首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We recently demonstrated that sphingosine enhances interleukin-1 beta (IL-1)-mediated prostaglandin E2 (PGE2) production in human dermal fibroblasts (Ballou, L. R., Barker, S. C., Postlethwaite, A. E., and Kang, A. H. (1990) J. Immunol. 145, 4245-4251). Because sphingosine and ceramide are interconvertable, we extended previous studies by treating cells with C2-ceramide (C2-cer), a membrane-soluble analogue of ceramide, and found that C2-cer stimulates IL-1-mediated PGE2 production to the same degree as sphingosine. In an effort to elucidate the mechanistic basis by which sphingosine and C2-cer affect PGE2 production, we examined the effect of these molecules on the expression of genes encoding cyclooxygenase (EC 1.14.99.1, Cox) and phospholipase A2 (EC 3.1.1.4, PLA2), the rate-limiting enzymes in PGE2 biosynthesis. We found that sphingosine and C2-cer treatment resulted in an 8-fold induction of Cox mRNA within 1-2 h which declined thereafter; concomitant changes in Cox protein were also observed. In contrast, expression of phospholipase A2 remained unaltered. We also found that IL-1-mediated PGE2 production was dramatically enhanced in cells treated simultaneously with sphingomyelinase which led us to directly test the effect of IL-1 on sphingomyelin turnover. IL-1 treatment induced the hydrolysis of a significant fraction of prelabeled sphingomyelin which was accompanied by increased levels of intracellular ceramide. Taken together, our results suggest that enhanced Cox expression may account for the observed enhancement of IL-1-mediated PGE2 production by sphingosine and C2-cer. These data also suggest that endogenous sphingomyelin metabolites, generated in response to IL-1, may play an important role in IL-1 signal transduction.  相似文献   

4.
Han J  Shin I 《Cellular signalling》2000,12(11-12):731-736
We have investigated the roles of ceramide in Fas signalling leading to phospholipase D (PLD) activation in A20 cells. Upon stimulation of Fas signalling by anti-Fas monoclonal antibody, sphingomyelin hydrolysis and activation of PLD were induced. Also, the translocation of protein kinase C (PKC) betaI and betaII and the elevation of diacylglycerol (DAG) content were induced by Fas cross-linking. When phosphatidylcholine-specific phospholipase C (PC-PLC) was inhibited by D609, the Fas-induced changes in PLD activity, DAG content, and PKC translocation were inhibited. In contrast, D609 had no effect on Fas-induced alterations in sphingolipid metabolism, suggesting that changes in ceramide content do not account for Fas-induced PLD activation. Furthermore, C6-ceramide had no effect on Fas-induced PLD activation and PKC translocation. Taken together, these data might suggest that ceramide generated by Fas cross-linking does not affect PKC beta-dependent PLD activity stimulated by anti-Fas monoclonal antibody in A20 cells.  相似文献   

5.
In a previous study, we showed that protein kinase C betaII (PKC betaII) translocated to a novel juxtanuclear compartment as observed in several cell types (Becker, K. P., and Hannun, Y. A. (2003) J. Biol. Chem. 278, 52747-52754). In this study, we noted the absence of this translocation in MCF-7 breast cancer cells, and we examined the mechanisms underlying this selectivity of response. We show that sustained stimulation of PKC betaII with 4beta-phorbol 12-myristate 13-acetate (PMA) resulted in accumulation of ceramide in MCF-7 cells but not in those cells that showed juxtanuclear translocation of PKC betaII. Addition of exogenous ceramides or formation of endogenous ceramide by the action of bacterial sphingomyelinase prevented PMA-induced translocation of PKC betaII in HEK 293 cells. On the other hand, inhibition of ceramide accumulation with fumonisin B1 restored the ability of PMA to induce translocation of PKC betaII in MCF-7 cells. Taken together, the results showed that endogenous ceramide is both necessary and sufficient for preventing juxtanuclear translocation of PKC betaII in response to PMA. Investigation of the mechanisms of ceramide generation in response to PMA revealed that PMA activated the salvage pathway of ceramide formation and not the de novo pathway. This conclusion was based on the following: 1) the ability of fumonisin B1 but not myriocin to inhibit ceramide formation, 2) the ability of PMA to induce increases in palmitate-labeled ceramide only under chase labeling but not acute pulse labeling, 3) the induction of the levels of sphingosine but not dihydrosphingosine in response to PMA, and 4) induction of sphingomyelin hydrolysis in response to PMA. Together, these results define a novel pathway of regulated formation of ceramide, the salvage pathway, and they define a role for this pathway in regulating juxtanuclear translocation of PKC betaII.  相似文献   

6.
We have investigated the roles of ceramide in Fas signalling leading to phospholipase D (PLD) activation in A20 cells. Upon stimulation of Fas signalling by anti-Fas monoclonal antibody, sphingomyelin hydrolysis and activation of PLD were induced. Also, the translocation of protein kinase C (PKC) βI and βII and the elevation of diacylglycerol (DAG) content were induced by Fas cross-linking. When phosphatidylcholine-specific phospholipase C (PC-PLC) was inhibited by D609, the Fas-induced changes in PLD activity, DAG content, and PKC translocation were inhibited. In contrast, D609 had no effect on Fas-induced alterations in sphingolipid metabolism, suggesting that changes in ceramide content do not account for Fas-induced PLD activation. Furthermore, C6-ceramide had no effect on Fas-induced PLD activation and PKC translocation. Taken together, these data might suggest that ceramide generated by Fas cross-linking does not affect PKC β-dependent PLD activity stimulated by anti-Fas monoclonal antibody in A20 cells.  相似文献   

7.
We previously reported that extracellular sphingomyelinase induces sphingomyelin hydrolysis in osteoblast-like MC3T3-E1 cells and that mitogen-activated protein (MAP) kinases are involved in bone morphogenetic protein (BMP)-4-stimulated osteocalcin synthesis in these cells. In the present study, we investigated whether sphingomyelinase affects BMP-4-stimulated synthesis of osteocalcin in osteoblast-like MC3T3-E1 cells. Sphingomyelinase significantly enhanced the BMP-4-stimulated osteocalcin synthesis. Among sphingomyelin metabolites, C(2)-ceramide enhanced the BMP-4-stimulated osteocalcin synthesis while sphingosine and sphingosine 1-phosphate had little effect on the synthesis. D-erythro-MAPP, an inhibitor of ceramidase, amplified the sphingomyelinase-effect on the osteocalcin synthesis. C(2)-ceramide suppressed the BMP-4-induced phosphorylation of p44/p42 MAP kinase, while having little effect on the phosphorylation of Smad1 and p38 MAP kinase. Taken together, our results strongly suggest that extracellular sphingomyelinase enhances the BMP-stimulated osteocalcin synthesis via ceramide in osteoblasts and that the effect of ceramide is exerted at a point upstream from p44/p42 MAP kinase.  相似文献   

8.
The late endosomal/lysosomal compartment (LE/LY) plays a key role in sphingolipid breakdown, with the last degradative step catalyzed by acid ceramidase. The released sphingosine can be converted to ceramide in the ER and transported by ceramide transfer protein (CERT) to the Golgi for conversion to sphingomyelin. The mechanism by which sphingosine exits LE/LY is unknown but Niemann-Pick C1 protein (NPC1) has been suggested to be involved. Here, we used sphingomyelin, ceramide and sphingosine labeled with [(3) H] in carbon-3 of the sphingosine backbone and targeted them to LE/LY in low-density lipoprotein (LDL) particles. These probes traced LE/LY sphingolipid degradation and recycling as suggested by (1) accumulation of [(3) H]-sphingomyelin-derived [(3) H]-ceramide and depletion of [(3) H]-sphingosine upon acid ceramidase depletion, and (2) accumulation of [(3) H]-sphingosine-derived [(3) H]-ceramide and attenuation of [(3) H]-sphingomyelin synthesis upon CERT depletion. NPC1 silencing did not result in the accumulation of [(3) H]-sphingosine derived from [(3) H]-sphingomyelin/LDL or [(3) H]-ceramide/LDL. Additional evidence against NPC1 playing a significant role in LE/LY sphingosine export was obtained in experiments using the [(3) H]-sphingolipids or a fluorescent sphingosine derivative in NPC1 knock-out cells. Instead, NPC1-deficient cells displayed an increased affinity for sphingosine independently of protein-mediated lipid transport. This likely contributes to the increased sphingosine content of NPC1 cells.  相似文献   

9.
The treatment of C6 glioma cells with the nitric oxide donor, PAPANONOate ((Z)-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate), resulted in a dose-dependent inhibition of cell proliferation. This was associated to a rapid and significant increase of ceramide levels and was mimicked by treatments that augment cellular ceramide. Metabolic experiments with radioactive sphingosine, serine, and choline showed that nitric oxide strongly reduced the utilization of ceramide for the biosynthesis of both sphingomyelin and glucosylceramide. Nevertheless, nitric oxide did not modify the activity of different enzymes of ceramide metabolism. The possibility that nitric oxide impairs the availability of ceramide for sphingolipid biosynthesis was then investigated. The metabolism of N-hexanoyl-[(3)H]sphingosine demonstrated that nitric oxide did not affect the biosynthesis of N-hexanoyl-[(3)H]sphingolipids but inhibited the metabolic utilization of long chain [(3)H]ceramide, synthesized in the endoplasmic reticulum (ER) from the recycled [(3)H]sphingosine. Moreover, results obtained with fluorescent ceramides, brefeldin A, ATP depletion, as well as in a ceramide transport assay indicate that nitric oxide impairs the traffic of ceramide from ER to Golgi apparatus. All this supports that, in glioma cells, the modulation of ceramide traffic can contribute to the regulation of its intracellular levels and participate in the nitric oxide-activated signaling pathway involved in the control of cell proliferation.  相似文献   

10.
We recently reported that the marked decrease in cellular ceramide in primary astrocytes is an early event associated with the mitogenic activity of basic fibroblast growth factor (bFGF) (Riboni, L., Viani, P., Bassi, R., Stabieini, A., and Tettamanti, G. (2000) GLIA 32, 137-145). Here we show that a rapid activation of sphingomyelin biosynthesis appears to be the major mechanism responsible for the fall in ceramide levels induced by bFGF. When quiescent astrocytes were treated with bFGF, an increased amount of newly synthesized ceramide (from either l-[(3)H]serine or [(3)H]sphingosine) was directed toward the biosynthesis of sphingomyelin. Conversely, bFGF did not appear to affect ceramide levels by other metabolic pathways involved in ceramide turnover such as sphingomyelin degradation and ceramide biosynthesis, degradation, and glucosylation. Enzymatic studies demonstrating a relevant and rapid increase in sphingomyelin synthase activity after bFGF treatment have provided a convincing explanation for the activation of sphingomyelin biosynthesis. The bFGF-induced increase in sphingomyelin synthase appears to depend on a post-translational activation mechanism. Moreover, in the presence of brefeldin A, the activation of sphingomyelin biosynthesis was abolished, suggesting that the enzyme is located in a compartment other than the Golgi apparatus. Also the phosphatidylcholine-specific phospholipase C inhibitor D609 exerted a potent inhibitory effect on sphingomyelin biosynthesis. Finally, we demonstrate that inhibition of sphingomyelin biosynthesis by brefeldin A or D609 led to a significant inhibition of bFGF-stimulated mitogenesis. All this supports that, in primary astrocytes, the early activation of sphingomyelin synthase is involved in the bFGF signaling pathway leading to proliferation.  相似文献   

11.
Ceramide stimulates a cytosolic protein phosphatase.   总被引:11,自引:0,他引:11  
A sphingomyelin cycle has been identified whereby the action of certain extracellular agents results in reversible sphingomyelin hydrolysis and the concomitant generation of ceramide. Moreover, a cell-permeable ceramide, C2-ceramide (N-acetylsphingosine), is a potent modulator of cell proliferation and differentiation. We report herein that C2-ceramide, C6-ceramide, and natural ceramides activate a cytosolic serine/threonine protein phosphatase in a dose-dependent manner. Initial activation is observed at concentrations of ceramide as low as 0.1 microM with peak response occurring at 5-10 microM. However, other closely related sphingolipids, sphingosine and sphingomyelin, were largely inactive. Ceramide-stimulated phosphatase was inhibited by okadaic acid, an inhibitor of protein phosphatases, with an IC50 of 0.1-1 nM, depending on the concentration of ceramide. Ceramide-stimulated phosphatase was insensitive to Mg2+ and Mn2+ cations. Using sequential anion exchange chromatography, ceramide-stimulated phosphatase activity could be resolved from ceramide-nonresponsive phosphatases. The activity of partially purified enzyme was stimulated 3.5-fold by ceramide. The identification of a phosphatase as a molecular target for the action of ceramide defines a novel intracellular signaling pathway with potential roles in the regulation of cell proliferation and differentiation.  相似文献   

12.
The treatment of HL-60 myelocytic leukemia cells with 1 alpha,25-dihydroxyvitamin D3 (1,25-(OH)2D3) resulted in the activation of a neutral sphingomyelinase and in sphingomyelin turnover (Okazaki, T., Bell, R., and Hannun, Y. (1989) J. Biol. Chem. 264, 19076-19080). In this paper, the effects of 1,25-(OH)2D3 on the product of sphingomyelin hydrolysis, ceramide, and the possible function of ceramide as a lipid mediator of the effects of 1,25-(OH)2D3 on HL-60 cell differentiation were investigated. Treatment of HL-60 cells with 1,25-(OH)2D3 resulted in a time- and dose-dependent increase in ceramide mass levels. Ceramide levels peaked at 2 h following treatment of HL-60 cells with 100 nM 1,25-(OH)2D3 with an increase of 41% over base line. The mass of generated ceramide (13 +/- 2 pmol/nmol of phospholipid) agreed with the mass of hydrolyzed sphingomyelin (17 +/- 4 pmol/nmol of phospholipid). Cell-permeable ceramides with shorter N-acyl chains induced HL-60 cell differentiation at subthreshold concentrations of 1,25-(OH)2D3. Higher concentrations of cell-permeable ceramides potently induced HL-60 cell differentiation independent of 1,25-(OH)2D3. A 2-h exposure of HL-60 cells to N-acetyl-sphingosine was sufficient to cause differentiation. Morphologically, N-acetylsphingosine caused a similar monocytic differentiation of HL-60 cells as did 1,25-(OH)2D3. Exogenous ceramide was further metabolized to sphingomyelin and other sphingolipids, but no conversion to sphingosine was detected. Moreover, sphingosine and its analogs failed to affect monocytic differentiation of HL-60 cells in response to subthreshold 1,25-(OH)2D3, indicating that the effect of ceramide was independent of sphingosine generation. These studies demonstrate that ceramide is a lipid mediator that may transduce the action of 1,25-(OH)2D3 on HL-60 cell differentiation.  相似文献   

13.
1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] initiates the hydrolysis of sphingomyelin in ROS 17/2.8 osteosarcoma cells with the resultant generation of cell-associated ceramide. Increases in ceramide levels were detectable at 15 min and maximal one hour after exposure of cells to 1,25(OH)(2)D(3). Neither 1,25(OH)(2)D(3) nor exogenous ceramide elicited a change in cytosolic free Ca(2+) ([Ca(2+)](i)). Transient elevations in [Ca(2+)](i) were observed when cells were exposed to exogenous sphingosine, but there was no detectable conversion of ceramide to sphingosine in 1, 25(OH)(2)D(3)-treated cells. Ceramide also did not stimulate Ca(2+) uptake across ROS 17/2.8 cell plasma membranes. Collectively, these results suggest that 1,25(OH)(2)D(3) activates sphingomyelin turnover in ROS 17/2.8 osteosarcoma cells but that the sphingolipid metabolite ceramide is not responsible for 1,25(OH)(2)D(3)-induced activation of plasma membrane Ca(2+) channels.  相似文献   

14.
Lactate produced by Sertoli cells plays an important role in spermatogenesis, and heat stress induces lactate production in immature boar Sertoli cells. Extracellular signaling regulated kinase 1 and 2 (ERK1/2) participates in heat stress response. However, the effect of ERK1/2 on heat stress-induced lactate production is unclear. In the present study, Sertoli cells were isolated from immature boar testis and cultured at 32 °C. Heat stress was induced in a 43 °C incubator for 30 min. Proteins and RNAs were detected by western blotting and RT-PCR, respectively. Lactate production and lactate dehydrogenase (LDH) activity were detected using commercial kits. Heat stress promoted ERK1/2 phosphorylation, showing a reducing trend with increasing recovery time. In addition, heat stress increased heat shock protein 70 (HSP70), glucose transporter 3 (GLUT3), and lactate dehydrogenase A (LDHA) expressions, enhanced LDH activity and lactate production at 2-h post-heat stress. Pretreatment with U0126 (1?×?10?6 mol/L), a highly selective inhibitor of ERK1/2 phosphorylation, reduced HSP70, GLUT3, and LDHA expressions and decreased LDH activity and lactate production. Meanwhile, ERK2 siRNA1 reduced the mRNA level of ERK2 and weakened ERK1/2 phosphorylation. Additionally, ERK2 siRNA1 reduced HSP70, GLUT3, and LHDA expressions decreased LDH activity and lactate production. Furthermore, HSP70 siRNA3 downregulated GLUT3 and LDHA expressions and decreased LDH activity and lactate production. These results show that activated ERK1/2 increases heat stress-induced lactate production by enhancing HSP70 expression to promote the expressions of molecules related to lactate production (GLUT3 and LDHA). Our study reveals a new insight in reducing the negative effect of heat stress in boars.  相似文献   

15.
We previously showed that prostaglandin (PG) E1 stimulates the synthesis of interleukin-6 (IL-6) through activation of protein kinase (PK) A in osteoblast-like MC3T3-E1 cells and that PGF2alpha induces IL-6 synthesis through PKC activation. In other studies, we demonstrated that thrombin stimulates IL-6 synthesis, which depends on intracellular Ca2+ mobilisation in these cells and that tumour necrosis factor-alpha (TNF) induces IL-6 synthesis through sphingosine 1-phosphate, a product of sphingomyelin turnover. In the present study, among sphingomyelin metabolites, we examined the effect of ceramide on the IL-6 synthesis induced by various agonists in MC3T3-E1 cells. C2-ceramide, a cell-permeable ceramide analogue, suppressed the PGE1-induced IL-6 synthesis. C2-ceramide inhibited the IL-6 synthesis induced by PGF2alpha or 12-O-tetradecanoylphorbol-13-acetate, an activator of PKC. C2-ceramide reduced the IL-6 synthesis induced by cholera toxin, forskolin or dibutyryl cAMP. C2-ceramide inhibited the IL-6 synthesis induced by thrombin. The IL-6 synthesis stimulated by thapsigargin, which is known to stimulate Ca2+ mobilisation from intracellular Ca2+ stores, or A23187, a Ca-ionophore, was also inhibited by C2-ceramide. C2-ceramide did not affect the IL-6 synthesis induced by interleukin-1. On the contrary, C2-ceramide enhanced the TNF-induced IL-6 synthesis. D,L-threo-dihydrosphingosine, an inhibitor of sphingosine kinase, inhibited the enhancement by C2-ceramide as well as the TNF-effect. These results strongly suggest that ceramide modulates the IL-6 synthesis stimulated by various agonists in osteoblasts.  相似文献   

16.
Sphingomyelin cycle metabolites ceramide, sphingosine and sphingosine 1-phosphate play an important role in cell proliferation, differentiation, reception, oncogenesis and apoptosis. Ceramide is an intracellular second messenger for apoptosis activating proteases and specific phosphatases. Sphingosine is an endogenous inhibitor of protein kinase C and has an inhibitory effect on many cell functions depending on the activity of this enzyme. On the other hand, sphingosine can activate other kinases depending on the concentration, cell type and nature of a stimulus and release Ca2+ from intracellular stores thereby regulating cell proliferation. Sphingosine induces apoptosis and its level is increased in cells as a result of action of apoptotic inducers. A phosphorylated product of sphingosine, sphingosine 1-phosphate, mediates the mitogenic signal, induces Ca2+ mobilization and protects cells from apoptosis resulting from elevation of ceramide. The quantitative levels of sphingomyelin metabolites in the cell determine the dynamic balance between the apoptotic and mitogenic signals.  相似文献   

17.
In the present study, a possible role of a ceramide-dependent pathway in the regulation of Leydig cell function was investigated. Intracellular ceramide levels were increased by: (a) adding ceramide analogs; (b) inhibiting ceramidase activity; and (c) adding sphingomyelinase (SMase). The cell-permeable ceramide analogs N-acetyl-, N-hexanoyl- and N-octanoylsphingosine (C2, C6 and C8) were used. As inhibitor of ceramidase activity 1S,2R-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol (MAPP) was used. Sphingomyelinase from S. aureus origin was utilized. Leydig cells were cultured for 3 or 24 h with or without the different drugs (10 microM) and SMase (0.3 U/ml) in the presence or absence of hCG (10 ng/ml). Basal testosterone production was not modified under any of the experimental conditions. A decrease in hCG-stimulated testosterone production was observed at 3 and 24 h in all cases. The inactive analog (N-hexanoyl dihydrosphingosine) did not produce inhibition in hCG-stimulated testosterone production. TNFalpha and IL1beta, two possible inducers of sphingomyelin hydrolysis, produced similar effects on hCG-stimulated testosterone production. In experiments performed in the presence of C6, inhibition in hCG-stimulated cAMP production was observed. The inhibitory effect of ceramide was also observed in dbcAMP-stimulated cultures indicating that this pathway inhibits post-cAMP formation events. To study possible loci for the action of ceramide on the steroidogenic pathway, cells were incubated with C6 and MAPP in the presence of different testosterone precursors. The drugs inhibited testosterone produced from 22(R)-hydroxycholesterol (22R-OHChol), pregnenolone and 17alpha-hydroxyprogesterone (17OHP4) but not from androstenedione (Delta4). These results suggest that a ceramide-dependent pathway regulates hCG-stimulated Leydig cell steroidogenesis at the level of cAMP production and at post-cAMP events.  相似文献   

18.
Transport of ceramide synthesized at the endoplasmic reticulum to the Golgi compartment, where sphingomyelin (SM) synthase exists, was reconstituted within semi-intact Chinese hamster ovary cells. When [(3)H]ceramide that had been produced from [(3)H]sphingosine at 15 degrees C in perforated cells was chased at 37 degrees C, [(3)H]ceramide-to-[(3)H]SM conversion occurred in a cytosol-dependent manner. In various aspects (i.e. kinetics, ATP dependence, and temperature dependence), [(3)H]ceramide-to-[(3)H]SM conversion in perforated cells was consistent with that in intact cells. The cytosol from LY-A strain, a Chinese hamster ovary cell mutant defective in endoplasmic reticulum-to-Golgi transport of ceramide, did not support [(3)H]ceramide-to-[(3)H]SM conversion in perforated wild-type cells, whereas the wild-type cytosol rescued the conversion in perforated LY-A cells. Brefeldin A-treated cells, in which the endoplasmic reticulum and the Golgi apparatus were merged, no longer required cytosol for conversion of [(3)H]ceramide to [(3)H]SM. These results indicated that the assay of [(3)H]ceramide-to-[(3)H]SM conversion in semi-intact cells is a faithful in vitro assay for the activity of cytosol-dependent transport of ceramide and that LY-A cells are defective in a cytosolic factor involved in ceramide transport. In addition, conversion of [(3)H]ceramide to [(3)H]glucosylceramide in semi-intact cells was little dependent on cytosol, suggesting that ceramide reached the site of glucosylceramide synthesis by a cytosol-independent (or less dependent) pathway.  相似文献   

19.
Recent studies suggest the existence of a signal transduction pathway involving sphingomyelin and derivatives (Kolesnick, R. N. (1989) J. Biol. Chem. 264, 7617-7623). The present studies compare effects of ceramide, sphingosine, and N,N-dimethylsphingosine on epidermal growth factor (EGF) receptor phosphorylation in A431 human epidermoid carcinoma cells. To increase ceramide solubility, a ceramide containing octanoic acid at the second position (C8-cer) was synthesized. C8-cer induced time- and concentration-dependent EGF receptor phosphorylation. This event was detectable by 2 min and maximal by 10 min. As little as 0.1 microM C8-cer was effective, and 3 microM C8-cer induced maximal phosphorylation to 1.9-fold of control. EGF (20 nM) increased phosphorylation to 2.1-fold of control. Sphingosine stimulated receptor phosphorylation over the same concentration range (0.03-3 microM) and to the same extent (1.8-fold of control) as ceramide. The effects of C8-cer and sphingosine were similar by three separate criteria, phosphoamino acid analysis, anti-phosphotyrosine antibody immunoblotting, and phosphopeptide mapping by high performance liquid chromatography. Phosphorylation occurred specifically on threonine residues. N,N-Dimethylsphingosine, a potential derivative of sphingosine, was less effective. Since sphingosine and ceramide are interconvertible, the level of each compound was measured under conditions sufficient for EGF receptor phosphorylation. C8-cer (0.1-1 microM) induced dose-responsive elevation of cellular ceramide from 132 to 232 pmol.10(6) cells-1. In contrast, cellular sphingosine levels did not rise. This suggests that C8-cer acts without conversion to sphingosine. Exogenous sphingosine (0.1-1 microM) also increased cellular ceramide levels to 227 pmol.10(6) cells-1, but did not increase its own cellular level of 12 pmol.10(6) cells-1. Higher sphingosine concentrations that induced no further increase in EGF receptor phosphorylation produced very large elevations in cellular sphingosine. Hence, at effective concentrations, both compounds elevated cellular ceramide but not sphingosine levels. Additional studies performed with [3H]sphingosine demonstrated that cells contain substantially less N,N-dimethylsphingosine than free sphingosine and, during short term incubation, convert less than 5% of added sphingosine to N,N-dimethylsphingosine. These studies provide evidence that ceramide may have bioeffector properties and suggest sphingosine may act in part by conversion to ceramide.  相似文献   

20.
Free ceramide, glucosylceramide, and sphingomyelin were isolated from mature cells of adult rat small intestine. Free ceramide and ceramide cleaved from sphingomyelin by enzymatic hydrolysis were fractionated by thin-layer chromatography on borate-impregnated silica gel plates. Sphingoid bases were characterized by gas-liquid chromatography of aldehydes formed upon periodate oxidation. Fatty acids were quantified as methyl esters. Ceramide structures were confirmed by direct-inlet mass spectrometry. Free ceramide was found to contain two major long-chain bases in nearly equal quantity: sphingosine, mainly linked to palmitic acid, and 4D-hydroxysphinganine associated with C20 to C24 fatty acids, 22% being hydroxylated. Sphinganine occurred as a minor component linked to nonhydroxy fatty acids. Sphingomyelin contained the three long-chain bases and 63% of its ceramide was N-palmitoyl-sphingosine. Mass spectrometry of glucosylceramide confirmed 4D-hydroxyshingamine as the major sphingoid base associated preferentially with longer chain hydroxy fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号