chromosome, involved in this recognition, is proposed.  相似文献   

5.
Evidence is presented for the uptake of the human X chromosome by human-Chinese hamster cell hybrids which lack H P R T activity, following incubation with isolated human HeLa S3 chromosomes. Sixteen independent clonal cell lines were isolated in H A T medium, all of which contained a human X chromosome as determined by trypsin-Giemsa staining. The frequency of H A T-resistant clones was 32 x 10(-6) when 10(7) cells were incubated with 10(8) HeLa chromosomes. Potential reversion of the hybrid cells in H A T medium was less than 5 x 10(-7). The 16 isolated cell lines all contained activity of the human X-linked marker enzymes H P R T, P G K,alpha-Gal A, and G6PD, as determined by electrophoresis. The phenotype of G6PD was G6PD A, corresponding to G6PD A in HeLa cells. The human parental cells used in the fusion to form the hybrids had the G6PD B phenotype. The recipient cells gave no evidence of containing human X chromosomes. These results indicate that incorporation and expression of HeLa X chromosomes is accomplished in human-Chinese hamster hybrids which lack a human X chromosome.  相似文献   

6.
Chinese hamster lung (CHL) V79 cells already deficient in hypoxanthine phosphoribosyltransferase were exposed to uv light and selected for mutations causing deficiency of thymidylate synthase (TS) by their resistance to aminopterin in the presence of thymidine and limiting amounts of methyl tetrahydrofolate. Three of seven colonies chosen for initial study were shown to be thymidylate synthase deficient (TS-) by enzyme assay, thymidine auxotrophy, and their inability to incorporate labeled deoxyuridine into their DNA in vivo. Complementation analysis of human X TS- hamster hybrids revealed that TS activity segregated with human chromosome 18. Southern analysis of a panel of 14 human X hamster hybrids probed with complementary DNA from mouse TS confirmed the chromosome assignment of TS to human chromosome 18; quantitative Southern blotting using unbalanced human cell lines further localized the gene to 18q21.31----qter. Another hybrid was generated that contained a human X chromosome with the Xq28 folate-dependent fragile site as its only human chromosome in a hamster TS- background. The fragile site could be easily and reproducibly expressed in this hybrid without the use of antimetabolites simply by removing exogenous thymidine from the medium. These TS-deficient cells are useful for: somatic cell genetics as a unique selectable marker for human chromosome 18, studies on regulation of the TS gene, and analysis of the fragile (X) chromosome and other folate-dependent fragile sites.  相似文献   

7.
M C Simmler  R D Cox  P Avner 《Genomics》1991,10(3):770-778
A strategy for the rapid isolation of DNA probes from radiation-fusion Chinese hamster cell hybrids containing overlapping portions of the murine X chromosome based on the interspersed repetitive sequence polymerase chain reaction (IRS-PCR) previously used with human somatic cell hybrids has been developed. This specific amplification of mouse DNA on a hamster background depends on the use of primers directed to the B2 short interspersed repeat element family and the R repeat, from the long interspersed repeat element family, L1. Two sets of amplification conditions, which gave specific amplification of mouse DNA from either a mouse X-monochromosomal hybrid or irradiation-fusion hybrids having reduced X content, were defined. The mouse X-only chromosome hybrid yielded approximately 20 discrete reproducible bands, while the irradiation-fusion hybrids yielded between 1 and 10 discrete products. Comparison of different irradiation-fusion hybrids has allowed the definition of both specific and shared products corresponding to different regions within the overlapping X-chromosome fragments present within these hybrids. Use of such hybrids and the IRS-PCR technique has allowed the isolation of probes corresponding to the central region of the mouse X chromosome that contains the X-inactivation center. The method should be widely applicable to the isolation of mouse DNA sequences from mouse hybrid cell lines on either human or Chinese hamster backgrounds.  相似文献   

8.
Cytogenetic and molecular genetic analyses of human intraspecific HeLa x fibroblast hybrids have provided evidence for the presence of a tumor-suppressor gene(s) on chromosome 11 of normal cells. In the present study, we have carried out extensive RFLP analysis of various nontumorigenic and tumorigenic hybrids with at least 50 different chromosome 11-specific probes to determine the precise location of this tumor-suppressor gene(s). Two different hybrid systems, (1) microcell hybrids derived by the transfer of a normal chromosome 11 into a tumorigenic HeLa-derived hybrid cell and (2) somatic cell hybrids derived by the fusion of the HeLa (D98OR) cells to a retinoblastoma (Y79) cell line, were particularly informative. The analysis showed that all but one of the nontumorigenic hybrid cell lines contained a complete copy of the normal chromosome 11. This variant hybrid contained a segment of the long arm but had lost the entire short arm of the chromosome. The tumorigenic microcell and somatic cell hybrids had retained the short arm of the chromosome but had lost at least the q13-23 region of the chromosome. Thus, these results showed a perfect correlation between the presence of the long arm of chromosome 11 and the suppression of the tumorigenic phenotype. We conclude therefore that the gene(s) involved in the suppression of the HeLa cell tumors is localized to the long arm (q arm) of chromosome 11.  相似文献   

9.
Intraspecies somatic cell hybrids of BALB/c mouse 3T3 and SV40-transformed embryonic fibroblast (SVT2) cells were analyzed for transformation-associated properties and their tumorigenic potential in nude mice. In confirmation of our earlier findings, hybrids expressing the viral T-antigen were not suppressed for the ability to clone in medium with 1% serum. In contrast, division rate in medium with 1% or 10% serum, anchorage independence, cytochalasin-sensitive growth control, and tumorigenicity were suppressed noncoordinately, and the extent of suppression varied from one hybrid to another. Suppression was not simply determined by the increased chromosome content of the hybrid cells, nor was suppression correlated with rearrangements of the integrated viral sequence (SAGER et al., 1981a, b). Similar results were found in cytoplasmic transferants expressing T-antigen. Four independent transferants and subclones derived from them varied in the extent of suppression of anchorage independence and tumorigenicity. In both hybrids and transferants, a low serum requirement for clonal growth apparently was determined solely by expression of SV40 T-antigen, but other transformation properties, as well as tumorigenicity, appeared to require multiple changes in the cellular genome for their expression. These changes must occur during or after viral integration, since they are not expressed in uninfected 3T3 cells.  相似文献   

10.
We report the investigation of the growth properties of tumorigenic and reverted nontumorigenic Wilms' nephroblastoma cells when cultured in serum-free medium. Wilms' tumor, a pediatric nephroblastoma, has been associated with deletions encompassing the p13 band of chromosome 11 and an independent loss of heterozygosity at 11p15. Weissman et al. (Science 236:175-180, 1987) transferred a human der(11) chromosome into the G401.6TG.6 Wilms' tumor cell line via the microcell-mediated chromosome transfer technique. The resulting microcell hybrids were nontumorigenic when assayed in nude mice; however these cells retained all of the in vitro growth and morphological characteristics of the tumorigenic parental cells in 10% fetal calf serum (FCS). Segregation of the der(11) chromosome from the nontumorigenic microcell hybrid cells resulted in the reappearance of the tumorigenic phenotype in vivo. In vitro culture of these cell lines in serum-free medium supplemented with 0.1% bovine serum albumin (BSA) and 10 ng/ml Na2O3Se resulted in sustained growth of both the tumorigenic parent and the tumorigenic segregant while the nontumorigenic microcell hybrids were unable to divide. The separate addition of either 10 ng/ml of epidermal growth factor (EGF) or 5 micrograms/ml of insulin did not alter this effect. However, the addition of 5 micrograms/ml of transferrin stimulated the nontumorigenic microcell hybrid cells to grow at a rate comparable to the tumorigenic cells. In addition, conditioned serum-free medium from the tumorigenic parental or tumorigenic segregant cell lines was able to stimulate the growth of the nontumorigenic microcell hybrid cells, whereas the reciprocal experiment had no effect on the growth of the tumorigenic cells. These data suggest that the inability of the microcell hybrid cells to grow in serum-free conditions is correlated with their genetic nontumorigenic phenotype and that a specific growth factor, transferrin, can bypass or alter this negative growth regulatory pathway(s) in vitro.  相似文献   

11.
An analysis for cosegregation of chromosomes and tumorigenicity in 52 hybrids of human diploid X D98AH2 human carcinoma-derived cells reveals the consistent presence of four copies of chromosome 11 in all nontumorigenic hybrids (two from each of the parental cells) and a consistent loss of one or two copies of the 11 in all tumor cells derived from tumorigenic hybrids that grow in nude mice. In our earlier study, assays with restriction fragment length polymorphic (RFLP) markers for the cell parent origin of the chromosomes 11 in the hybrids indicated that at least one of the Nos. 11 lost in the tumor cells is from the diploid. Thus both Nos. 11 of the diploid seem to be required for complete and stable suppression of the tumorigenic phenotype. The results of the present study suggest that chromosome 2 may also carry suppressor information, but this causes only partial suppression of the tumorigenic phenotype in the absence of both Nos. 11. On the other hand, when the hybrids contain full complements of the 2 and the 11, suppression is very stable. All other chromosomes except for Nos. 1, 16, 17, 19, and 21 are clearly discordant with suppression. The latter chromosomes are not discordant often enough to allow their exclusion as possible carriers of suppressor information, particularly in the absence of RFLP evaluations. It is clear, however, that if they do carry such information it is not adequate for maintaining a stably suppressed phenotype in the absence of both Nos. 11 of the diploid.  相似文献   

12.
We have previously shown that microcell-mediated transfer of a der(9)t(X;9) chromosome, containing an almost complete human chromosome (HSA) 9 derived from the human fibroblast strain GM0705, into the Syrian hamster (Mesocricetus auratus) cell line BHK-191-5C suppressed the anchorage independence and tumorigenicity of the hybrids. Transfer of a normal HSA X did not have any effect on these phenotypes. Although the recipient cell line contained a 1:1 ratio of near-diploid and near-tetraploid cells, all hybrids retaining the der(9) chromosome were near-tetraploid, in contrast to hybrids retaining a normal X chromosome. In the present study, we have generated microcell hybrids by transferring another der(9)t(X;9) chromosome derived from the human fibroblast strain GM01429. This derivative chromosome contained a deletion on the short arm of HSA 9 and was also missing the distal part of the long arm of HSA 9 due to the involvement in a reciprocal (constitutive) translocation of this chromosome with HSA X. Cytogenetic analysis showed that all hybrid clones were near-tetraploid, confirming our previous finding. We also observed that the introduction of the deleted der(9) chromosome forced the hybrids to lose Syrian hamster chromosome 10. A soft agar test and nude mice assay indicated that none of the hybrids was suppressed for either anchorage independent growth or tumor formation. These data suggest that there is an antagonistic relationship between growth-promoting genes and antiproliferative genes. The observed dosage effects of both growth-promoting and growth-suppressing genes indicate that cellular growth may be a quantitative trait.  相似文献   

13.
Stability of the "two active X" phenotype in triploid somatic cells.   总被引:7,自引:0,他引:7  
B R Migeon  J A Sprenkle  T T Do 《Cell》1979,18(3):637-641
We examined triploid cells of XXY karyotype heterozygous for glucose 6 phosphate dehydrogenase (G6PD) electrophoretic variants with regard to the stability of their X chromosome phenotype. Clonal populations of cells derived from these human fibroblasts maintained a precise 1:2:1 ratio of A:heteropolymer:B isozymes throughout their life span, indicating stability of the two active X chromosomes in these cells. To determine the influence of the autosomal complement on X chromosome expression, we attempted to perturb the relationship. Fusion of these triploid cells with human diploid fibroblasts carrying a novel G6PD variant (B') resulted in heterokaryons exprssing a novel heteropolymer, presumably indicating that all three parental X chromosomes were active. However, no derepression of the inactive X chromosome was observed. Analysis of interspecific hybrids derived from triploid cells and mouse fibroblasts confirmed that activity of parental X chromosomes is maintained. Some human mouse hybrid clones, however, expressed only a single human G6PD isozyme, probably attributable to segregation of the pertinent X chromosome, but elimination of a relevant autosome cannot be excluded. The triploid cells transformed by SV40 showed alterations in LDH pattern and an approximately 10-20% decrease in chromosome number, but maintained the precise G6PD phenotype of the untransformed cell. These studies provide evidence for the stability of the X chromosome phenotype in triploid cells.  相似文献   

14.
Both tumorigenic segregant HeLa X human fibroblast hybrids and tumorigenic HeLa (D98/AH-2) cells can be converted to a non-tumorigenic state following introduction of a single copy of a fibroblast t(X;11) chromosome. The translocated chromosome contains approximately 95% of the 11 chromosome and the q26-qter portion of the X chromosome which contains the hypoxanthine guanine phosphoribosyl transferase (HPRT) gene. Introduction of a human X chromosome has no effect on tumorigenic expression. Suppression of tumorigenicity is relieved by selecting cells which have lost the t(X;11) chromosome by growth in medium containing 6-thioguanine (6-TG). Further, reintroduction of the t(X;11) chromosome into tumorigenic 6TGR cells again suppresses tumorigenicity. Thus, the introduction of a single copy of a human chromosome 11 is sufficient to completely suppress the tumorigenic phenotype of HeLa cells and is suggestive of the presence of tumor-suppressor gene(s) on this chromosome.  相似文献   

15.
The technique of two-dimensional (2-D) gel electrophoresis was sued to identify five human X-linked gene products in crude cell extracts of mouse-human and Chinese hamster-human somatic cell hybrids. The human origin of these five polypeptides was demonstrated by their comigration with human fibroblast proteins and their failure to comigrate with polypeptides in extracts from the mouse or hamster parental cells. All five polypeptides were present in extracts of rodent-human hybrids that contained a human X chromosome, but were not found in extracts of cells that lacked a human X chromosome. Chromosome analysis of the hybrid clones revealed that the human X chromosome is both necessary and sufficient for the expression of the five polypeptides, designated pX-24, pX-27, pX-37, pX-40, and pX-56. pX-56 can be identified as the human X-linked enzyme glucose-6-phosphate dehydrogenase (G6PD) (E.C.1.1.1.49), while polypeptides pX-24, pX-27, pX-37 and pX-40 have molecular properties unlike those of known human X-linked gene products. pX-24 appears to be a membrane-bound protein that maps to the distal portion of the long arm of the human X chromosome, while pX-27, pX-37, and pX-40 are soluble proteins that map to the proximal long arm or to the short arm of the human X chromosome. 2-D gel electrophoretic analysis of extracts from somatic cell hybrids provides a general method for identifying polypeptides in crude cell extracts coded for by any specific chromosome and can be used to study primary gene products not previously amenable to genetic analysis.  相似文献   

16.
Interspecific somatic cell hybrids were constructed between a Chinese hamster lung cell line deficient in hypoxanthine phosphoribosyltransferase and two lymphoblastoid cultures (GM 4025 and GM 3200) from unrelated males affected with the fragile (X) syndrome. Thirteen independent colonies survived selection in hypoxanthine-azaserine, while only one colony survived selection in hypoxanthine-aminopterin-thymidine. One hybrid formed from GM 4025 was found to contain a human X chromosome as the only detectable human chromosome in the majority of cells analyzed. Induction of fragile (X) expression in this hybrid at frequencies up to 20% was achieved by treatments with 5-fluoro-2'-deoxyuridine (5 X 10(-8) M or 1 X 10(-7) M) or methotrexate (5 X 10(-6) or 1 X 10(-5) for 12 h. Use of the somatic cell hybrid system may allow study of the fragile (X) from different patients on a homogeneous xenogeneic background and may provide a better system for characterization of the fragile (X) at the biochemical and molecular level.  相似文献   

17.
18.
Monoclonal antibodies 4F2, A3D8, and A1G3, directed against cell surface antigens present on subsets of human cells, were used to identify the human chromosome regions that code for the antigenic determinants. Human fibroblasts expressed all three antigens, and no cross-reactivity with Chinese hamster or mouse cells was found. Fourteen rodent X human somatic cell hybrids, derived from six different human donors and from two different Chinese hamster and one mouse cell line, were studied simultaneously for human chromosome content and for antibody binding as detected by indirect immunofluorescence. Concordancy with binding of all three antibodies was observed only for human chromosome 11. All other chromosomes were excluded by three or more discordant hybrid clones. Data from six hybrids containing three different regions of chromosome 11 indicate that it is the long arm of chromosome 11 which is both necessary and sufficient for expression of the human antigen defined by 4F2 while the antigen(s) defined by A3D8 and A1G3 map to short arm.  相似文献   

19.
Electrophoretic mobilities in polyacrylamide gel of five dehydrogenases: NADP-dependent malate dehydrogenase (NADP-MDH), 6-phosphogluconate dehydrogenase (6PGD), alcohol dehydrogenase (ADH), glucose-6-phosphate dehydrogenase (G6PD) and glutamate dehydrogenase (GDH) were investigated in a series of mouse X Chinese hamster somatic cell hybrids. Seven hybrid lines with different ratio of chromosome sets of hamster and mouse: 1:1, 2:1, 3:1 and 1:2 respectively were studied. NADP-MDH and 6PGD of both parental species and intermediate hybrid bands were present in all hybrids except two lines. These lines had only hamster MDH due to the elimination of mouse chromosomes. A correlation was found between the gene dose and the intensity of the expression of the MDH bands. The mouse type ADH was detected in all hybrids. The hamster ADH was found in one of the hybrid lines that lost all mouse chromosomes during cultivation. It is suggested that hamster ADH activity was suppressed in hybrids by the mouse genome. The species origin of GDH and G6PD could not be established due to similarity of electrophoretic mobilities of respective enzymes in parental cells.  相似文献   

20.
We have previously shown that microcell-mediated transfer of a der(9)t(X;9) human chromosome (HSA), derived from human fibroblast strain GM0705, into the Syrian hamster cell line BHK-191-5C produced only near-tetraploid hybrids, although the recipient cell line contained a 1:1 ratio of near-diploid and near-tetraploid cells. However, the tumorigenicity and the anchorage independence could be suppressed in the near-tetraploid hybrids with one copy of the der(9)t(X;9) chromosome. The introduction of an HSA X chromosome did not suppress either of these phenotypes. We concluded that in addition to two suppressor genes, one for tumorigenicity and another for anchorage independence, HSA 9 might carry a third gene capable of inhibiting cellular growth in vitro, which had dosage effects. In the present study, keeping one copy of the der(9)t(X;9) chromosome, we have increased the hamster background chromosome number beyond hexaploid level by fusing two microcell-generated hybrid cell lines, where both malignant and anchorage-independent phenotypes were suppressed, with the parental malignant BHK-191-5C cell line. Tests with nude mice showed that hybrids containing one copy of the der(9)t(X;9) chromosome against the increased background of chromosomes of malignant parental origin were still suppressed for both phenotypes. These results suggest that the suppressor genes for malignancy and for anchorage independence have no dosage effects, in contrast to the suppressor gene(s) for cellular growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号