首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using singlet-singlet energy transfer, we have measured the distance between the anticodons of two transfer RNAs simultaneously bound to a messengerprogramed Escherichia coli 70 S ribosome. The fluorescent Y base adjacent to the anticodon of yeast tRNAYPhe serves as a donor. A proflavine (Pf) chemically substituted for the Y base in tRNAPfPhe serves as an acceptor. By exploiting the sequential binding properties of 70 S ribosomes for two deacylated tRNAs, we can fill the strong site with either tRNAYPhe or tRNAPfPhe and then the weak site with the other tRNA. In both cases donor quenching and sensitized emission of the acceptor are observed. Analysis of these results leads to an estimate for the Y-proflavine distance of 18 ± 2 Å. This distance is very short and suggests strongly that the two tRNAs are simultaneously in contact with adjacent codons of the message. Separate experiments show that binding of a tRNA to the weak site does not perturb the environment of the hypermodified base of a tRNA bound to the strong site. This supports the assignment of the strong site as the peptidyl site. It also indicates that binding of the second tRNA proceeds without a change in the anticodon structure of a pre-existing tRNA at the peptidyl site.  相似文献   

2.
3.
The kinetics of double-helix formation by poly U and the complementary monomer N-6,9-dimethyladenine (m6m9A) has been measured using a new fast temperature-jump apparatus. The cooperative binding kinetics are complicated by the extensive self-association of the monomers, but a satisfactory analysis using average relaxation times was possible in terms of three different models. Application of a model which considers only monomer binding yields the upper limit for the binding rate constant of an m6m9A monomer next to an already bound monomer on a poly U strand: (2 ± 0.4) × 108 M?1sec?1. A lower limit is found by using a model which allows for binding of all m6m9A stacks to poly U with equal rate constants: (3 ± 0.3) × 107 M?1sec?1. A third model with “weighted” rate constants consistent with the data: (7.5 ± 1.0) × 107 M?1sec?1. The rate of cooperative binding of m6m9A to the trimer UpUpU has also been measured. The rate constants obtained with the trimer agree with those obtained with the polymer for each of the three models within experimental error.  相似文献   

4.
Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of Haloarcula marismortui isoleucine tRNA (tRNA2Ile) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2Ile binds exclusively to the isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in crenarchaea, eubacteria, or eukaryotes.  相似文献   

5.
Destabilization of codon-anticodon interaction in the ribosomal exit site   总被引:9,自引:0,他引:9  
The affinities of the exit (E) site of poly(U) or poly(A)-programmed Escherichia coli ribosomes for the respective cognate tRNA and a number of non-cognate tRNAs were determined by equilibrium titrations. Among the non-cognate tRNAs, the binding constants vary up to about tenfold (10(6) to 10(7) M-1 at 20 mM-Mg2+) or 50-fold (10 mM-Mg2+), indicating that codon-independent binding is modulated to a considerable extent by structural elements of the tRNA molecules other than the anticodon. Codon-anticodon interaction stabilizes tRNA binding in the E site approximately fourfold (20 mM-Mg2+) or 20-fold (10 mM-Mg2+), corresponding to delta G degree values of -3 and -7 kJ/mol (0.7 and 1.7 kcal/mol), respectively. Thus, the energetic contribution of codon-anticodon interaction to tRNA binding in the E site appears rather small, particularly in comparison to the large effects on the binding in A and P sites and to the binding of complementary oligonucleotides or of tRNAs with complementary anticodons. This result argues against a role of the E site-bound tRNA in the fixation of the mRNA on the ribosome. In contrast, we propose that the role of the E site is to facilitate the release of the discharged tRNA during translocation by providing an intermediate, labile binding site for the tRNA leaving the P site. The lowering of both affinity and stability of tRNA binding accompanying the transfer of the tRNA from the P site to the E site is predominantly due to the labilization of the codon-anticodon interaction.  相似文献   

6.
Association constants for tRNA binding to poly(U) programmed ribosomes were assessed under standardized conditions with a single preparation of ribosomes, tRNAs, and elongation factors, respectively, at 15 and 10 mM Mg2+. Association constants were determined by Scatchard plot analysis (the constants are given in units of [10(7)/M] measured at 15 mM Mg2+): the ternary complex Phe-tRNA.elongation factor EF-Tu.GTP (12 +/- 3), Phe-tRNA (1 +/- 0.4), AcPhe-tRNA (0.7 +/- 0.3), and deacylated tRNA(Phe) (0.4 +/- 0.15) bind with decreasing affinity to the A site of poly(U)-programmed ribosomes. tRNA(Phe) (7.2 +/- 0.8) binds to the P site with higher affinity than AcPhe-tRNA (3.7 +/- 1.3). The affinity of the E site for deacylated tRNA(Phe) (1 +/- 0.2) is about the same as that of the A site for AcPhe-tRNA (0.7 +/- 0.3). At lower Mg2+ concentrations the affinity of the E site ligand becomes stronger relative to the affinities of the A site ligands. Phe-tRNA and ternary complexes can occupy the A site at 0 degrees C in the presence of poly(U) even if the P site is free, whereas, as already known, deacylated tRNA or AcPhe-tRNA bind first to the P site of programmed ribosomes. Hill plot analyses of the binding data confirm an allosteric linkage between A and E sites in the sense of a negative cooperativity.  相似文献   

7.
The anticodon-anticodon complex   总被引:6,自引:0,他引:6  
Gel electrophoresis has been used to measure the binding between two tRNAs with complementary anticodons, tRNAVal (Escherichia coli) (anticodon X,A,C) and tRNATyr (E. coli) (anticodon Q,U,A). The association constant K at 0 °C was found to be 4 × 105 m?1 which is about three orders of magnitude greater than the association constant for tRNATyr (E. coli) binding its trinucleotide codon UAC. The temperature dependence of K suggests that this results from the rigidity of the anticodon loop. tRNATyr (E. coli) binds an order of magnitude more weakly to tRNAVal (yeast) than to tRNAVal (E. coli), presumably because it contains the wobble base pair A · I. The relationship between the anticodon-anticodon complex and codon recognition is discussed.  相似文献   

8.
Following peptide-bond formation, the mRNA:tRNA complex must be translocated within the ribosomal cavity before the next aminoacyl tRNA can be accommodated in the A site. Previous studies suggested that following peptide-bond formation and prior to EF-G recognition, the tRNAs occupy an intermediate (hybrid) state of binding where the acceptor ends of the tRNAs are shifted to their next sites of occupancy (the E and P sites) on the large ribosomal subunit, but where their anticodon ends (and associated mRNA) remain fixed in their prepeptidyl transferase binding states (the P and A sites) on the small subunit. Here we show that pre-translocation-state ribosomes carrying a dipeptidyl-tRNA substrate efficiently react with the minimal A-site substrate puromycin and that following this reaction, the pre-translocation-state bound deacylated tRNA:mRNA complex remains untranslocated. These data establish that pre-translocation-state ribosomes must sample or reside in an intermediate state of tRNA binding independent of the action of EF-G.  相似文献   

9.
The complexes of N-AcPhe-tRNAPhe (or non-aminoacylated tRNAPhe) from yeast with 70S ribosomes from E. coli have been studied fluorimetrically utilizing wybutine, the fluorophore naturally occurring next to the 3' side of the anticodon, as a probe for conformational changes of the anticodon loop. The fluorescence parameters are very similar for tRNA bound to both ribosomal sites, thus excluding an appreciable conformational change of the anticodon loop upon translocation. The spectral change observed upon binding of tRNAPhe to the P site even in the absence of poly(U) is similar to the one brought about by binding of poly(U) alone to the tRNA. This effect may be due to a hydrophobic binding site of the anticodon loop or to a conformational change of the loop induced by binding interactions of various tRNA sites including the anticodon.  相似文献   

10.
tRNA binding sites of ribosomes from Escherichia coli   总被引:6,自引:0,他引:6  
70S tight-couple ribosomes from Escherichia coli were studied with respect to activity and number of tRNA binding sites. The nitrocellulose filtration and puromycin assays were used both in a direct manner and in the form of a competition binding assay, the latter allowing an unambiguous determination of the fraction of ribosomes being active in tRNA binding. It was found that, in the presence of poly(U), the active ribosomes bound two molecules of N-AcPhe-tRNAPhe, one in the P and the other in the A site, at Mg2+ concentrations between 6 and 20 mM. A third binding site in addition to P and A sites was observed for deacylated tRNAPhe. At Mg2+ concentrations of 10 mM and below, the occupancy of the additional site was very low. Dissociation of tRNA from this site was found to be rather fast, as compared to both P and A sites. These results suggest that the additional site during translocation functions as an exit site, to which deacylated tRNA is transiently bound before leaving the ribosome. Since tRNA binding to this site did not require the presence of poly(U), a function of exit site bound tRNA in the fixation of the mRNA appears unlikely. Both the affinity and stability of binding to the additional site were found lower for the heterologous tRNAPhe from yeast as compared to the homologous one. This difference possibly indicates some specificity of the E. coli ribosome for tRNAs from the same organism.  相似文献   

11.
H Paulsen  W Wintermeyer 《Biochemistry》1986,25(10):2749-2756
The distances between the anticodon loops of fluorescent tRNAPhe bound to the E site and to either the A or the P site of poly(U)-programmed Escherichia coli ribosomes were measured by fluorescence energy transfer. Donor and acceptor molecules were wybutine and proflavin, respectively, both located 3' to the anticodon of tRNAPhe. The anticodon loops were found to be separated by 42 +/- 10 A (A to E site) and 34 +/- 8 A (P to E site). The latter distance is much larger than the one measured between the anticodon loops of A and P site bound tRNAs [24 +/- 4 A; Paulsen, H., Robertson, J. M., & Wintermeyer, W. (1983) J. Mol. Biol. 167, 411-426], rendering unlikely simultaneous codon-anticodon interaction in the P and E sites. In kinetic stopped-flow measurements, the energy transfer between the anticodon loops of the tRNA molecules was followed during translocation. The transfer efficiency decreases in three steps with apparent rate constants on the order of 1, 0.1, and 0.01 s-1. The fast step is ascribed to the simultaneous displacement of the deacylated tRNAPhe out of the P site and of the N-AcPhe-tRNAPhe from the A site to the P site. The distance between the anticodon loops does not change appreciably during this reaction. A significant separation of the two tRNAs occurs during the intermediate and the slow steps. The latter most likely represents a rearrangement of the posttranslocation complex containing both tRNA molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
The effect of N-[9-(beta-D-ribofuranosyl) purin-6-ylcarbamoyl]threonine (t6A) adjacent to anticodon U-C-U of yeast tRNA Arg III (where U is a modified U), compared to its unmodified adenosine counterpart, has been evaluated by three independent methods: (a) the polynucleotide-directed binding of tRNA on ribosomes, (b) the ribosome-free trinucleotide binding to the anticodon, (c) the anticodon-anticodon binding test. The results obtained by these three methods indicate a small but significant stabilization effect of t6A on the binding of yeast tRNA Arg III with (a) poly(A,G) in the presence of Escherichia coli ribosomes, (b) free A-G-A triplet, and (c) E. coli tRNA Ser V (anticodon G-G-A). We therefore conclude that the stabilization effect of t6A occurs on U x A and U x G base pairs adjacent to the 5' side of the modified nucleoside, most probably by stacking.  相似文献   

14.
ms2i6A deficiency enhances proofreading in translation.   总被引:4,自引:0,他引:4  
The hypermodified base 2-methylthio-N6-isopentenyladenosine (ms2i6A) at position 37 occurs frequently in tRNAs that read codons starting with uridine. Here we have studied how ms2i6A affects the accuracy of poly(U) translation in vitro. Deficiency leads to a higher rejection rate of tRNA4(Leu) by more aggressive proofreading on the wild-type ribosome, but with the initial selection step unchanged. Our data indicate that ms2i6A has no effect on codon-anticodon interactions on wild-type ribosomes as long as aminoacyl-tRNA is in ternary complex with EF-Tu and GTP. ms2i6A deficiency in the cognate poly(U) reader tRNA(Phe) leads to increased misreading when the near-cognate competitor tRNA4(Leu) is wild-type. ms2i6A deficiency in tRNA4(Leu) gives a decreased error level in competition with wild-type tRNA(Phe).  相似文献   

15.
Unusual anticodon loop structure found in E.coli lysine tRNA.   总被引:3,自引:1,他引:2       下载免费PDF全文
Although both tRNA(Lys) and tRNA(Glu) of E. coli possess similar anticodon loop sequences, with the same hypermodified nucleoside 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the first position of their anticodons, the anticodon loop structures of these two tRNAs containing the modified nucleoside appear to be quite different as judged from the following observations. (1) The CD band derived from the mnm5s2U residue is negative for tRNA(Glu), but positive for tRNA(Lys). (2) The mnm5s2U monomer itself and the mnm5s2U-containing anticodon loop fragment of tRNA(Lys) show the same negative CD bands as that of tRNA(Glu). (3) The positive CD band of tRNA(Lys) changes to negative when the temperature is raised. (4) The reactivity of the mnm5s2U residue toward H2O2 is much lower for tRNA(Lys) than for tRNA(Glu). These features suggest that tRNA(Lys) has an unusual anticodon loop structure, in which the mnm5s2U residue takes a different conformation from that of tRNA(Glu); whereas the mnm5s2U base of tRNA(Glu) has no direct bonding with other bases and is accessible to a solvent, that of tRNA(Lys) exists as if in some way buried in its anticodon loop. The limited hydrolysis of both tRNAs by various RNases suggests that some differences exist in the higher order structures of tRNA(Lys) and tRNA(Glu). The influence of the unusual anticodon loop structure observed for tRNA(Lys) on its function in the translational process is also discussed.  相似文献   

16.
Abstract

Saffron is the red dried stigmas of Crocus sativus L. flowers and used both as a spice and as a drug in traditional therapeutic. The biological activity of saffron in modern medicine is in development. Its numerous applications as an anti-oxidant and anti-cancer agent are due to its secondary metabolites and their derivatives (safranal, crocins, crocetin, dimethylcrocetin). The aim of this study was to examine the interaction of transfer RNA with safranal, crocetin, and dimethylcrocetin in aqueous solution at physiological conditions. Constant tRNA concentration (6.25 mM) and various drug/tRNA (phosphate) molar ratios of 1/48 to 1/8 were used. FT-IR and UV-Visible difference spectroscopic methods have been applied to determine the drug binding mode, the binding constants and the effects of drug complexation on the stability and conformation of tRNA duplex. External binding mode was observed for safranal crocetin and dimethylcrocetin, with overall binding constants Ksafranal = 6.8 (± 0.34) × 103 M?1, KCRT = 1.4 (± 0.31) × 104 M?1, and KDMCRT = 3.4 (± 0.30) × 104 M?1. Transfer RNA remains in the A-family structure, upon safranal, crocetin and dimethylcrocetin complexation.  相似文献   

17.
Transfer RNA (tRNA) structure, modifications and functions are evolutionary and established in bacteria, archaea and eukaryotes. Typically the tRNA modifications are indispensable for its stability and are required for decoding the mRNA into amino acids for protein synthesis. A conserved methylation has been located on the anticodon loop specifically at the 37th position and it is next to the anticodon bases. This modification is called as m1G37 and it is catalyzed by tRNA (m1G37) methyltransferase (TrmD). It is deciphered that G37 positions occur on few additional amino acids specific tRNA subsets in bacteria. Furthermore, Archaea and Eukaryotes have more number of tRNA subsets which contains G37 position next to the anticodon and the G residue are located at different positions such as G36, G37, G38, 39, and G40. In eight bacterial species, G (guanosine) residues are presents at the 37th and 38th position except three tRNA subsets having G residues at 36th and 39th positions. Therefore we propose that m1G37 modification may be feasible at 36th, 37th, 38th, 39th and 40th positions next to the anticodon of tRNAs. Collectively, methylation at G residues close to the anticodon may be possible at different positions and without restriction of anticodon 3rd base A, C, U or G.  相似文献   

18.
Steady-state fluorescence and fluorescence anisotropy measurements have been carried out on isolated complexes of fluorescent derivatives of N-AcPhe-tRNAPhe with 70 S ribosomes from Escherichia coli. As a fluorescent probe, proflavine was inserted into either the anticodon loop or the D loop.Upon binding to the A site of poly(U)-programmed ribosomes, the probe in the anticodon loop is highly immobilized and effectively shielded against solvent access in a hydrophobic binding site. Elongation factor G-dependent translocation to the P site does not change any of the fluorescence parameters. These observations indicate that in both sites the environment of the probe with respect to hydrophobicity and shielding against solvent access is rather similar. Moreover, substantial conformational changes of the anticodon loop upon translocation are made unlikely.In contrast to the anticodon loop, the D loop is fully exposed to the solvent in both A and P sites, indicating that the variable region in the middle of the D loop is oriented away from the ribosomal surface.On the other hand, depolarization measurements show that the D loop is strongly immobilized in the A site, possibly by binding interactions of invariant bases of the loop. Upon translocation, the D loop gains considerable flexibility, indicating that in the P site it is neither fixed by contacts with the ribosome nor by intramolecular base-pairing with the T loop.In the absence of poly(U) or in the presence of poly(C), the fluorescence parameters of the probes in the anticodon loop and, more significantly, in the D loop, differ from those observed in the presence of poly(U). These differences are best explained by assuming a codon-induced conformational change of the anticodon loop, which in turn is transmitted to the D loop.When the non-aminoacylated tRNAPhe derivatives are studied, spectroscopic differences as compared to the respective N-AcPhe-tRNAPhe derivatives are observed only for the A site complexes. It appears that the aminoacylation influences the binding of transfer RNA in the A site, but not in the P site.  相似文献   

19.
The three consecutive G:C base pairs, G29:C41, G30:C40, and G31:C39, are conserved in the anticodon stem of virtually all initiator tRNAs from eubacteria, eukaryotes, and archaebacteria. We show that these G:C base pairs are important for function of the tRNA in initiation of protein synthesis in vivo. We changed these base pairs individually and in combinations and analyzed the activities of the mutant Escherichia coli initiator tRNAs in initiation in vivo. For assessment of activity of the mutant tRNAs in vivo, mutations in the G:C base pairs were coupled to mutation in the anticodon sequence from CAU to CUA. Mutations in each of the G:C base pairs reduced activity of the mutant tRNA in initiation, with mutation in the second G:C base pair having the most severe effect. The greatly reduced activity of this C30:G40 mutant tRNA is not due to defects in aminoacylation or formulation of the tRNA or defects in base modification of the A37, next to the anticodon, which we had previously shown to be important for activity of the mutant tRNAs in initiation. The anticodon stem mutants are most likely affected specifically at the step of binding to the ribosomal P site. The pattern of cleavages in the anticodon loop of mutant tRNAs by S1 nuclease indicate that the G:C base pairs may be involved directly in interactions of the tRNA with components of the P site on the ribosome rather than indirectly by inducing a particular conformation of the anticodon loop critical for function of the tRNA in initiation.  相似文献   

20.
Binding of the yeast Tyr-tRNA and Phe-tRNA to the A site, and the binding of their acetyl derivatives to the P site of poly(U11,A)-programmed Escherichia coli ribosomes was studied. Spermine stimulated the rate of binding of both tRNAs at least threefold, enabling more than 90% final saturation of both ribosomal binding sites. The effect is observed when the tRNAs, but not ribosomes or poly(U11,A), are preincubated with polyamine. Regardless of the binding site, optimal saturation was reached at spermine/tRNA molar ratios of 3 for tRNA(Phe) and 5 for tRNA(Tyr). The same low spermine/tRNA ratios were previously reported to stabilize the conformation of these tRNAs in solution. On the other hand, the messenger-free, EF-Tu- and EF-G-dependent polymerization of lysine from E. coli Lys-tRNA is drastically reduced, while the poly(A)-directed polymerization is stimulated by spermine through a wide range of Mg2+ concentrations. Misreading of UUU codons as isoleucine, assayed by the A-site binding of E. coli Ile-tRNA, is also inhibited by spermine. All these results demonstrate that spermine increases the efficiency and accuracy of a series of macromolecular interactions leading to the correct incorporation of an amino acid into protein, at the same time preventing some unspecific or erroneous interactions. From the analogy with its known structural effects, it can be inferred that spermine does so by conferring on the tRNA a specific biologically functional conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号