首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We characterized cointegrates formed in an Escherichia coli rec strain between bacteriophage P1 genomes and small plasmids related to pBR322. The partners were, on the one hand, either phage P1 DNA, which carries one copy of IS1, or phage P1-15 DNA, a derivative which lacks the IS1, and, on the other hand, plasmids containing either a split IS1 or no IS1. In the presence of IS1 sequences on both partners, cointegrates were usually formed by reciprocal recombination between IS1 sequences. Cointegrates between P1 and a plasmid carrying no IS1 sequence were formed by transpositional cointegration mediated by IS1 of P1. Cointegrates between P1-15 and small plasmids containing a split IS1 were formed by one of three ways: (a) acquisition of an IS1 by P1-15 followed by reciprocal recombination between IS1 sequences, (b) transpositional cointegration mediated by the split IS1 element, Tn2657, or (c) involvement of the invertible segment carried on P1-15 DNA. Most cointegrates segregated into the small plasmids and phage P1 derivatives. A comparison of the phenomena studied and of their frequencies allowed us to conclude that cointegrate formation is a molecular mechanism involved in the transduction of plasmids smaller than those packageable into P1 virions, although it does not seem to be the only process used.  相似文献   

2.
Summary Evidence is presented that bacteriophage P7 specifies an analog of the E. coli DNA replication protein, dnaB. As in the related bacteriophage P1 (D'Ari et al., 1975; Ogawa, 1975), in lysogens of P7, the production of the analog protein is repressed and constitutive mutants could be isolated. Such constitutive of several dnaB(ts) mutations and also rescue a strain carrying a dnaB amber mutation. While neither P7 nor the mutant P1bacban (defective in the structural gene ban) could suppress dnaB(ts) mutations efficiently, recombinants between these two phages could do so, indicating the presence of a functional dnaB analog gene (called sdb) on P7. In a dnaB amber strain suppressed by the presence of the constitutive mutant P7csb, bacteriophage failed to replicate which is a further similarity between P7 and P1. P7csb mutants or P7-P1bacban recombinants were found to be less thermoresistant than P1bac1 suggesting that the P7-specified dnaB analog protein or its production is relatively less tolerant of temperatures above 37°C.  相似文献   

3.
4.
Shigeru Iida 《Plasmid》1980,3(3):278-290
Restriction cleavage analysis identified a P1CmSmSuTc plasmid isolated by Mise and Arber (1976) (Virology 69, 191–205) as a cointegrate between bacteriophage P1 and the R plasmid R100. Cointegration occurred by reciprocal recombination between the IS1 element of P1 and IS1b of R100. It involved neither gain nor loss of genetic material, so that the cointegrate carries three IS1 elements in the same orientation. The cointegrate propagates with relatively high stability as plasmid in Escherichia coli host bacteria. It displays the Tra+ functions of R100, incompatibility FII of R100, and incompatibility Y of P1, Res+ (P1), Mod+ (P1) functions of P1 and P1 immunity. Production of P1 phage particles is inducible as for wild type P1. However, because of the large genome size of 180 kb, progeny phage particles contain only a fraction (about 100 kb) of the cointegrate genome. Because of cyclic permutation all genome regions are equally represented in a population of the phage particles of an induced lysate. Occasionally, reciprocal recombination between IS1 elements allows the restoration of the P1 genome. These segregants are found as plaque formers at a rate of about 1 per 300 phage particles in induced lysates.  相似文献   

5.
Summary Specialized transducing derivatives of the temperate bacteriophage P1 (P1std) are selected by transduction into recipients with deletions in the corresponding genes (Stodolsky 1973). When Escherichia coli K12 strains are used as donors in such transduction experiments, P1argF derivatives can be selected. The argF gene is unique to these strains (Glansdorff et al. 1967). Under these experimental conditions P1argF are formed with frequencies 10,000 times greater than other P1std. The majority of the P1argF derivatives that have been analyzed are indistinguishable by cleavage analyses. One such derivative, P1argF5 has been characterized in detail. Heteroduplex analysis against P1, P7, and P1CmO identified an 11 kb insertion of DNA precisely at the naturally occurring IS1 locus of P1. Cleavage analysis with EcoRI, BamHI and PstI confirmed this finding. To further define the argF insertion, a P1Cm13argF derivative was constructed having the IS1 sequences of Cm13 and argF in opposite orientation. Intrastrand annealing of P1Cm13argF5 DNA established that the argF segment is flanked by directly repeated IS1 sequences. The IS1-argF-IS1 segment is desigmated Tn2901. The assignment of the map position of the argF gene within the 11 kb insert of P1argF5 is discussed. The evolutionary significance of this finding and a model for P1argF formation is also presented.  相似文献   

6.
An in vitro DNA replication system based on extracts prepared from Escherichia coli cells infected with bacteriophage T7 was used to study deletion associated with the repair of double-strand breaks. The gene for T7 ligase was interrupted by a DNA insert which included 17-bp direct repeats. Deletion between the repeats restored the reading frame of the gene, and these DNA molecules could be detected by their ability to give rise to ligase-positive phage after in vitro packaging. T7 genomes that had a pre-existing double-strand break located between the direct repeats were incubated together with intact genomes which had the same direct repeats. Genetic markers placed on either side of the insert in the ligase gene allowed identification of the source of DNA molecules that underwent deletion between the direct repeats. This allowed an assessment of the participation of the molecules with strand breaks in the deletion process, under conditions where any mechanism could contribute to deletion. Approximately three-quarters of the T7 molecules that had lost the region between the direct repeats contained one or both of the partial genomes originally introduced into the reactions. About 50% of the genomes which had undergone deletion had recombined markers between the partial and intact genomes. The data demonstrate that double-strand breaks substantially enhance the contribution of intermolecular recombination to deletion. Received: 19 November 1996 / Accepted: 26 February 1997  相似文献   

7.
Summary A cleavage map of bacteriophage P1 DNA was established by reciprocal double digestion with various restriction endonucleases. The enzymes used and, in parenthesis, the number of their cleavage sites on the P1clts genome are: PstI (1), HindIII (3), BglII (11), BamHI (14) and EcoRI (26). The relative order of the PstI, HindIII and BglII sites, as well as the order of 13 out of the 14 BamHI sites and of 17 out of the 26 EcoRI sites was determined. The P1 genome was divided into 100 map units and the PstI site was arbitrarily chosen as reference point at map unit 20.DNA packaging into phage heads starts preferentially at map unit 92 and it proceeds towards higher map units. The two inverted repeat sequences of P1 DNA map about at units 30 and 34.  相似文献   

8.
The genomes of three plaque-forming recombinant phages between phage P1 and plasmid p15B were characterized by restriction cleavage analysis and electron microscopic heteroduplex studies. The structure of all three P1-15 hybrid genomes differs from that of P1 DNA in the res mod region coding for restriction and modification systems EcoP15 and EcoP1, respectively. P1-15 hybrid 2 shows an additional major difference to P1 around the site of the residential IS1 element of P1 and it does not carry an IS1 in its genome.  相似文献   

9.
M Sun  D Louie    P Serwer 《Biophysical journal》1999,77(3):1627-1637
Bacteriophage T7 packages its double-stranded DNA genome in a preformed protein capsid (procapsid). The DNA substrate for packaging is a head-to-tail multimer (concatemer) of the mature 40-kilobase pair genome. Mature genomes are cleaved from the concatemer during packaging. In the present study, fluorescence microscopy is used to observe T7 concatemeric DNA packaging at the level of a single (microscopic) event. Metabolism-dependent cleavage to form several fragments is observed when T7 concatemers are incubated in an extract of T7-infected Escherichia coli (in vitro). The following observations indicate that the fragment-producing metabolic event is DNA packaging: 1) most fragments have the hydrodynamic radius (R(H)) of bacteriophage particles (+/-3%) when R(H) is determined by analysis of Brownian motion; 2) the fragments also have the fluorescence intensity (I) of bacteriophage particles (+/-6%); 3) as a fragment forms, a progressive decrease occurs in both R(H) and I. The decrease in I follows a pattern expected for intracapsid steric restriction of 4',6-diamidino-2-phenylindole (DAPI) binding to packaged DNA. The observed in vitro packaging of a concatemer's genomes always occurs in a synchronized cluster. Therefore, the following hypothesis is proposed: the observed packaging of concatemer-associated T7 genomes is cooperative.  相似文献   

10.
Although hybridization between species in Papaver is difficult, a combination of karyotypic and genomic analysis has allowed the definition of up to six, apparently independent genomes, in the 2n= 12 and 1n= 14 diploids. In the 2n= 14 group there is considerable karyotypic differentiation and karyotypes off. atlanticum and P. hybridum are sufficiently dissimilar from each other and from the rest to allow the recognition of the two genomes as unique although no hybrids with other x= 7 diploids were produced. The genome of P. atlanticum is defined as C7C7 and that of P. hybridum H7H7.P. alpinum and P. rhaeticum only hybridized successfully with each other and the near perfect bivalent formation in their hybrid, together with the extreme similarity of their karyotypes, suggests that they are very closely related. They are designated J7J7. All the other x=7 diploids are karyotypically similar and the analysis of meiosis in their hybrids demonstrates thay they all share the same genome to some extent. There is however some differentiation among them. P. commutatum, P. glaucum, P. macrostemum and P. rhoeas are genomically very similar and all can be regarded as A7A7. P.fugax and P. tauricola appear to share an identical genome, partially differentiated from A7A7 and are defined as A27A27 while P. postii, although showing some little homology with A7A7 is sufficiently differentiated from it to be regarded as more distant than A27A27 and is described as A37A37. Although no hybrids between the two 2n= 12 diploids P. apulum and P.pavoninum were produced their karyotypes are sufficiently different to be individually recognized. The only hybrid produced between the x= 6 and x= 7 groups (P. apulum×P. hybridum) showed no homology between the chromosomes of the two genomes and, although this may not be true for any other x=6/x=7 combinations it is best to recognize the two x= 6 genomes as independent of the x= 7. The genome of P. apulum is thus regarded as I6I6 and that of P. pavoninum as P6P6.  相似文献   

11.
Summary The restriction enzymes BamHI, BglII, EcoRI, HindIII, PstI, XbaI and XhoI have been used to cleave DNA isolated from the related coliphages P2 and 186 for analysis on 1% agarose gels. Three approaches were used to map the sites of cleavage: a) analysis dependent upon the existence of cohesive termini and availability of viable P2-186 hybrids; b) analysis of double digests and redigests of isolated fragments with a second enzyme and c) analysis of partial digests by transfer to nitrocellulose and hybridization with a single fragment. This last approach and the results obtained from it are detailed in a separate paper (Saint and Egan, 1979). The number of sites of each enzyme are as follows: a) 186, BamHI-7, BglII-1, EcoRI-3, HindIII-2, PstI-22, XbaI-0 and XhoI-1; b) P2, BamHI-3, BglII-2 EcoRI-3, HindIII-0, PstI-3, XbaI-1 and XhoI-0. All of these sites have been mapped with the exception of PstI for 186, where only the five sites in the right 35% (the control region) have been mapped.  相似文献   

12.
Summary We demonstrated that bacteriophages P1 and P22 were able to form various types of hybrids with six out of seven different R plasmids tested. When the same R plasmid was used for isolation, P1-R hybrids usually carried more resistance markers than P22-R. Several genetical observations suggest that the hybrid prophages carried the resistance markers transposed to the phage genomes without loss of essential phage genes. Upon UV-irradiation the prophages produced phage lysates that transduced the relevant resistance markers at high frequencies by lysogenic conversion. The insertion of the resistance markers was even acquired by the P1 or P22 genomes during one-step growth in R+ cells. Some lytically prepared lysates grown on R+ cells contained the hybrids at a frequency of 10-7 to 10-6/plaqueforming unit. Analysis of P1-transductants for resistance markers of the R plasmids revealed in some cases more specialized transductants than generalized transductants. These results strongly indicate that a precise genetic map of an R plasmid can not be established only on the basis of co-transduction frequencies of the resistance markers of the R plasmid.  相似文献   

13.

Background

Paenibacillus larvae is a Firmicute bacterium that causes American Foulbrood, a lethal disease in honeybees and is a major source of global agricultural losses. Although P. larvae phages were isolated prior to 2013, no full genome sequences of P. larvae bacteriophages were published or analyzed. This report includes an in-depth analysis of the structure, genomes, and relatedness of P. larvae myoviruses Abouo, Davis, Emery, Jimmer1, Jimmer2, and siphovirus phiIBB_Pl23 to each other and to other known phages.

Results

P. larvae phages Abouo, Davies, Emery, Jimmer1, and Jimmer2 are myoviruses with ~50 kbp genomes. The six P. larvae phages form three distinct groups by dotplot analysis. An annotated linear genome map of these six phages displays important identifiable genes and demonstrates the relationship between phages. Sixty phage assembly or structural protein genes and 133 regulatory or other non-structural protein genes were identifiable among the six P. larvae phages. Jimmer1, Jimmer2, and Davies formed stable lysogens resistant to superinfection by genetically similar phages. The correlation between tape measure protein gene length and phage tail length allowed identification of co-isolated phages Emery and Abouo in electron micrographs. A Phamerator database was assembled with the P. larvae phage genomes and 107 genomes of Firmicute-infecting phages, including 71 Bacillus phages. Phamerator identified conserved domains in 1,501 of 6,181 phamilies (only 24.3%) encoded by genes in the database and revealed that P. larvae phage genomes shared at least one phamily with 72 of the 107 other phages. The phamily relationship of large terminase proteins was used to indicate putative DNA packaging strategies. Analyses from CoreGenes, Phamerator, and electron micrograph measurements indicated Jimmer1, Jimmer2, Abouo and Davies were related to phages phiC2, EJ-1, KC5a, and AQ113, which are small-genome myoviruses that infect Streptococcus, Lactobacillus, and Clostridium, respectively.

Conclusions

This paper represents the first comparison of phage genomes in the Paenibacillus genus and the first organization of P. larvae phages based on sequence and structure. This analysis provides an important contribution to the field of bacteriophage genomics by serving as a foundation on which to build an understanding of the natural predators of P. larvae.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-745) contains supplementary material, which is available to authorized users.  相似文献   

14.
Summary We demonstrate the use of bacteriophage P4 as a molecular cloning vector in Klebsiella pneumoniae. A hybrid P4 phage, constructed in vitro, that contains a K. pneumoniae hisDG DNA fragment can be propagated either as a lytic viable specialized transducing phage or as an autonomous, self-replicating plasmid. Hybrid P4 genomes existing as plasmids can be readily converted into non-defective P4-hybrid phage particles by superinfection with helper phage P2. Infection of a K. pneumoniae hisD non-P2 lysogen with P4-hisD hybrid phage results in approximately 90% of the infected cells becoming stably transduced to HisD+. Because P4 interferes with P2 growth, high titre stocks of P4 hybrid phages are relatively free (10-6) of P2 contamination. The hisG gene product was detected in ultraviolet light irradiated host cells infected by the P4-hisDG hybrid phage. A mutant of P4 (P4sidl) that directs the packaging of P4 DNA into P2 sized capsids should permit the construction of hybrid phages carrying 26 kilobase inserts.  相似文献   

15.
The packaging of bacteriophage P1 DNA is initiated by cleavage of the viral DNA at a specific site, designated pac. The proteins necessary for that cleavage, and the genes that encode those proteins, are described in this report. By sequencing wild-type P1 DNA and DNA derived from various P1 amber mutants that are deficient in pac cleavage, two distinct genes, referred to as pacA and pacB, were identified. These genes appear to be coordinately transcribed with an upstream P1 gene that encodes a regulator of late P1 gene expression (gene 10). pacA is located upstream from pacB and contains the 161 base-pair pac cleavage site. The predicted sizes of the PacA and PacB proteins are 45 kDa and 56 kDa, respectively. These proteins have been identified on SDS-polyacrylamide gels using extracts derived from Escherichia coli cells that express these genes under the control of a bacteriophage T7 promoter. Extracts prepared from cells expressing both PacA and PacB are proficient for site-specific cleavage of the P1 packaging site, whereas those lacking either protein are not. However, the two defective extracts can complement each other to restore functional pac cleavage activity. Thus, PacA and PacB are two essential bacteriophage proteins required for recognition and cleavage of the P1 packaging site. PacB extracts also contain a second P1 protein that is encoded within the pacB gene. We have identified this protein on SDS-polyacrylamide gels and have shown that it is translated in the same reading frame as is PacB. Its role, if any, in pac cleavage is yet to be determined.  相似文献   

16.
Summary A set of plasmids that contain fragments of the bacteriophage P4 genome has been constructed by deleting portions of a P4-ColE1 hybrid. A P4 genetic map has been established and related to the physical map by examining the ability of these plasmids to rescue various P4 mutations. The P4 vir1 mutation and P4 genes involved in DNA replication (), activation of P2 helper genes ( and ), polarity suppression (psu) and head size determination (sid) have been mapped, as has the region responsible for synthesis of a nonessential P4 protein.One of the deleted plasmids contains only 5900 base pairs (52%) of P4 but will form plaques if additional DNA is added to increase its total size to near that of P4. This plasmid is also unique in that it will not form stable associations with P2 lysogens of E. coli which are recA +. P4 mutants can be suppressed as a result of replication under control of the ColE1 part of the hybrid.  相似文献   

17.
18.
Medicinal plants used in European folk medicine attached to Lamiales, Gentianales or Asterales orders are used to treat inflammatory disorders. Many targets have been identified but to date, implication of purinergic receptor P2X7 activation has not yet been investigated. We managed to evaluate the protective effect on P2X7 activation by plant extracts used as anti-inflammatory in European folk medicine by the YO-PRO-1 uptake dye in vitro bioassay. Results revealed that among our selected plants, species from Scrophularia and Plantago genus were able to decrease significantly P2X7 activation (>50 % at 0.1 and 1 μg/mL). UPLC/MS, dereplication and metabolomic analysis of Scrophularia extracts, allowed us to identify the cinnamoyl-iridoid harpagoside as putative inhibitor of P2X7 activation. These results open a new research field regarding the anti-inflammatory mechanism of cinnamoyl-iridoids bearing plants, which may involve the P2X7 receptor.  相似文献   

19.
Three case histories document how subsequent events of genomic rearrangements and selection interplay in the evolution of infectious bacteriophage genomes carrying acquired genes. Two of the phages studied were plaque-forming P1CmTc recombinants derived from P1Cm1 and P1Tc1, both of which are hybrids between phage P1 and the R plasmid NR1. In the formation of the P1CmTc4 genome a postulated intermediate underwent IS1-mediated deletion formation. From the same intermediate P1CmTc1 must have evolved by IS1-mediated inversion followed by homologous recombination with a parental phage DNA. The third case documents formation of the P1Cm2 genome by “illegitimate” intramolecular recombination in the genome of P1-r-det, a hybrid between P1 and NR1.  相似文献   

20.
We examined intraspecific chloroplast (cp) DNA variation within Populus deltoides, P. nigra, and P. maximowiczii by restriction fragment analysis using 16 restriction endonucleases and six heterologous probes of cloned Petunia cpDNA fragments. All three Populus species showed intraspecific cpDNA variation, which was intra- and inter-varietal in P. deltoides, intervarietal in P. nigra, and origin-specific in P. maximowiczii. Two varieties of P. deltoides, var deltoides and var occidentalis, showed distinct cp genomes/DNA. Three distinct cp genomes/DNA, separated by a loss or gain of 1 EcoRV restriction site and/or 1 restriction fragment length polymorphism (RFLP), were observed among the individuals of P. deltoides var deltoides. Within P. nigra, cpDNA of var italica was distinct from that of vars nigra and plantierensis by one RFLP and by a loss or gain of one BamHI restriction site. Populus maximowiczii clones of Chinese origin were separated from those of Japanese origin by a gain or loss of one ClaI restriction site in their cpDNA. The estimate of nucleotide substitutions per site in cpDNA was 0.07% between two varieties of P. deltoides, 0.05% between var italica and var nigra or plantierensis of P. nigra, and 0.01% between Japanese and Chinese accessions of P. maximowiczii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号