首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wnt proteins are secreted signaling molecules that play a central role in development and adult tissue homeostasis. We have previously shown that Wnt signaling requires retromer function in Wnt-producing cells. The retromer is a multiprotein complex that mediates endosome-to-Golgi transport of specific sorting receptors. MIG-14/Wls is a conserved transmembrane protein that binds Wnt and is required in Wnt-producing cells for Wnt secretion. Here, we demonstrate that in the absence of retromer function, MIG-14/Wls is degraded in lysosomes and becomes limiting for Wnt signaling. We show that retromer-dependent recycling of MIG-14/Wls is part of a trafficking pathway that retrieves MIG-14/Wls from the plasma membrane. We propose that MIG-14/Wls cycles between the Golgi and the plasma membrane to mediate Wnt secretion. Regulation of this transport pathway may enable Wnt-producing cells to control the range of Wnt signaling in the tissue.  相似文献   

2.
Secreted Wnt proteins play essential roles in many biological processes during development and diseases. However, little is known about the mechanism(s) controlling Wnt secretion. Recent studies have identified Wntless (Wls) and the retromer complex as essential components involved in Wnt signaling. While Wls has been shown to be essential for Wnt secretion, the function(s) of the retromer complex in Wnt signaling is unknown. Here, we have examined a role of Vps35, an essential retromer subunit, in Wnt signaling in Drosophila and mammalian cells. We provide compelling evidence that the retromer complex is required for Wnt secretion. Importantly, Vps35 colocalizes in endosomes and interacts with Wls. Wls becomes unstable in the absence of retromer activity. Our findings link Wls and retromer functions in the same conserved Wnt secretion pathway. We propose that retromer influences Wnt secretion by recycling Wntless from endosomes to the trans-Golgi network (TGN).  相似文献   

3.
Wnt proteins are lipid-modified glycoproteins that play a central role in development, adult tissue homeostasis and disease. Secretion of Wnt proteins is mediated by the Wnt-binding protein Wntless (Wls), which transports Wnt from the Golgi network to the cell surface for release. It has recently been shown that recycling of Wls through a retromer-dependent endosome-to-Golgi trafficking pathway is required for efficient Wnt secretion, but the mechanism of this retrograde transport pathway is poorly understood. Here, we report that Wls recycling is mediated through a retromer pathway that is independent of the retromer sorting nexins SNX1-SNX2 and SNX5-SNX6. We have found that the unrelated sorting nexin, SNX3, has an evolutionarily conserved function in Wls recycling and Wnt secretion and show that SNX3 interacts directly with the cargo-selective subcomplex of the retromer to sort Wls into a morphologically distinct retrieval pathway. These results demonstrate that SNX3 is part of an alternative retromer pathway that functionally separates the retrograde transport of Wls from other retromer cargo.  相似文献   

4.
The secretion of Wnt signaling proteins is dependent upon the transmembrane sorting receptor, Wntless (Wls), which recycles between the trans-Golgi network and the cell surface. Loss of Wls results in impairment of Wnt secretion and defects in development and homeostasis in Drosophila, Caenorhabditis elegans, and the mouse. The sorting signals for the internalization and trafficking of Wls have not been defined. Here, we demonstrate that Wls internalization requires clathrin and dynamin I, components of the clathrin-mediated endocytosis pathway. Moreover, we have identified a conserved YXXφ endocytosis motif in the third intracellular loop of the multipass membrane protein Wls. Mutation of the tyrosine-based motif YEGL to AEGL (Y425A) resulted in the accumulation of human mutant Wls on the cell surface of transfected HeLa cells. The cell surface accumulation of WlsAEGL was rescued by the insertion of a classical YXXφ motif in the cytoplasmic tail. Significantly, a Drosophila WlsAEGL mutant displayed a wing notch phenotype, with reduced Wnt secretion and signaling. These findings demonstrate that YXXφ endocytosis motifs can occur in the intracellular loops of multipass membrane proteins and, moreover, provide direct evidence that the trafficking of Wls is required for efficient secretion of Wnt signaling proteins.  相似文献   

5.
《Cellular signalling》2014,26(1):19-31
Secretion of Wnt proteins is mediated by the Wnt sorting receptor Wls, which transports Wnt from the Golgi to the cell surface for release. To maintain efficient Wnt secretion, Wls is recycled back to the trans-Golgi network (TGN) through a retromer dependent endosome to TGN retrieval pathway. It has recently been shown that this is mediated by an alternative retromer pathway in which the sorting nexin SNX3 interacts with the cargo-selective subcomplex of the retromer to sort Wls into a retrieval pathway that is morphologically distinct from the classical SNX-BAR dependent retromer pathway. Here, we investigated how sorting of Wls between the two different retromer pathways is specified. We found that when the function of the cargo-selective subcomplex of the retromer is partially disrupted, Wnt secretion can be restored by interfering with the maturation of late endosomes to lysosomes. This leads to an accumulation of Wls in late endosomes and facilitates the retrieval of Wls through a SNX-BAR dependent retromer pathway. Our results are consistent with a model in which spatial separation of the SNX3 and SNX-BAR retromer complexes along the endosomal maturation pathway as well as cargo-specific mechanisms contribute to the selective retrieval of Wls through the SNX3 retromer pathway.  相似文献   

6.
Wnt proteins are lipid-modified glycoproteins that have important roles in development, adult tissue homeostasis and disease. Secretion of Wnt proteins from producing cells is mediated by the Wnt-binding protein MIG-14/Wls, which binds Wnt in the Golgi network and transports it to the cell surface for release. It has recently been shown that recycling of MIG-14/Wls from the plasma membrane to the trans-Golgi network is required for efficient Wnt secretion, but the mechanism of this retrograde transport pathway is still poorly understood. In this study, we report the identification of MTM-6 and MTM-9 as novel regulators of MIG-14/Wls trafficking in Caenorhabditis elegans. MTM-6 and MTM-9 are myotubularin lipid phosphatases that function as a complex to dephosphorylate phosphatidylinositol-3-phosphate, a central regulator of endosomal trafficking. We show that mutation of mtm-6 or mtm-9 leads to defects in several Wnt-dependent processes and demonstrate that MTM-6 is required in Wnt-producing cells as part of the MIG-14/Wls-recycling pathway. This function is evolutionarily conserved, as the MTM-6 orthologue DMtm6 is required for Wls stability and Wg secretion in Drosophila. We conclude that regulation of endosomal trafficking by the MTM-6/MTM-9 myotubularin complex is required for the retromer-dependent recycling of MIG-14/Wls and Wnt secretion.  相似文献   

7.
Wnt ligands are lipid-modified, secreted glycoproteins that control multiple steps during embryogenesis and adult-tissue homeostasis. Little is known about the mechanisms underlying Wnt secretion. Recently, Wntless (Wls/Evi/Srt) was identified as a conserved multi-pass transmembrane protein whose function seems to be dedicated to promoting the release of Wnts. Here, we describe Wls accumulation in the Golgi apparatus of Wnt/Wingless (Wg)-producing cells in Drosophila, and show that this localization is essential for Wg secretion. Moreover, Wls localization and levels critically depend on retromer, a conserved protein complex that mediates endosome-to-Golgi protein trafficking in yeast. In the absence of the retromer components Dvps35 or Dvps26, but in presence of Wg, Wls is degraded and Wg secretion impaired. Our results indicate that Wg, clathrin-mediated endocytosis and retromer sustain a Wls traffic loop from the Golgi to the plasma membrane and back to the Golgi, thereby enabling Wls to direct Wnt secretion.  相似文献   

8.
Wnt proteins are members of a conserved family of secreted signaling ligands and play crucial roles during development and in tissue homeostasis. There is increasing evidence that aberrant Wnt production is an underlying cause of dysregulated Wnt signaling, however little is known about this process. One protein known to play a role in secretion is the transmembrane protein Wntless (Wls). However, the mechanism by which Wls promotes Wnt secretion is a riddle. It is not known which Wnt family members require Wls and what the structural requirements are that make some of them reliant on Wls for secretion. Here we present a systematic analysis of all known Drosophila Wnt family members with respect to their dependence on Wls function for secretion. We first show that the glycosylation status of Wg at conserved sites does not determine its dependence on Wls. Moreover, in apparent contrast to murine wls, Drosophila wls is not a target gene of canonical Wnt signaling. We then show that all Wnts, with the exception of WntD, require Wls for secretion. All Wnts, with the exception of WntD, also contain a conserved Serine residue (in Wg S239), which we show to be essential for their functional and physical interaction with Wls. Finally, all Wnts, with the exception of WntD, require the acyltransferase Porcupine for activity and for functionally interacting with Wls. Together, these findings indicate that Por-mediated lipidation of the S239-equivalent residue is essential for the interaction with, and secretion by, Wls.  相似文献   

9.
Zhang P  Wu Y  Belenkaya TY  Lin X 《Cell research》2011,21(12):1677-1690
Drosophila Wingless (Wg) acts as a morphogen during development. Wg secretion is controlled by a seven-pass transmembrane cargo Wntless (Wls). We have recently identified retromer as a key regulator involved in Wls trafficking. As sorting nexin (SNX) molecules are essential components of the retromer complex, we hypothesized that specific SNX(s) is required for retromer-mediated Wnt secretion. Here, we generated Drosophila mutants for all of the eight snx members, and identified Drosophila SNX3 (DSNX3) as an essential molecule required for Wg secretion. We show that Wg secretion and its signaling activity are defective in Dsnx3 mutant clones in wing discs. Wg levels in the culture medium of Dsnx3-depleted S2 cells are also markedly reduced. Importantly, Wls levels are strikingly reduced in Dsnx3 mutant cells, and overexpression of Wls can rescue the Wg secretion defect observed in Dsnx3 mutant cells. Moreover, DSNX3 can interact with the retromer component Vps35, and co-localize with Vps35 in early endosomes. These data indicate that DSNX3 regulates Wg secretion via retromer-dependent Wls recycling. In contrast, we found that Wg secretion is not defective in cells mutant for Drosophila snx1 and snx6, two components of the classical retromer complex. Ectopic expression of DSNX1 or DSNX6 fails to rescue the Wg secretion defect in Dsnx3 mutant wing discs and in Dsnx3 dsRNA-treated S2 cells. These data demonstrate the specificity of the DSNX3-retromer complex in Wls recycling. Together, our findings suggest that DSNX3 acts as a cargo-specific component of retromer, which is required for endocytic recycling of Wls and Wg/Wnt secretion.  相似文献   

10.
《Cellular signalling》2014,26(12):2601-2605
Wnt proteins are lipid modified signaling molecules that have essential functions in development and adult tissue homeostasis. Secretion of Wnt is mediated by the transmembrane protein Wntless, which binds Wnt and transports it from the endoplasmic reticulum to the cell surface for release. To maintain efficient Wnt secretion, Wntless is recycled back to the Golgi and the endoplasmic reticulum through endocytosis and retromer dependent endosome to Golgi transport. We have previously identified protein kinase CK2 (CK2) in a genome-wide screen for regulators of Wnt signaling in Caenorhabditis elegans. Here, we show that CK2 function is required in Wnt producing cells for Wnt secretion. This function is evolutionarily conserved, as inhibition of CK2 activity interferes with Wnt5a secretion from mammalian cells. Mechanistically, we show that inhibition of CK2 function results in enhanced plasma membrane localization of Wls in C. elegans and mammalian cells, consistent with the notion that CK2 is involved in the regulation of Wls internalization.  相似文献   

11.
In C. elegans and Drosophila, retromer mediated retrograde transport of Wntless (Wls) from endosomes to the trans-Golgi network (TGN) is required for Wnt secretion. When this retrograde transport pathway is blocked, Wls is missorted to lysosomes and degraded, resulting in reduced Wnt secretion and various Wnt related phenotypes. In the mammalian intestine, Wnt signaling is essential to maintain stem cells. This prompted us to ask if retromer mediated Wls recycling is also important for Wnt signaling and stem cell maintenance in this system. To answer this question, we generated a conditional Vps35 fl allele. As Vps35 is an essential subunit of the retromer complex, this genetic tool allowed us to inducibly interfere with retromer function in the intestinal epithelium. Using a pan-intestinal epithelial Cre line (Villin-CreERT2), we did not observe defects in crypt or villus morphology after deletion of Vps35 from the intestinal epithelium. Wnt secreted from the mesenchyme of the intestine may compensate for a reduction in epithelial Wnt secretion. To exclude the effect of the mesenchyme, we generated intestinal organoid cultures. Loss of Vps35 in intestinal organoids did not affect the overall morphology of the organoids. We were able to culture Vps35 ∆/∆ organoids for many passages without Wnt supplementation in the growth medium. However, Wls protein levels were reduced and we observed a subtle growth defect in the Vps35 ∆/∆ organoids. These results confirm the role of retromer in the retrograde trafficking of Wls in the intestine, but show that retromer mediated Wls recycling is not essential to maintain Wnt signaling or stem cell proliferation in the intestinal epithelium.  相似文献   

12.
Secretion of Wnt ligands requires Evi, a conserved transmembrane protein   总被引:8,自引:0,他引:8  
Wnt signaling pathways are important for multiple biological processes during development and disease. Wnt proteins are secreted factors that activate target-gene expression in both a short- and long-range manner. Currently, little is known about how Wnts are released from cells and which factors facilitate their secretion. Here, we identify a conserved multipass transmembrane protein, Evenness interrupted (Evi/Wls), through an RNAi survey for transmembrane proteins involved in Drosophila Wingless (Wg) signaling. During development, evi mutants have patterning defects that phenocopy wg loss-of-function alleles and fail to express Wg target genes. evi's function is evolutionarily conserved as depletion of its human homolog disrupts Wnt signaling in human cells. Epistasis experiments and clonal analysis place evi in the Wg-producing cell. Our results show that Wg is retained by evi mutant cells and suggest that evi is the founding member of a gene family specifically required for Wg/Wnt secretion.  相似文献   

13.
Zhu X  Zhu H  Zhang L  Huang S  Cao J  Ma G  Feng G  He L  Yang Y  Guo X 《Developmental biology》2012,365(2):328-338
Wnt proteins are diffusible morphogens that play multiple roles during vertebrate limb development. However, the complexity of Wnt signaling cascades and their overlapping expression prevent us from dissecting their function in limb patterning and tissue morphogenesis. Depletion of the Wntless (Wls) gene, which is required for the secretion of various Wnts, makes it possible to genetically dissect the overall effect of Wnts in limb development. In this study, the Wls gene was conditionally depleted in limb mesenchyme and ectoderm. The loss of mesenchymal Wls prevented the differentiation of distal mesenchyme and arrested limb outgrowth, most likely by affecting Wnt5a function. Meanwhile, the deletion of ectodermal Wls resulted in agenesis of distal limb tissue and premature regression of the distal mesenchyme. These observations suggested that Wnts from the two germ layers differentially regulate the pool of undifferentiated distal limb mesenchyme cells. Cellular behavior analysis revealed that ectodermal Wnts sustain mesenchymal cell proliferation and survival in a manner distinct from Fgf. Ectodermal Wnts were also shown for the first time to be essential for distal tendon/ligament induction, myoblast migration and dermis formation in the limb. These findings provide a comprehensive view of the role of Wnts in limb patterning and tissue morphogenesis.  相似文献   

14.
Active regulation of protein abundance is an essential strategy to modulate cellular signaling pathways. Within the Wnt signaling cascade, regulated degradation of β‐catenin by the ubiquitin‐proteasome system (UPS) affects the outcome of canonical Wnt signaling. Here, we found that abundance of the Wnt cargo receptor Evi (Wls/GPR177), which is required for Wnt protein secretion, is also regulated by the UPS through endoplasmic reticulum (ER)‐associated degradation (ERAD). In the absence of Wnt ligands, Evi is ubiquitinated and targeted for ERAD in a VCP‐dependent manner. Ubiquitination of Evi involves the E2‐conjugating enzyme UBE2J2 and the E3‐ligase CGRRF1. Furthermore, we show that a triaging complex of Porcn and VCP determines whether Evi enters the secretory or the ERAD pathway. In this way, ERAD‐dependent control of Evi availability impacts the scale of Wnt protein secretion by adjusting the amount of Evi to meet the requirement of Wnt protein export. As Wnt and Evi protein levels are often dysregulated in cancer, targeting regulatory ERAD components might be a useful approach for therapeutic interventions.  相似文献   

15.
小鼠早期胚胎发育包含原肠运动和器官发生等重要发育过程,这些过程受多种信号通路调控,其中有Wnt、BMP、Nodal、FGF等信号通路,它们之间进行精细严密的协调,保证胚胎发育的正确进行。β-联蛋白作为Wnt配体的共同下游信号分子,在小鼠原肠运动和器官发生中发挥至关重要的作用。Wntless/GPR177在以前的研究中已被报道参与调节Wnt配体的成熟、分选和分泌等,小鼠全身剔除Wntless(Wls)将严重影响胚胎体轴形成。在该研究中,Wls被特异性地在上胚层、心血管中胚层和心肌祖细胞中剔除,以探索Wls如何参与到小鼠原肠运动和心血管发育中。我们发现,在上胚层剔除Wls后,明显阻断了上皮-间充质转化过程,这是中胚层迁移中的关键步骤。在Wls条件性剔除的上胚层中,β-联蛋白表达模式发生变化,表达水平明显下降;E-钙黏着蛋白和N 钙黏着蛋白明显上升。此外,被剔除Wls的上胚层中,细胞凋亡明显增加。不论是在心脏中胚层还是在心脏前体细胞中,剔除Wls都导致严重的心血管发育缺陷和胚胎死亡,证明Wls对心脏发育同样十分重要。这些研究结果证明,Wntless在小鼠原肠运动和心脏发育中均发挥十分重要的作用。  相似文献   

16.
The Wnt‐signaling pathway is necessary in a variety of developmental processes and has been implicated in numerous pathologies. Wntless (Wls) binds to Wnt proteins and facilitates Wnt sorting and secretion. Conventional deletion of Wls results in early fetal lethality due to defects in body axis establishment. To gain insight into the function of Wls in later stages of development, we have generated a conditional null allele. Homozygous germline deletion of Wls confirmed prenatal lethality and failure of embryonic axis formation. Deletion of Wls using Wnt1‐cre phenocopied Wnt1 null abnormalities in the midbrain and hindbrain. In addition, conditional deletion of Wls in pancreatic precursor cells resulted in pancreatic hypoplasia similar to that previously observed after conditional β‐catenin deletion. This Wls conditional null allele will be valuable in detecting novel Wnt functions in development and disease. genesis 48:554–558, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Wnt proteins are secreted molecules that play multiple roles during hair follicle development and postnatal hair cycling. Wntless (Wls) is a cargo protein required for the secretion of various Wnt ligands. However, its role during hair follicle development and hair cycling remains unclear. Here, we examined the expression of Wls during hair follicle induction and postnatal hair cycling. We also conditionally deleted Wls with K14-cre to investigate its role in hair follicle induction. K14-cre;Wlsc/c mice exhibited abnormal hair follicle development, which is possibly caused by impaired canonical Wnt signaling. Meanwhile, Wnt5a is also expressed in embryonic epidermis, but Wnt5a null mice showed no significant defect in embryonic hair follicle morphogenesis. Therefore, Wls may regulate hair follicle induction by mediating the Wnt/β-catenin pathway.  相似文献   

18.
Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons   总被引:2,自引:0,他引:2  
Wnt signaling plays critical roles during synaptic development and plasticity. However, the mechanisms by which Wnts are released and travel to target cells are unresolved. During synaptic development, the secretion of Drosophila Wnt1, Wingless, requires the function of Evenness Interrupted (Evi)/Wls, a Wingless-binding protein that is secreted along with Wingless at the neuromuscular junction. Given that Evi is a transmembrane protein, these studies suggested the presence of a novel vesicular mechanism of trans-synaptic communication, potentially in the form of exosomes. To establish the mechanisms for the release of Evi vesicles, we used a dsRNA assay in cultured cells to screen for genes that when down-regulated prevent the release of Evi vesicles. We identified two proteins, Rab11 and Syntaxin 1A (Syx1A), that were required for Evi vesicle release. To determine whether the same mechanisms were used in vivo at the neuromuscular junction, we altered the activity of Rab11 and Syx1A in motoneurons and determined the impact on Evi release. We found that Syx1A, Rab11, and its effector Myosin5 were required for proper Evi vesicle release. Furthermore, ultrastructural analysis of synaptic boutons demonstrated the presence of multivesicular bodies, organelles involved in the production and release of exosomes, and these multivesicular bodies contained Evi. We also used mass spectrometry, electron microscopy, and biochemical techniques to characterize the exosome fraction from cultured cells. Our studies revealed that secreted Evi vesicles show remarkable conservation with exosomes in other systems. In summary, our observations unravel some of the in vivo mechanisms required for Evi vesicle release.  相似文献   

19.
The Wnt signaling pathway is tightly regulated by extracellular and intracellular modulators. Wise was isolated as a secreted protein capable of interacting with the Wnt co-receptor LRP6. Studies in Xenopus embryos revealed that Wise either enhances or inhibits the Wnt pathway depending on the cellular context. Here we show that the cellular localization of Wise has distinct effects on the Wnt pathway readout. While secreted Wise either synergizes or inhibits the Wnt signals depending on the partner ligand, ER-retained Wise consistently blocks the Wnt pathway. ER-retained Wise reduces LRP6 on the cell surface, making cells less susceptible to the Wnt signal. This study provides a cellular mechanism for the action of Wise and introduces the modulation of cellular susceptibility to Wnt signals as a novel mechanism of the regulation of the Wnt pathway.  相似文献   

20.
There is growing awareness that endocytic trafficking plays a critical role in cell–cell communication during animal development. We are beginning to understand how endocytosis can initiate, modulate or terminate signaling. In contrast, our knowledge of the mechanisms involved in secreting signaling peptides remains more limited, particularly when it comes to secretion at the apical surface in epithelial cells. In this study, we review the mechanisms that control secretion in Caenorhabditis elegans , focusing on the role of Patched family members and the V0 complex of the vacuolar-adenosine triphosphatase (V-ATPase) in secreting Hedgehog-related peptides and of MIG-14/Wls and the retromer complex in secreting EGL-20/WNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号